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Spectral Phase Transitions in Optical Parametric Oscillators
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Spectral behaviors of photonic resonators have been the basis for a range of fundamental studies,
with applications in classical and quantum technologies [1, 2]. Driven nonlinear resonators provide
a fertile ground for phenomena related to phase transitions far from equilibrium [3], which can open
opportunities unattainable in their linear counterparts. Here, we show that optical parametric
oscillators (OPOs) can undergo second-order phase transitions in the spectral domain between
degenerate and non-degenerate regimes. This abrupt change in the spectral response follows a
square-root dependence around the critical point, exhibiting high sensitivity to parameter variation
akin to systems around an exceptional point [4]. We experimentally demonstrate such a phase
transition in a quadratic OPO, map its dynamics to the universal Swift-Hohenberg equation, and
extend it to Kerr OPOs. To emphasize the fundamental importance and consequences of this
phase transition, we show that the divergent susceptibility of the critical point is accompanied by
spontaneous symmetry breaking and distinct phase noise properties in the two regimes, indicating
the importance of a beyond nonlinear bifurcation interpretation. We also predict the occurrence of
first-order spectral phase transitions in coupled OPOs. Our results on non-equilibrium spectral
behaviors can be utilized for enhanced sensing [5-7], advanced computing [8], and quantum
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information processing [9, 10].

Photonic resonators appearing in myriad forms
ranging from macro-scale to nano-scale have been
the mainstay of light-based fundamental studies and
applications [1]. The ability to engineer the resonant
spectral features of these cavities unveil tremendous
possibilities in sensing and light-matter interactions. The
interplay of gain/loss and coupling in coupled linear
photonic resonators can lead to the occurrence of a
multitude of intriguing phenomena ranging from Fano
resonance, electro-magnetically induced transparency,
[2] and exceptional point associated with parity-time
symmetry breaking [4, 11].

Strong nonlinearities in photonic resonators can lead to
a variety of rich phenomena. Nonlinear driven dissipative
systems existing in non-equilibrium steady states exhibit
self-organization [12], pattern formation [13-17], and
emergent phase and dynamical phase transitions [3].
Other salient examples include behaviors in laser systems
[18-20] at threshold [21] and around mode-locking
transitions [22-24], soliton-steps in Kerr micro-resonators
[25], and in polaritonic quantum fluids [9]. Similar
phenomena are also explored outside photonics for
instance in the form of Rayleigh-Benard convection and
Faraday waves [26, 27].

Specific to the parametric oscillation regime, a variety
of nonlinear dynamical behaviors has been predicted
and demonstrated such as bi-stability, self-pulsation,
limit-cycles [28], pattern formation [13-17] and phase
transitions [29, 30], albeit not explicitly in the spectral
domain. Here, we exploit the rich dynamics of nonlinear
driven dissipative systems in OPOs to formulate and
engineer their spectral behaviors as phase transitions.
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Phase transition marks a universal qualitative regime
change in system properties as the control parameter
is varied around a critical/transition point [31]. The
behavior of the system around the critical point is
characterized by the order parameter (OP). Second-
order phase transition displays continuity in the OP
while exhibiting a discontinuity in the derivative of the
OP. On the other hand, first-order transition is known
to possess a discontinuous OP around the transition
point.

Realizing phase transitions based on the optical
parametric processes can provide unique opportunities
for sensing. For instance, in phase-transition-based
detectors and transition-edge sensors [32], the reset time
(return time to the critical bias point) can be significantly
reduced using an ultrafast nonlinear process compared
to thermodynamic transitions. Moreover, similar to
the exceptional points in optical systems [4, 11], an
enhanced sensitivity [6, 7] can be realized using a driven
dissipative-based spectral phase transition. However, in
contrast to exceptional points in PT-symmetric systems,
this enhancement is not accompanied by eigenvectors
non-orthogonality and can potentially provide high
sensitivity combined with high precision [33, 34]. The
noiseless nature of parametric amplification [35] can be
another unique resource for enhancing the signal-to-
noise ratio; a property that is not readily available in
current implementations of exceptional points. Divergent
susceptibility of the critical point supported by the
parametric gain in a driven-dissipative setting can open
unexplored avenues in the context of non-Hermitian
sensing.

Spectral phase transitions in OPOs can also open
opportunities for computing and quantum information
processing. Phase transition occurring at the oscillation
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threshold of OPOs has been utilized as a promising
computing resource in optical Ising machines |8,
36]. Phase transition occurring in the spectral
domain can provide additional computing capabilities
in them or enable similar non-Von Neumann computing
architectures operating in the spectral domain.

In this work, we consider a doubly-resonant OPO [37,
38] as a driven-dissipative system in a non-equilibrium
steady state. The driving is accomplished by the
synchronous pulsed pump centered around the frequency
2wq, while the resonant signal and the idler constitute
the longitudinal modes of the resonator centered around
the half-harmonic frequency (wp).The interaction among
the modes is engendered by the quadratic non-linearity
(Fig. 1la).  The inherent coupled nature of the
signal and idler in a doubly-resonant OPO gives rise
to rich nonlinear dynamics including the appearance
of bi-phase states around degeneracy [8]. The mutual
interplay between the cavity detuning and the temporal
group velocity dispersion provides another degree of
freedom, which governs the dynamics of signal/idler in
synchronously pumped doubly resonant OPOs. This
leads to discontinuities typical of a second-order phase
transition around the critical cavity detuning (Fig. 1b
and 1c). This spectral phase transition demarcates
the sharp boundary between the degenerate and non-
degenerate parametric oscillation.
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Figure 1. Spectral phase transition in nonlinear

photonic resonators. a) OPO with the resonant signal
and idler in the cavity with variable detuning (A¢) and
second-order group-velocity dispersion (32). The nonlinearity
can be provided by a quadratic (x?) or a Kerr (x®)
medium. b) A second-order phase transition occurs at
the critical detuning that marks the transition between
the degenerate and the non-degenerate spectrum. c) This
transition is characterized by a continuous order parameter,
but a discontinuous derivative of the order parameter at the
critical point (CP).

In the CW-driven high-finesse limit, the OPO is

governed by the mean-field evolution equation:
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where, a describes the signal envelope under the slowly
varying envelope approximation limit. Here &, t refers
to the slow time and the fast time respectively [39]. a,
A, B2, and g denotes the loss, detuning, group-velocity
dispersion (GVD), and the phase-sensitive parametric
gain respectively. ¢ in the CW-limit is expressed as
ebl, where b is the pump amplitude. L refers to the
cavity round trip length where the nonlinear interaction
is encountered, ¢ includes the strength of the nonlinear
interaction and w is the walk-off parameter. The last
term to the right of the equation is responsible for the
gain saturation. Each of these terms are normalized by
suitable normalization factors (see Supplemental Section
3).

We assume a perturbation in the field (signal/idler)
around the half-harmonic frequency (wp) to be of the
form: a = a; e +a_e !, We perform linear stability
analysis (neglecting gain saturation) to determine the
most unstable longitudinal mode, which is given as:
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where I' = A¢ + %(&u)z. Analyzing the eigenvalue
(growth rate) (Eq(2b)) of the linear stability matrix we
arrive at two scenarios. First, when sgn(A¢) =sgn(f2),
we find that the most unstable frequency of oscillation
is 6w = 0, and the corresponding threshold (i.e. when
Ay = 0) is |glsn = Va2 + (Ag)?, leaving the OPO
in the degenerate phase. However, when sgn(A¢) =
—sgn(f2), the most unstable frequency of oscillation is

given by dw = |2§2¢|%, and the associated threshold

is |g|tn = «, leaving the OPO in the non-degenerate
phase. This can be understood as cavity detuning (Ag)
counterbalancing the GVD induced detuning in the non-
degenerate regime. This can happen for positive cavity
detuning in the anomalous regime, where GVD induced
detuning is negative and they cancel exactly at wy =+ dw,
thereby experiencing more gain in the non-degenerate
phase resulting in OPO selecting non-degeneracy over
degenerate oscillation. This proves the existence of the
spectral phase transition which is demonstrated in Fig
2. The spectral phase transition takes place around
the detuning, A¢ = 0. The behavior in the normal
GVD regime (Fig. 2d) is reversed as compared to the
anomalous GVD scenario (Fig. 2b). Results obtained
experimentally (Fig. 2c, Fig 2.e) agree well with the
simulation.



The spectral transition can be interpreted as an order-
disorder transition whereby the OPO transits from an
ordered bi-phase state in the degenerate regime, to a
dis-ordered phase state in the non-degenerate regime
with the signal assuming random phases and the idler
following it (see Supplemental Section 15) [40]. Thus the
critical point marks the onset of the spontaneous U(1)
symmetry breaking. In our context we define OP as,
OP = %, which represents the derivative of the gain
with respect to the detuning. The gain (Aaz = max Ag)

w

i.e. the maximum eigenvalue is obtained using Eq(S.8)
(see Supplemental Section 4). The phase-dependent
parametric gain is sensitive to detuning induced phase
accumulation more acutely in the degenerate regime as
opposed to the non-degenerate regime where it varies
slowly with detuning. The order-disorder transition has
important implications in the phase noise and coherence
properties of the OPO. While the phase noise of OPO
operating at degeneracy is dominated by the driving
pump, in the non-degenerate regime phase diffusion
leads to Schawlow- Townes limit for each of the signal
and the idler [41], albeit with anti-correlation in their
phases and potential phase-sum quadrature squeezing
[42]. The phase transition description reveals interesting
correlation properties in the dis-ordered regime i.e. the
non-degenerate regime. The phase difference diffusion
follows a power-law dependence as a function of detuning
(i.e. distance from the critical point) which mimics the
behavior of correlation functions in continuous phase
transitions (see Supplemental Section 9).

We further characterize the quadratic OPO around
the phase transition point (Fig. 3). The critical point
coincides with the maximum output power of the OPO
as observed numerically and experimentally (Fig. 3a
and 3b). This behavior can be explained by the gain
calculations (inset of Fig. 3c). The threshold is a
function of detuning and dispersion [40]. The order
parameter displays characteristics (Fig. 3c) typical of
second-order phase transitions or soft transitions [43].
Additionally, in the pulsed regime as the OPO undergoes
the phase transition the signal and idler combs split and
interfere with each other with a beat frequency equal to
the difference of their respective carrier-envelope offset
frequencies. This leads to the spontaneous emergence
of beat notes as shown in the measurement results of
Fig. 3d. This is a manifestation of a critical slowing
down phenomenon, where the time period of the beat-
note tends to infinity as we approach the critical point
from the non-degenerate regime. Note that, the detuning
range of the parametric oscillation, as well as the ratio
of degenerate and non-degenerate regimes above the
threshold is determined by the gain, which is a function of
the pump power and cavity dispersion (see Supplemental
Section 11).

When two OPOs are coupled, the transition from
degenerate to non-degenerate operation can occur as a
first-order phase transition. Fig 4.a depicts a schematic
representation of the coupled OPO configuration. In the
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Figure 2. Second-order spectral phase transition in

an OPO. a) Schematic of the experimental setup, which
implements the spectral phase transition in a guided-wave
OPO based on PPLN. Beam Splitter (BS), Output Coupler
(OC), Slow Photo-detector (SPD), Fast Photo-detector
(FPD), Second Harmonic Generation (SHG). Spectrum as a
function of detuning obtained through numerical simulation
b) in anomalous dispersion regime (dotted line plots the
theoretically expected spectral splitting, which in the non-
—24A¢
B2
dispersion regime. Experimental results capturing the second-

order critical point ¢) in anomalous dispersion regime, €) in
normal dispersion regime. It closely follows the square-root
behavior (dotted line) in the non-degenerate regime. Colorbar
represents power spectral density in dB.

degenerate regime is given by: dw =

, d) in the normal

presence of the coupling, the competition between the
two second-order phase transitions (as shown by the gain
curve in Fig. 4d) results in the emergence of a first
order spectral phase transition (Fig. 4e). This first-
order transition point causes a sudden discontinuity /hard
transition in the spectrum (Fig. 4b, Fig. 4c) as the
coupled OPO transits from the non-degenerate to the
degenerate spectral regime (Fig. 4e). The coupling in the
linear regime induces a mode splitting which is expected
to introduce a second-order phase transition around the
split resonances as evident from the plot of OP in Fig. 4d.
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Figure 3. Characterization of the second-order critical
point. OPO average output power as a function of cavity
detuning obtained numerically (a) and experimentally (b)
using a slow detector. This demonstrates the maximum
conversion efficiency at the critical point. ¢) continuous order
parameter but discontinuous derivative typical of a second
order phase transition. The inset shows the gain curve as
a function of cavity detuning, which has its maximum at the
critical point. d) Spontaneous emergence of beat-note around
the critical point. Measured RF spectrum captured using a
fast detector in a multi-heterodyne measurement showing co-
existence of the signal and idler combs in the non-degenerate
regime and their offset tuning.

This can be understood by the argument that a positive
cavity detuning applied to individual cavities can appear
both as a positive or a negative detuning in the coupled
basis depending on the relative magnitude of the cavity
detuning and the coupling strength. Further details
regarding the modeling of coupled OPOs is presented
in the supplementary information (see Supplemental
Section 6,7).

The demonstrated spectral phase transitions can be
described by the universal Swift-Hohenberg equation
which is also known to govern nonlinear pattern
formation dynamics [44, 45]. The mapping of the OPO
dynamics to the Swift-Hohenberg equation is derived in
S8 (see Supplemental Section 8) [40]. The same equation
we derived in this context can describe degenerate four-
wave mixing dynamics contingent to certain conditions.
Thus, spectral phase transitions are also expected to
occur in Kerr OPOs (Fig. 5a).

For the Kerr OPO, we consider a conservative system
governed by the nonlinear Schroedinger equation. 24
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Figure 4. First-order spectral phase transition in
coupled OPOs. a) Schematic configuration of a coupled
OPO (coupling factor (k)). b,c) Simulated spectrum as
a function of cavity detuning b) in the normal dispersion
regime, c¢) in the anomalous dispersion regime. d) Order
parameter as a function of detuning showing the discontinuity
at the location of the first-order transition point. The gain
curve is also plotted alongside. The OPO selects the gain
maximum and therefore doesn’t follow the dashed portion of
the gain curve. This gain competition between two second-
order critical point gives rise to the first order transition point.
e) The spectrum considering the wavelength experiencing the
maximum gain around which the signal/idler is centered. At
the first-order transition, there is a discontinuous jump from
the non-degenerate spectrum to the degenerate spectrum.

nonlinear co-efficient and S5 stands for the second order
GVD co-efficient. Degenerate parametric oscillation can
be realized in a Kerr medium using dual pumps (Fig. 5b
and 5c¢) [46, 47). We represent the dual pumps as having
amplitudes A; and A, and assume that they have equal
power (P = |A;|?> = |A3]?) and possesses a detuning
of A from the center of degeneracy. Owing to the
symmetry, we assume the parametrically generated signal
(As) and idler (A;) to be detuned by dw from the center of
degeneracy. We express the field as given by the following
expansion: A(z,7) = A1 + Age AT 4+ A (2)ewT +
A;(2)e™"“T . Parametric gain at the onset of the phase
conjugation parametric process can be determined via a
linear stability analysis. The growth rate due to phase
conjugation parametric process can be expressed as e*?
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Figure 5. Spectral phase transition in dual-pump
four-wave mixing. a) Illustration of the two pump fields
getting converted to the signal and idler. b) The phase
conjugation parametric instability gain (Eq 3) curve in the
normal dispersion regime as the pump power is varied. The
maximum of the gain where the signal/idler is supposed
to oscillate is marked by the black lines. Degenerate and
non-degenerate oscillations are both expected in this case.
¢) The phase conjugation parametric process gain curve
in the anomalous dispersion regime. Only non-degenerate
oscillation is expected in this case. d) spectral phase
transition (normal dispersion regime) as the pump separation
(A) is varied. A degenerate to the non-degenerate transition
happens across the critical point. e) The critical point is
characterized to be a second-order which displays continuous
behavior in order-parameter but exhibits discontinuity in its
derivative. Parameters used in the simulation are taken from
[46].

where A is given by [46]:

A= /{6yP — B2(A? — (6w)?)} {2vP + B2(A% — (5“’)2&3

The spectral phase transition is shown in Fig. 5d. The
fact that the associated critical point is second-order is
established by analyzing the OP as depicted in Fig. 5e.

The abrupt frequency splitting around the critical
point in these spectral phase transitions can be utilized
for enhanced sensing. A sensor can be based on the
second-order spectral phase transition biased at the

Derivative of OP (dOP/dA)=

5

critical point, that will exhibit a scaling of dw ~ £z,
where ¢ is the small perturbation (e.g. in detuning) under
consideration, similar to a second-order exceptional point
[6]. However, if we leverage the first-order spectral
phase transition for a critical detector, we can utilize
the discontinuity in the spectrum for highly enhanced
sensitivity [5, 32]. The proportionality constant in the
scaling law is a function of the cavity group-velocity
dispersion. The smaller the dispersion, higher is the
sensitivity (see Supplemental Section 5) [40]. The
presented spectral phase transition can also be utilized
in computing architectures. For example, in the OPO-
based Ising machines, which have been strictly operating
at degeneracy so far [8, 36], the spectral phase transition
can act as an additional search mechanism leveraging
the symmetry breaking and additional phase noise in the
non-degenerate regime. Moreover, our results on spectral
phase transition can lay the foundation for novel types
of phase-transition-based computing platforms [48].

Tuning the spectrum of parametric oscillation between
degeneracy and non-degeneracy is a well-known concept,
and the same is achieved by manipulating the phase
matching curve via temperature, voltage control,
etc. [49]. Distinctively, the presented spectral
phase transition occurs as a multi-mode co-operative
phenomenon [20] triggered by cavity phase detuning,
where dispersion plays a crucial role, while the phase-
matching enabled by the periodically poled waveguide
remains unaltered.

The presented spectral phase transition is in sharp
contrast to intensity-dependent bifurcation ubiquitous
in nonlinear optical systems. The spectral bifurcation
doesn’t arise due to the gain saturation induced
nonlinearity (see Supplemental Section 9)[40]. This is
also corroborated by the existence of the quantum image
of this above-threshold phenomenon below threshold
(where gain saturation is absent) (see Supplemental
Section 10) which is consistent with the theoretical
predictions in the spatial domain [10].

In summary, we have performed complete
characterization of this second-order phase transition
both in the temporal and in the spectral (optical and
radio-frequency) domain.  Experimental results are
backed by numerical simulations of the underlying
spatio-temporal phenomena and corroborated using
mean-field analytical descriptions. We have shown that
some of the non-equilibrium spectral behaviors of OPOs
can be formulated as a universal phase transition.

The semi-classical spectral phase transition considered
in this work can be extended to the quantum regime
below threshold opening a path toward a quantum
phase transition in the spectral domain. The ability
to engineer the dispersion of integrated y(? and x(*)
devices [50] will allow manipulation of the spectral phase
transition behavior. Probing the performance difference
of sensors based on second-order phase transitions and
those leveraging second-order exceptional points [6, 7] is
a subject of future work.
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I. EXPERIMENTAL SETUP

The experimental schematic is shown in Fig 2.a,
a detailed version of which is presented as Fig S.1
(Supplemental Section 2) [40]. The OPO pump is
derived from the mode-locked laser through second
harmonic generation (SHG) in a quasi-phase matched
periodically poled lithium niobate (PPLN) crystal. The
pump is centered around 775 nm. The main cavity
is composed of a PPLN waveguide (reverse proton
exchange, 40 mm long, periodically poled to phase-
match 775-1550 nm interaction) [51] with fiber coupled
output ports, fiber phase shifter, free-space section
(to adjust the pump repetition rate to be multiple
of the free spectral range of the cavity.), additional
fiber segment to engineer the cavity dispersion, and
a beam splitter which provides the output coupling.
All fibers and devices existing in the optical path are
single mode, polarization maintaining and connectors
are angle polished. Additional details pertaining to
the experimental setup/methods is provided in the
supplementary information (Supplemental Section 2)
[40].

II. SYSTEM MODELING

The nonlinear interaction inside the PPLN waveguide
is governed by:

@ _a(a)
9z

%_ a®) 0
0z | 2 &

The evolution of the signal(a) and the pump(b)
envelopes in the slowly varying envelope approximation
are dictated by (4a) and (4b) respectively [37]. The
effects of higher-order group velocity dispersions (GVD)
B2, B3, group velocity mismatch (GVM) (u), the back-
conversion from the signal to the pump are included. The
round-trip feedback is given by:

a0, 1) = F71 {G(;%ei‘z]:{a(”)(lz,t)}} (5a)

(a)
A (W—wo) + —(w—wp)®+... (5b)

Eq(5) takes into comsideration the round-trip loss
which is lumped into a aggregated out-coupling loss
factor Gp, the GVD (¢2) of the feedback path and
the detuning (A¢) (A¢ = wl + ¢o, | is the cavity
length detuning in units of signal half-wavelengths
in vacuum) of the circulating signal from the exact
synchrony with respect to the pump. The effective
second-order nonlinearity co-efficient (e) is related to
the SHG efficiency [37]. The round-trip number is
denoted by n and the cavity length by L. The equations
are numerically solved adopting the split-step Fourier
algorithm.

To explain the spectral phase transition phenomenon
numerically and analytically we adopt a two-pronged
approach. First, we develop a mean-field model in
the high finesse, CW driven limit and provide an
analytical description for the occurrence of the spectral
phase transition. This model, though does not inherit
all the characteristics of the synchronously pumped
optical parametric oscillator, is able to encapsulate
the qualitative nature of the spectral phase transition.
Secondly, we calculate the eigenvalue which is related to
the gain of the signal/idler per roundtrip by assuming the
pump in the OPO to be effectively CW having an average
power being equal to the peak power of the pump pulse
(see Supplemental Section 4) [40].

For Kerr OPO, the evolution of the optical fields in
the non-resonant Kerr nonlinear medium is governed
by the nonlinear Schrodinger equation. The larger
eigenvalue ( \) of the linear stability matrix of the phase
conjugation nonlinear interaction determines the gain
and is obtained in the undepleted pump approximation
(see Supplemental Section 14) [40]. However, in a
Kerr nonlinear medium additional nonlinear interactions,
namely the modulation instability and four-wave mixing
Bragg scattering accompany the phase conjugation
process responsible for the phase-sensitive degenerate
parametric oscillation. Spectral phase transitions can
also be investigated in a driven-dissipative setting in a
Kerr resonator, with the detuning between the pumps
and the cold-cavity resonances being an additional degree
of freedom.
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