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A simple model is presented that explains the main characteristics of the low energy resonances found in
accurate quantum mechanical scattering calculations of collinear reactive collisions of the type

F + XY-+FX + Y, where X and Y are H or D atoms. The wave function of the resonance complex can be
approximately described by a product of a function of the F-XY distance and a vibrationally adiabatic
function of the X-Y distance. The corresponding vibrational eigenvalues of the XY diatom as a function of
the F-XY distance form an attractive, effective one-dimensional potential for the F~XY motion that supports
a quasibound state. The resulting resonance is broadened by its interaction with the reagent and product
scattering states. The resonance energies given by the model are in good agreement with those obtained by

exact scattering calculations for the F + HD, H,, and D, systems.

I. INTRODUCTION

There has been a considerable effort in recent years
directed toward the understanding of the dynamics of
the F +H, reaction. ** Besides being important tech-
nologically for the design of chemical lasers, this reac-
tion is one of the simplest examples of a highly exother-
mic chemical reaction with a low activation barrier and
can be regarded as the prototype model for understand-
ing the dynamics of such reactions. The relatively
small number of electrons in the F+ H, system facili-
tates the calculation of the ab initio potential surfaces
for the nuclear motion. In recent years, several ex-
tensive calculations of this type for the ground elec-
tronic state potential energy surface have been per-
formed®™® which determine the surface to within less
than 1 kcal/mol. Further refinements to ~0. 1 kcal/
mol, an accuracy already attained for the H + H, reac-
tion in the regions of the surface most important for
the dynamics, 87 can be expected with the advancement
in the ab initio techniques in the next few years.

The dynamics of the F+ H, reaction, and of the isotop-
ic variations in which one or both of the H atoms are re-
placed by D atoms, have been studied extensively using
classical trajectories for both the collinear and the
three-dimensional cases. 8-!® The results have been
used to develop semiempirical potential energy sur-
faces for which the dynamical studies give rate constants
in good agreement with the experimental ones. 2:8+10.1
Most such semiempirical surfaces are in good gualita-
tive agreement with the ab initio ones, which gives
some confidence in the correctness of the main features
of the surface.

Several collinear quantum mechanical scattering cal-
culations have been performed using semiempirical
potential energy surfaces for ¥ +H, and its isotopic
variations'®~23 as well as an analytic fit to an ab initio
surface.? The comparison of the quantum with the
classical and the semiclassical results'? revealed the
existence and gave some indication of the importance
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of various quantum effects. The large exothermicity

of the reaction and the number of accessible quantum
states of the products due to it makes accurate three-
dimensional (3D) coupled-channel calculations, and the
possibility of direct comparison of theory and experi-
ment, difficult at the present time. However, approxi-
mate 3D calculations of the integral state-to-state cross
sections of F + H, ¢ and of the relative vibrational prod-
uct distributions®® have been performed, which gives
some insight into the 3D dynamics of the system.

Crossed molecular beam studies of the detailed dy-
namics of the F+D, and F + H,*" reactions have also
been performed. For both reactions, vibrationally re-
solved angular distributions of the products have been
obtained which provide detailed data for testing theo-
retical models.

A number of accurate collinear quantum mechanical
scattering calculations on the F + H, reactions and its
isotopic variations!®~?® on different potential energy sur -
faces have shown the existence of narrow peaks in the
state-to-state or total reactive transition probability vs
energy curves. These peaks are accompanied by rapid
changes in the phases of the scattering matrix as a func-
tion of the energy as well as in its eigenphases. % Are-
cent collision lifetime matrix analysis of accurate
coupled—channel calculations, performed in our labora-
tory, has shown that one single eigenvalue of that life-
time matrix, when plotted as a function of energy, dis-
plays a pronounced positive maximum. 2 These fea-
tures have been interpreted!®~2!:282% 35 regonance ef-
fects due to the formation of a long-lived, almost bound
triatomic complex. Closely related behavior can be
found® in the approximate 3D-partial wave results for
the F +H, reaction on the Muckerman V LEPS surface,
indicating that the formation of a long-lived collinear or
nearly collinear triatomic complex is likely to play an
important role in the reaction 3D collision dynamics of
this system. Exact partial wave calculations have sug-
gested that the formation of a collinear complex plays
an important role in the H + H, 3D collision dynamics.
No accurate 3D calculations of the differential state-to-
state cross sections for the ¥+ H, or any other reaction
in the energy region in which resonances can be formed
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have been reported, and it is not known how the details
of the angular distribution are affected by the existence
and the characteristics of the long-lived complex. The
results of the crossed molecular beam experiments for
F +D,% and F +H,?" show a broadening of the angular
distribution at energies at which the formation of a long-
lived complex can be expected. An angular distribution
of the reaction products symmetric around a center -of -
mass scattering angle of 90° is a consequence of the ex-
istence of a quasibound state that exists for a full rota-
tion of the complex or longer.%' More conclusive evi-
dence of the existence of a complex, especially a short-
er-lived one, and more importantly, information about
the nature of the interatomic forces that cause it, can
be obtained by learning more about the correlation be-
tween the resonance characteristics and the resulting
observable experimental quantities, especially the col-
lisional energy dependence of the reaction products
angular distributions.

The long-lived complexes responsible for the reso-
nance phenomena obtained from quantum mechanical
calculations are normally located in the strong interac-
tion region of the potential energy surface in which all
three atoms are close to each other. Consequently, the
characteristics of the resonance features are deter-
mined mainly by the structure of the potential energy
surface in that region of configuration space, and there-
fore, are capable of providing information about its de-
tails. Study of the dynamics of these complexes and of
their correlation with the features of the potential en-
ergy surface inthe strong interaction region and with
their experimental manifestation can provide a tool for
the experimental determination of interatomic forces
at small interatomic distances in systems that form
resonant states.

Understanding the nature of a long-lived complex in a
collinear collision and developing simple models that
are capable of simulating its main dynamical features
and of approximating its energy and lifetime is the first
step in establishing such a correlation. Since accurate
solutions of the Schrodinger equation for a reactive sys-
tem at energies at which resonances occur are avail-
able for collinear collisions, the validity of approximate
models can be directly tested for a collinearly re-
stricted complex. An extension to a noncollinearly re-
stricted model for collinearly dominated potential ener-
gy surfaces, which seems to describe both the H+ H,
and F + H, reactions, can further be developed.

The dynamics of the formation of quasibound states in
a collinear atom~-diatomic molecule collision is some-
what simpler in the case when no reaction can occur,
i.e., for inelastic collisions. Resonances in collinear
inelastic collisions have been studied on both simplified
models®® % and realistic potential energy surfaces, 3*% and
highly accurate simple approximate models have been
developed for such nonreactive systems. 3% The long-
lived complex has two degrees of freedom and, for the
systems for which good approximate models have been
developed, its dynamics can be described by that of a
two-dimensional oscillator with two weakly coupled
modes. One of the modes can be closely approximated

Reactive scattering resonances in F + hydrogen

by the vibration of the isolated diatomic molecule that
participates in the collision.

The dynamics of a reactive collinear system are
somewhat more complex. There are two different
kinds of diatomic molecule vibrations, those of the re-
actant and those of the product molecule, and they ap-
pear to be strongly mixed in the strong interaction re-
gion of the potential energy surface. The quantum
mechanical approximate models used for studying reso-
nances in collinear reactive collisions are usually based
on some kind of coordinates that transform smoothly
from those appropriate for reactants to those appro-
priate for products, 20+36-38

Significant progress has also been attained in develop-
ing semiclassical procedures for locating and describ-
ing the dynamics of resonances in both inelastic®¥**® and
reactive collisions. ¥

The model used for describing the resonances in in-
elastic scattering, 3° in which one of the modes of the
quasibound complex is assumed to be equivalent to the
asymptotic vibration of the colliding molecule, has
been used to explain the resonances in the I+ H, sys-
tem on an approximate (LEPS) potential energy sur-
face. ! A significant feature of this surface is that it
has wells in both reactant and product channel regions
well separated from each other. The dynamics of the
quasibound complexes in those wells is similar to the
dynamics of the reactants and of the products, and the
model has given excellent approximations for the reso-
nance energies. However, these wells are probably
due to an artifact of the LEPS functional form used and
are nonphysical.

It was found that resonance peaks in the collinear
F + H, system appear in the vicinity of and are closely
related to the opening of vibrational channels. 13 The
resonance features are strongly influenced by the de-
tails of the potential energy surface; slightly different
surfaces lead to completely different resonance struc-
tures.?! Recently, a detailed analysis of the reaction
dynamics in terms of curvilinear coordinates that
smoothly change from reactants to products?® showed
that no single-channel model in those coordinates can
provide a satisfactory explanation for the nature of the
resonance.

The proposed surfaces for the F + H, reaction do not
have wells in the reactant or product regions, and
since the barrier at the saddle point is low, there ap-
pears to be a smooth passage for the system to go from
reactants to products, making it possible for the
asymptotic reactant and product vibration to blend into
each other in the interaction region and to lose their
distinction. The appreciable reactive transition prob-
abilities for most of the isotopic variations of F + H,
reinforce such an interpretation.

On the other hand, the numerical results'® for the
collinear F +HD ~ FH + D reaction on the Muckerman
V potential energy surface show a narrow resonance
peak in the middle of a wide energy range on which the
scattering is almost purely elastic. The obvious con-
clusion is that despite the smooth shape of the surface
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there is not much mixing between the reactant and the
product states during the collision in this energy range
and that the vibrational states of the reactants and the
products, although probably subject to some distortion,
retain their distinction and character throughout the
collision. One of the distorted vibrational states of the
reactants or of the products, is, hence, likely to be a
distinct mode of the motion of the quasibound complex
that is responsible for the resonance.

A comparison among the numerical reaction probabil -
ity results for the F+HD, F +H,, and F + D, systems
reveals some common features in the corresponding
low energy resonance peaks and indicates that a similar
mechanism is likely to be responsible for the lowest en-
ergy resonances in all three systems. In this paper,

a model of this low-energy resonance based on the
adiabaticity of the ground vibrational state of the reac-
tants during a collision between the reactants is devel-
oped and tested against accurate coupled-channel calcu-
lations on the Muckerman V LEPS potential energy sur-
face, which has no wells. The main reason for this
choice is that accurate collinear quantum mechanical
collision probability results for four isotopic variations
of the reaction are available for this surface, !¢

The details of the approach and its mathematical
formulation are given in Sec. II. The model for the
lowest energy resonance, the results obtained from it,
and their comparison with accurate coupled-channel
calculations are given in Sec. IIIl. The consequences of
the model and their relevance for the study of the actual
F +H, 3D reaction dynamics are discussed in Sec. IV,
In Sec. V, we summarize the results and conclusions.

Il. MATHEMATICAL MODEL

The Schrodinger equation for the collinear A + BC
— AB + C reaction along the BC axis can be written in
terms of the Jacobian coordinates for the reactants or
products as

[ﬁ2 82 n e

L _r ’ 7 ’
357, Sy B VOB RO WA 7

where 7, is the BC distance, R} is the distance of A to
the center of mass of BC, m, is the reduced mass of
the BC pair, M, is the reduced mass for the motion be-
tween A and BC, V is the potential energy function for
the system, and ¢ its energy eigenfunction. The same
symbols with subscript ¥ denote the corresponding quan-
tities for the reverse reaction. In Delves scaled co-
ordinates*

f’
Ry=a,R, ,

(7\=a,7) ’

’r)t:a;ll/x y 4= (Mk/ml)l /e ’ (2 2)

Eq. (2.1) becomes

mfet ot
[‘ ﬁ (m’ + g;g’) + V(n, Rx):, YR, 7)= EYR, ) ,

2.3
where ( )

”_( mamphc )1,2
T\my+mp+mg

is an effective reduced mass for the system, my being
the mass of atom X (= A, B, C).

At large R,, the potential V(n,, R,) in Eq. (2. 3) does
not depend on R, in the X arrangement channel region
of configuration space, and the solutions of that equa-
tion in that region are of the form

E(R» 7;)=§}(Rx)$:(7’x) , 2.4)

where ¢3(r,) is the ith vibrational wave function for the
unperturbed molecule AB or BC, i.e., the solution of
7 d — s
[_.2—;1?{* Vin,«)|01r) =€oir,) , (2.9)
and E,‘(Rx) is the free particle wave function for the mo-
tion of the center of mass of BC relative to A or AB
relative to C,

1/2 . (2‘ 6)

- ) 1 —

ZH(R,)=exp(*ik}R,) ; k}:g [2uw(E-E)]
In Egs. (2.5) and (2. 6), €} is the vibrational energy of
the isolated diatomic molecule AB or BC.

For smaller values of R,, the vibrational eigenfunc-
tions of the diatomic molecule are perturbed by the
presence of the third atom at a distance R,. The per-
turbed wave function ¢ }(r,;R,) can be obtained by solv-
ing Eq. (2. 3) at a fixed value of R,,

n dt
[- ﬂ‘ d—'r{ + Viry, Rx)]¢?('rx;Rx) = €4A(RA)¢?(7’;.;RA)

A=a,y), 2.7)

with the boundary conditions
$1(0;R,) = 0{(r5 3R =0 , (2.8)

where 7, . is the value of 7, that corresponds to the
configuration in which B coincides with A (for A=a)
or C (for A=y). These eigenfunctions ¢} form a com-
plete set of real orthogonal functions in the 7, space.

At low collision energies, the vibrational motion of
BC (or AB) along 7, in the R,, 7, configuration space may
be much faster than the relative motion of A and BC (or
AB and C) along R,, and an effective adiabatic separa-
tion of those two modes of motion can be expected. 37+43-48
In such cases, one can approximate the solution of Eq.
(2.3) at any R, by an expression that reduces to Eq.
(2. 4) at large R,, namely,

Yy, Ry = 81RO} 3R,) (2.9)

where g}(R,) is the wave function for the motion along
R, on the effective potential determined by the €}R&,) of
Eq. (2.7).

In the regions in which the potential is nearly separ-
able in terms of R, and »,, such as the reactant (or the
product) valley of the potential (see Fig. 1) outside the
interaction region, Eq. (2.9) will obviously be valid. In
the strong interaction region where the potential is not
nearly separable, Eqg. (2.9) will be valid only if there
is a good separation of the velocities along 7, and R,
and if none of the A’ # X states ¢}'(r,; R,,) is nearly de-
generate with the X state ¢}(ry; R,) that appears in that
equation. The separation of velocities condition is usu-
ally satisfied if M,/m, is much larger than unity.

The nature of the approximations used in assuming
Eq. (2.9) can be examined more systematically by using
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FIG. 1. Contour plot of the Muckerman V potential energy surface for the F + HD, F +H,, F+D,, and F +DH systems in the
Delves scaled coordinates R4, v,. ¢ represents the skew angle between the R, and R, axes and p the effective mass of Eq. (2.3)
in units of the H atom mass. The zero of energy is the bottom of the isolated hydrogenic molecule well. The energies of the
contours are from -1, 154 to 2,446 eV, uniformly spaced by 0.3 €V, The x mark indicates the position of the saddle point.

The vertical lines on the F + H, plot denote the cuts for which the profile of the surface is shown on Fig. 2.

the ¢} from Eq. (2.7) as a basis set for expanding the
solution of Eq. (2.3)
$(ry Ry =§; 2R rR,) . (2. 10)

Substituting Eq. (2.10) in Eq. (2. 3), premultiplying by
¢}*(7A;Rk) and integrating over v»,, one gets a set of

coupled ordinary differential equations for the coefficient

wave functions g}(R,)

R dg o d o d NI
T dﬂ&.“—ﬁ;[2<¢lld_ﬁ—;‘¢l E+<¢‘|E{l¢ﬂ]
i=0,1,2,... .

xg)=(E-€}lg} (2.11)

Equations (2. 11) constitute an infinite set of coupled
ordinary differential equations fully equivalent to Eq.
{2.3). By solving them*' and imposing the correct
scattering boundary conditions, one can, in principle,
obtain the full scattering solution of Eq. (2. 3).

More importantly, however, Eq. (2.11) can be used
as a starting point for developing simple approxima-
tions. If the elements that couple the state { with all
the others are small in or near the R, region of classi-
cal motion in state ¢ [i. e., where €}(R,)= E], the g}(R,)
can be viewed as a weakly perturbed solution of, and
successfully approximated by, the solution of the equa-
tion
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2
- 5’% dc_j;‘;%ﬁﬁ +€e)MR,)gNR,) = EgiR,)

obtained from Eq. (2.11) by neglecting the coupling
terms.

(2.12)

The potential energy function V(r,, R,) which through
Eq. (2.7) generates the effective potential €}(R,) in
Egs. (2.11) and (2, 12) is, for large values of R,, a
double minimum potential, For A =a (see Fig. 2 with
R, =6.27 bohr, for example), the well at the left resem-
bles the vibrational potential of the isolated diatomic re-
actantmolecule BC and becomes equivalenttoitas R, ~ .
The well at the right represents the products region of
the potential energy surface; the coordinate 7, is, however,
not appropriate for the product vibration(whichis described
by » =%) so that the motion in that part of the potential
along 7, is not equivalent to that vibration. Only the
solutions that are localized in the left well of the poten-
tial V(r,, R,) evolve adiabatically from a particular vi-
brational state of the reactants and have the physical
meaning of quasistationary vibrational states of the BC
molecule perturbed by the presence of the atom A. The
remaining solutions, localized in the right well of the
double-well potential [Fig. 2(c)], do not correspond to
stationary states of the products at large R, and are in-
cluded in Eq. (2.10) only for the purpose of making the
basis set given'by Eq. (2.7) complete and hence, making
Eq. (2.11) rigorously equivalent to the Schraodinger
equation,

The effective adiabatic potential €}(R,) for the motion
along R, in Eq. (2. 12) determined by the eigenvalues of the
perturbed vibrational Hamiltonian in Eq. (2. 7) can have
a minimum at a finite value of R, (see Fig, 3). As are-
sult, the eigenvalues €}(R,), which appear in Eq. (2.12),
will either support bound states or exhibit resonances at
some energies. If the coupling of g}(R,) to the other
states in Eq. (2. 11) is weak, the corresponding solution
of Eq. (2.11) will also have a resonance at a nearby
energy. The energy of the resonance or of the bound
state of Eq. (2.12) would, in such a case, be a good ap-
proximation to the energy of the resonance obtained from
an accurate solution of Eq. (2.11), i.e., to the reso-
nance in the solution of the Schrddinger Eq. (2.3). The
model resonance given by Eq. (2.12) may be shifted with
respect to the actual resonance and it may have a differ -
ent width. For narrow resonances, the size of the shift
would be a good indication of the correctness of the mod-
el. The width of the actual resonance can typically be
expected to be larger than the width of the model reso-
nance as a result of the additional broadening due to the
nonadiabatic coupling to other open states.

Hl. RESULTS

In this section, we analyze the dynamics of the low-
est energy resonance in the F+XY - FX + Y reaction,
where X and Y are H or D atoms, in terms of the mod-
el of the previous section, which is based on the adia-
baticity of the XY vibration, We use the Muckerman V
potential energy surface, Its parameters as well as
the values of the physical constants used are the same
as those of Ref, 18, 48:43

The potential energy surface for the reaction is shown

18986

in Fig. 1 for each of the four isotopic systems FHD,
FH,, FD,, and FDH. The corresponding skew angles
are 37.3° 46.4° 47.7° and 56, 7°, respectively, and
the effective masses u, in units of the H atom mass, are
1.31, 0.95, 1,82, and 1. 31, respectively. The differ-
ences among these angles and masses are ultimately
responsible for the differences among the characteris-
tic parameters of the resonances in these four systems.

The eigenvalues €' (R,) of Eq. (2.7) for the potential
Vir,, R,) at fixed values of R, were evaluated for each
of the four isotopic systems as a function of the param-
eter R, using the finite element method of Malik et al. 5
For the F + H, system, they are shown in Fig. 2 for a
few values of R, together with plots of V(r,, R,) versus
74+ The variation of €)(R,) with R, for some i is shown
in Fig. 3 for all four isotopic reactions. The eigen-
value €f(R,), which correlates with the ground vibra-
tional state of the unperturbed XY molecule at large R,
and is used to construct the adiabatic model for the
resonance, is shown as a bold curve on that figure.

Equation (2. 12) with { =0 was solved numerically us-
ing Gordon’s method® to obtain the scattering phase
shifts 7 at large R,. The dependence of 77 on energy is
shown in the upper part of Fig. 4 for the F + H, reac-
tion. The rapid increase in 7 over a narrow energy
range results in a sharp peak in the delay time D
=2JFi(dn/dE) vs energy curve at the bottom of that figure.
These features indidate the existence of a long-lived
complex whose R, motion is trapped by the €§(R,) well
of Fig. 3(b). The lower right ordinate scale in Fig. 4
gives the delay time in units of the fundamental vibra-
tion period of an R, -motion harmonic oscillator whose
zero-point energy is equal to the model resonance en-
ergy of the ¢j(R,) well, indicated by the solid horizon-
tal line in Fig. 3(b). The left lower ordinate scale of
Fig. 4 is in units of an 7,-motion harmonic oscillator
fundamental vibration period whose zero-point energy is
equal to that of the V(R,, r,) potential, where R, is the
value of R, corresponding to the bottom of the €} (R,)
well, For the F+HD and F + D, systems, rapid in-
creases of 7 with energy over a narrow energy range are
also observed. The model resonance energies of the
solutions of Eq. (2.12) are determined by the position
of the maximum of the peak of the delay time vs energy
curve analogous to Fig. 4 for each of the isotopic sys-
tems F+HD, F+H,, and F+D,,

The model resonance width for ¥ +H, and F +D, are
determined from the full width at half-maximum
(FWHM) of the delay time vs energy curves. For the
F +HD system, the thickness of the barrier in the ef-
fective potential €y(R,) at the model resonance energy of
0. 237 eV is considerably larger than that at the exact
resonance energy of 0, 245 eV, and the FWHM of the de-
lay time vs energy peak would furnish an artificially
narrow width. A better estimate of the adiabatic part
of this width can be obtained semiclassically. There
are accurate uniform semiclassical formulas’? for the
width of the resonances of one-dimensional potentials
such as that appearing in Eq. (2.12) in which the reso-
nance energy enters as a parameter, and therefore,
that width can be calculated at the exact resonance en-
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F+H, F+H,
Rq= 4.49 bohr Ra= 4.74 bohr
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20F F+H,
Rq=6.27 bohr

FIG. 2. Potential V(ry,R,)
at fixed values of R, for
the F +H, system. The val-
ues of R, are 4.49, 4.74,
and 6, 27 bohr. The hor-
izontal straight lines de-
note the eigenvalues of

Eq. (2.7). The solid ones,
labeled e $(R,) (:=0,1,2),
correlate adiabatically with
the vibrational states ¢ of
the H, reactant, i.e., are
localized in the H, well at
large R,. The dashed ones
become localized in the
product FH well at large
R,. The zero of energy is
the bottom of the H, well.

[
7

Energy /eV

ergy rather than at the model one. For the present where v§ is the R, vibrational frequency, taken here as
purposes, one of the simplest semiclassical expressions the fundamental vibration frequency of an R, motion har -
is sufficiently accurate and is used. It is given by monic oscillator whose zero-point energy is equal to the
exact resonance energy measured with respect to the
I=hvd In(l + 29, (4. 1) bottom of the ¢,(R,) well and @* is the tunneling phase
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FIG. 3. The vibrational eigenvalues €§ (R,) of Eq. (2.7) as a function of R, for all four isotopic variations. The zero of energy
is the same as for Fig. 1. The € (R,) that correlate adiabatically to the XY vibrational eigenvalues at large Ry, i.e., which
correspond to eigenfunctions that are localized in the reactant well at large R,, are shown as full lines; the eigenvalues corre-
sponding to eigenfunctions that are localized in the product well at large R, are shown as dashed curves. The bold curve marked
€9(R,), which correlates with the ground vibrational state of the reactants, is used in the adiabatic model of the lowest energy
resonance. The horizontal line denotes the model resonance energy [Eq. (2.12)]. The horizontal dashed lines denote the exact
resonance energy (EP of Table I). The horizontal arrows ending at the right ordinate scale indicate the ground state energies of
the isolated hydrogenic molecules. The length in mm, corresponding to 1 bohr in the abscissa of each of the four panels, has
been scaled by the square root of the reduced mass of Eq. (2.3), i.e., in the ratio 1.14: 0,97: 1.35: 1.14, for the FHD, FH,,
FD,, and FDH R, scales, respectively. With this scaling the R, motion is associated with a particle of the same mass for all
four systems.
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FIG. 4. Phase shifts and delay times obtained from the solu-
tion of Eq. (2.12) for the F+H, reaction. The effective poten-
tial €§(R ) is shown in Fig. 3(b). The delay times are given in
units of an R, (lower left ordinate scale) and an r, (lower right
ordinate scale) vibrational period defined in the text.

integral given by

Ra> 172
Q“:f [e(R,) — E™*]2aR , (4.2)
Ra<
where E™ is the exact resonance energy and R,, and
R, are the two outermost turning points on the €,(&,)

vs K, at the energy E™.

TABLE I. Resonance energies and widths.

In Table I these model results are compared with the
energies and the widths of the resonances obtained from
the accurate coupled-channel calculations. !%2? As seen
from the table, an excellent agreement for the reso-
nance energies is obtained for F+H,, F+HD, and F
+D,. The differences between the exact resonance en-
ergies and the ones predicted by the model for F+H,
and F + D, are actually smaller than the widths of the
resonances, and such close agreement may be some-
what fortuitous. The resonance widths obtained from
the present model reflect only the adiabatic contribution
and may be viewed as an approximate lower bound to the
actual resonance width. %

The accurate reaction probability vs energy curve
for each of the four systems is given in Fig. 5.'%%% It
can be seen that the curve for the F+ DH—~FD +H sys-
tem does not display a sharp structure analogous to that
of the other three curves. However, a recent collision
lifetime analysis?® shows that a very short-lived (0, 06
ps) lifetime does occur for this system at a total ener-
gy of 0. 253 eV and an initial translational energy of
0. 020 eV, significantly below the position of the prob-
ability peak at 0. 044 eV translational energy. The
present model does not predict this very weak resonant
feature.

IV. DISCUSSION

The resonance positions and widths predicted by the
present model agree reasonably well with those found
in the accurate coupled-channel results for all but the
very weak F+ DH -~ FD + H resonance. Such agreement
indicates that the model reproduces the essential dy-
namical features of the quasibound state which is re-
sponsible for the lowest energy resonances in the F
+HD, F+H,, and F +D, reactions. As a result, the
model can be used to identify the important features of

Resonar‘xt Resonance energy (meV)® Resonance width (meV)

zero-point Exact Results

energy Present Present Exact
System (meV)* model EPe Ead model® results?
F+HD 232.9 237 244.9 244.9 0,288 0.5
F+H, 268.4 283 283.5 281.6 3 7.2
F+D, 190.6 220 220.0 214.6 6 11.4
F+DH 232.9 h 253.3 21.2

3Z ero-point energy of isolated hydrogenic molecule measured with respect to the bottom of that

molecule’s potential energy well.

PTotal resonance energy, the zero of energy being the bottom of the isolated hydrogenic mole-

cule well.

°Energy at which the accurate reaction probability of Fig. 5 has a maximum (Ref. 18).
dEnergy at which the resonance eigenvalue of the collision lifetime matrix has a maximum (Ref. 29).
®The resonance widths given by the model reflect only the contribution of the adiabatic decay of

the quasibound state into the ground state of the reactants.

f FWHM of the resonance collision lifetime matrix eigenvalue vs energy curve (Ref. 29).

80btained from a semiclassical expression associated with the tunneling through the barrier in

the €y(R,) effective potential at the exact resonance energy of 0.2449 eV. Seethetextfor details.
bThe reaction probability vs energy curve for F+DH of Fig, 5 has a maximum at a total energy

of 0,280 eV, However, comparison with the corresponding curves for the other three systems
suggests that it is more likely to be due to a direct process occurring above the resonance energy

than to the resonance referred to in footnote (c).
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FIG. 5. Plot of the probability of the F+HD (v =0)~~ FH@ ' =2)

+D, F+H, w=0)—FH (v’ =2)+H, F+D, v =0)— FDl'=3)+D,
and F +DH (v =0)—FD (v’ = 3) + H reactions (Refs. 18 and 29)
as a function of the translational energy of the reactants.

these systems which lead to the existence, the energy,
and the width of these resonances.

The quasibound states responsible for the resonances
being considered are formed adiabatically from the
separated F + XY reactants. As the Fto XY distance
decreases, the XY vibration, although somewhat dis-
torted, retains its identity and quantum number,
as well as its 7, direction of motion in the two -di-
mensional configuration space and becomes a distinct
mode of motion of the complex. As a result, the effec-
tive potential €,(R,), which appears in Eq. (2.12), has a
shape which depends largely on the shape of the poten-
tial energy function V(R,, r,) along the R, direction.

In particular, the height of the barrier and the depth of
the well in ¢(R,), which play an important role in de-
termining the characteristics of the resonance, correlate
well with the features of V(R,, 7,) along R, in the vicin-
ity and to the left of the saddle point region. Very ap-
proximately, the values of €y(R,) are shifted upwards
from those of V(R,, 7,) in the neighborhood of the mini-
mum energy path, by the zero-point energy of the iso-
lated XY hydrogenic molecule. This overall trend sug-
gests that, in going from one isotopic system to another,
the shift in the resonance energy should correlate ap-
proximately with the shift in the corresponding XY zero-

1899

point level. This is indeed the case, for both the model
and the accurate results, as can be seen from a com-
parison of the second column of Table I with the next
three. Thus, the qualitative nature of the variation of
the position of the resonance with the isotopic system
being considered is easily explained. A more quantita-
tive explanation, encompassed in the model, includes
the effects on the ¢,(R,) vs R, curves of the changes
produced in the 7, -motion zero-point energy by the ap-
proaching F atom,

The trend in the widths of the resonances, as we
compare the several isotopic systems, is of a more
subtle nature. Couplings of the entrance channel quasi-
bound complex to both reagent and product states are
involved, since both these couplings lead to its decay.
The relatively narrow widths of those resonances for
the FHD, FH,, and FD, systems, as obtained from the
coupled-channel calculations, indicates that the couplings
of the multiplicative wave function described by Eq.

(2. 9) to other states is relatively weak. This weakness
is, to some extent, due to the significant separation of
the time scales of the motion along R, and 7, in the com-
plex, which separation in turn depends largely on the
ratio of the effective masses for the motions along R,
and 7}, being much larger than unity. This mass ratio
M,/m, is about 4 for all four isotopic systems. Another
factor is that the quasibound complex is in the ground
vibrational state and its 7, motion is mainly confined to
a strip of the potential energy surface along the "amn(Ra)
path. In a considerable portion of the region of the sur-
face in which the complex is localized, the potential en-
ergy function is separable within that strip, leading to
the validity of Eq. (2. 9) and consequently, to the weak-
ness of the couplings of that state to other states which
may lead to its decay.

Let us now analyze the nature of the couplings of the
quasibound state to the reactant and product states,
In the present systems, the decay of the resonance state
into reactants occurs adiabatically into the ground
vibrational state of the latter, and is due to tunneling
through or motion over the effective dynamic potential
barrier of the €§(R,) curve of Fig. 3 along the outward
R, direction. This R, mode of motion of the complex
transforms thereby into reactant translation, while the
7, mode remains largely unchanged and becomes the
reactant vibration. The part of the resonance width
that is due to this decay mechanism is controlled by the
barrier traversal amplitude, i.e., by the likelihood of
the system either tunneling through the barrier or mov-
ing over it, and is determined from the dependence of
the phase shift resulting from Eq. (2.12) on energy for
the F +H, and F + D, systems or from the tunneling co-
efficient at the exact resonance energy for the F + HD
system, It is the only part of the width that can be
readily estimated from the present model.

The complex can, in addition, decay into (or be
formed from) the scattering states of the products.
This decay pathway requires a more severe restruc-
turing of the complex and involves vibrationally nonadia-
batic processes. The enhancement of all of the state-
to-state reactive transition probabilities in the reso-
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nance energy region, seen in Fig. 5 and in the other
exact reaction probability vs energy curves of Refs. 18
and 29, indicates that all the energetically accessible
product states interact with the complex, although the
present model furnishes an estimate of the strength of
the interaction of the complex with the reactants, it does
not lead to an estimation of its coupling with the prod-
ucts, The reason for this is that the coordinates
that are appropriate for describing product states are
different from those that are appropriate for describing
the complex. The strength of the nonadiabatic coupling
between two states is usually, to some extent at least,
inversely proportional to the energy gap between them.,
One can therefore expect the energetically closest prod-
uct state, in this case the highest accessible one, to
interact the most strongly with the complex. An ex-
amination of the transition probabilities to different
vibrational states of the product (Fig. 5 and Ref. 18)
does indeed indicate the existence of such a trend.

The partial width of the resonance due to the coupling
of the complex to the product states should roughly cor-
respond to the difference between the exact width and
the adiabatic partial width due to coupling with the reac-
tants, determined in Sec. IIl, and presented in Table I.
This difference, obtained from the last two columns of
that table, suggests that the coupling to the product
states is of the same order of magnitude as the coupling
to the reactant states.

With these considerations in mind, let us attempt to
interpret the trend in the resonance widths calculated
for the FHD, FH,, and FD, series by the model and by
the coupled-channel method and displayed in the last
two columns of Table I. A noticeable feature in that
series is the broadening of the resonances in the order
given. The potential energy surface for all three sys-
tems is the same function of the internuclear coordi-
nates. However, when expressed in the (unscaled) Ja-
cobi Cartesian coordinates R),, 7,, some differences
appear. The surfaces for FH, and FD, continue to be
equal to each other in these coordinates, but that for
FHD is slightly different, due to the shift of the center
of mass of HD away from its midpoint and to the change
of the (unscaled coordinate) skew angle from tan™'2
=63.4° to tan"'3="71, 6°. In the following qualitative
discussion, this small difference will be disregarded.

In addition, although the mass m, changes from 3 to 2
atomic hydrogen mass units in going from F+H, to F
+HD, the effect of this change on the €, vs Rl (rather
than R, ) curve is also small. The reason for this
smallness is that ¢,(R}) depends largely on the charac-
teristics of V(R., »%) in the general vicinity of its sad-
dle point, and only to a minor extent on m,, as is also
the case for €3(R,). As a result, ¢,(R;) is approximate-
ly the same for those two systems. The most impor-
tant difference between them is due to M,, which is 1,81
and 2. 59 atomic hydrogen mass units for F +H, and F
+HD, respectively., The effect of this mass change is
to lower the energy of the quasibound state in Eq. (2.12)
[with respect to the bottom of the €,(R},) well] by approx-
imately the square root of the ratio of these masses.

An equivalent way of arriving at the same conclusion is
to replace the variable R, in that equation by the varia-

ble p, = u!/?R, = ML/?R!, (as done in Fig. 3). This
makes the well in the ¢y(p,) vs p, curve for F +HD be
somewhat broader than for the F + H, one, but the new
effective mass in the transformed equation is now the
same for both systems, resulting in the lowering of the
quasibound level. This lowering results in the increase
of the thickness of the barrier through which tunneling
must occur for the system to move from this well re-
gion to the reactant region. Since the lifetime asso-
ciated with the tunneling increases exponentially with
this thickness, the resonance lifetime for FHD is larger
than that of FH,. In going from FHD to FD,, the €,(p,)
well width increases further, which would tend to make
the lifetime of the FD, resonance longer than that of the
FHD one. However, as can be seen from Fig. 3(c),

an avoided crossing between the €,(R,) curve and another
one [which localizes the corresponding eigenfunction
¢,(ry;R,) in the product region] reduces the depth of the
well in this curve and pushes the corresponding quasi-
bound state slightly higher than the top of the barrier.
This effect is dominant and results in an FD, resonance
broader than those for the FHD and FH, systems. It
should be noted that this analysis refers to the adiabatic
part of the resonance width. The nonadiabatic part asso-
ciated with the interaction of the complex with the prod-
ucts should further depend on the Delves coordinate
skew angle, and should increase as this angle increases,
in the direction FHD, FH,, FD, as is observed in the
accurate calculations,

Another consequence of the analysis above is that the
resonance characteristics are very sensitive to the
shape and size of the barrier in the effective potential
€y(R,) vs R, curve and therefore, on the shape and size
of the barrier in the V(R,, 7,) surface along the R, di-
rection. As a result, small changes in the details of
the saddle point region of the surface (smaller in mag-
nitude than 1 kcal/mole) can be expected to introduce
radical changes in the resonance characteristics, in-
cluding the possibility of their complete disappearance.
Consequently, such resonances will constitute a very
sensitive probe for the experimental characterization
of that region of the FH, potential energy surface.

As observed in Fig. 5, the off-resonance transition
probabilities for the F+ H, and F + D, reactions are
much larger than for the F + HD one. This behavior
can be understood by considering that the pronounced
narrowness of the FHD resonance is a manifestation of
the weakness of the coupling of the reactant states to
the product states through the strong interaction (complex)
region, with a resulting small reaction probability away
from resonance when compared with the other two
systems.

The present model for the resonance in the F + H,,
F +HD, and F + D, reactions is similar to the one used
by Chapman and Hayes, 3**#! to study the resonances in
14H, reactive collisions and in He® + H, inelastic colli-
sions. In their model, a zero-order approximation for
the wave function of the complex is obtained in the form
y=g(R,)P(rL), where ¢(».) is the isolated reagent
diatomic molecule wave function and g(R/,) is the eigen-
function associated with V(Rg; 74, ), 1. e., calculated
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along the potential energy surface with 7/, fixed at its
isolated reagent equilibrium position, The distortion
of the diatomic molecule during the collision is ac-
counted for by a first-order perturbation correction

to the asymptotic eigenvalues. The nature of the reso-
nances in the present systems is, however, markedly
different from the ones in He + Hj and I + Hy. The latter
are supported by actual two-dimensional potential ener -
gy wells in the corresponding surfaces. No such wells
exist in the present case, and the origin of the stability
of the complex is of a purely dynamical nature.

The quantum dynamics of the resonances in one of the
reactions studied here, namely F +H,, has been a sub-
ject of a detailed study by Latham et al. ?® by means of
a vibrationally adiabatic analysis, a vibrational entropy
analysis, and a scattering wave function probability
density analysis. Their vibrationally adiabatic analysis
in a system of curved reaction coordinates shows that
no single channel model in those coordinates can ac-
count for the resonances, whereas in our model it does.
The sharp increase in the scattering wave function prob-
ability density in a small region of the surface at the
resonance energy indicates clearly the location on the
surface where the complex is formed. The location of
the complex predicted by the present model appears to
be in reasonable agreement with that indicated by the
scattering probability density maps in Ref. 20.

Another study of the resonances on the F + H, reaction
by Hayes and Walker® came to our attention during the
preparation of this manuscript. One of the aspects of
their work is the study of the sensitivity of the reso-
nances to the shape of the potential in the entrance
channel. They have shown that if the entrance channel
barrier is removed from the surface, the scattering
results on the new surface do not show a resonance.
The disappearance of the resonance as a result of this
removal is in agreement with the conclusions drawn
above from the validity of the present model.

Although the present study was done using only one
semiempirical surface, most of the collinear F +H,
surfaces used so far'8-? have similar basic features,
and we hope that our model will also be useful for pre-
dicting the absence or presence and the characteristics
of this type of resonance on other more accurate sur-
faces for the ¥ + H, reaction.

Resonances of a similar nature can be expected to be
seen in other exothermic reactions with a small barrier
early in the entrance channel. The present type of analy-
sis can also be expected to be useful in modeling reso-
nances in low barrier asymmetric reactions of the
heavy-light~heavy type. On the other hand, this ap-
proach will be less useful for reactions with light-
heavy-light (LHL) mass combinations since the reagent
vibrational motion is in such cases almost parallel to the
the product translational motion (in configuration space)
making it unlikely that a complex of the present type
would exist. In the limit of infinite central atom mass,
even Eq. (2.11) becomes invalid. The resonances in
thermoneutral or nearly thermoneutral reactions of the
LHL type usually have a different physical origin and
can be successfully modeled using different technigues,?®

1901

Removing the collinear restriction from the motion
of the triatomic complex would introduce changes in its
dynamics which are, as shown previously for the case of
the H+H,% and F+H, systems, to a certain extent,
predictable. The equilibrium configuration of the com-
plex would, based on the structure of the surface, re-
main collinear. There would be two additional degrees
of freedom of the complex, described either as a doubly
degenerate hindered rotation or a doubly degenerate
bending vibration. For the resonances studied here,
they are likely to be most separable if treated as hind-
ered rotations of the H, molecule around its center of
mass. The existence of these two additional modes of
motion would shift the energy of the complex for colli-
sions with zero total angular momentum upwards by
the sum of their zero-point energies. 3

The most serious complication introduced by remov-
ing the collinear restriction for the F + H, reaction is the
large number of possible rotational states of the com-
plex that spread over a wide energy range. As a result,
the long-lived complex can be formed, as shown by
approximate coupled-channel calculations, * over a
wide range of collisional energies and does not produce
strong structure in the integral reaction cross section
vs energy curve, However, angular distributions of
reaction products are expected to be quite different at
resonance energies as compared with the nonresonance
ones, 24:28:21:28,30 Ag 3 result, it is important to develop
models that predict the shape of the differential reaction
cross section vs scattering angle curves at resonance.
Such models could permit the establishment of relations
between the characteristics of the shape of the potential
energy surface in the strong interaction region and
characteristics of those angular distributions. These
relationships would be very useful in extracting infor -
mation about the details of potential energy surfaces
from experimental observations of reactive scattering
resonances.

V. SUMMARY

The results and conclusions given in the present
paper can be summarized as follows:

(1) The lowest resonance in the collinear reactions
F+H2(v:0)-FH+H, F+HD(v=0)-FH+D, and F
+Dyp(v=0)~FD + D is due to the formation of a quasi-
bound complex which is leocalized in the entrance chan-
nel region of the corresponding potential energy surface,
slightly to the left of its saddle point.

(2) The ordering of the positions of these resonances
is the same as that of the zero-point energies of the re-
actant molecules, The reason for this interrelation is
that the shape of the effective potential in the R, direc-
tion, which correlates adiabatically with the ground
state of the reactant, is determined largely by the shape
of the potential energy surface V(R,, »,) along R,.

(3) The nonadiabatic coupling of the complex to the
reaction products is of the same order of magnitude
as its adiabatic coupling to the reagents,

(4) The adiabatic part of the resonance width increas-
es in the order FHD, FH,, FD,. The increase from
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FHD to FH, is due to a corresponding lowering of the
effective adiabatic barrier height. The increase from
FH, to FD, is due to a decrease of the depth of the adia-
batic well.

(5) The position and width of the resonance is a very
sensitive function of the shape of V(R,, 7,) in the saddle
point region and may change or the resonances may even
disappear if that region of the potential is modified.
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