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Universal relations for hybridized s- and p-wave interactions from spin-orbital coupling
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In this work, we study the universal relations for one-dimensional spin-orbital-coupled fermions near
both s- and p-wave resonances using effective field theory. Since the spin-orbital coupling mixes different
partial waves, a contact matrix is introduced to capture the nontrivial correlation between dimers. We find
the signature of the spin-orbital coupling appears at the leading order for the off-diagonal components of
the momentum distribution matrix, which is proportional to 1/q3 (q is the relative momentum). We further
derive the large frequency behavior of the Raman spectroscopy, which serves as an independent measur-
able quantity for contacts. Finally, we give an explicit example of contacts by considering a two-body
problem.
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I. INTRODUCTION

In ultracold-atomic gases, a series of universal relations
was established to set up a bridge between the short-distance
two-body correlations and the macroscopic thermodynamic
properties [1–7]. These relations are connected by a set of
key parameters called the contacts that have already been
examined in experiments [8–12]. Later, the universal re-
lations were also studied in higher partial-wave systems
[13–18], low-dimensional systems [19–29], laser-dressed sys-
tems [30,31], and were taken into account in three-body
correlations [32–36].

Recent experimental realization of the spin-orbital cou-
pling (SOC) in ultracold gases [37–41] also leads to interest-
ing few- and many-body physics [42–58]. In particular, the
universal relations for the spin-orbital-coupled Fermi gases
attract much attention [59–63]. Since the SOC breaks the
rotational symmetry, it would mix different partial waves at
the two-body level. It is interesting to study the universal rela-
tions for systems with one-dimensional (1D) SOC with both
s- and p-wave interactions. Experimentally, a system with
overlapping resonances of s and p waves has been realized in
40K atoms using the optical control [64], where, in principle,
additional SOC can be engineered directly.

Motivated by these developments, in this work, we study
the universal relations for a 1D Fermi gas with hybridized
s- and p-wave interactions from SOC. Importantly, we find
that the q−3 tail in the spin-mixing (off-diagonal) terms of the
momentum distribution matrix is a direct manifestation of the
SOC-induced strong interplay of s- and p-wave interactions,
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which can be observed through time-of-flight measurement.
Further, we study the Raman spectroscopy and also find that
the spin-mixing term of the Raman spectroscopy matrix is
a useful experimental probe that can be used to detect the
hybridization of s- and p-wave interactions. In the end, we
calculate the contacts in two-body bound states as an explicit
example of the contact matrix [65,66] in the hybridized s- and
p-wave Fermi gases. It is found that there is a peak for the
two-body hybridized contact of the s and p waves near the de-
generate point of s- and p-wave scattering lengths, indicating
a strong interplay between s- and p-wave dimers as expected.

The paper is organized as follows: In Sec. II, we give the
model Hamiltonian and calculate the two-body physics. In
Sec. III, we give the definition of the contacts. We calculate
the large-momentum distribution tail in Sec. IV and we cal-
culate the high-frequency tail of the Raman spectroscopy in
Sec. V. In addition, we discuss other universal relations in
Sec. VI. As a concrete example, we calculate the contacts
in two-body states in Sec. VII. Finally, we provide a brief
summary and discussions in Sec. VIII.

II. MODEL

The experiment [64] shows that the optical control of
a p-wave magnetic Feshbach resonance can realize the
noninteracting state between spin-down atoms near s-wave
resonance, based on a laser-field-coupled bound-to-bound
transition between the p-wave closed-channel molecular
states. It can also be used to shift the p-wave Feshbach reso-
nance associated with the spin-up atoms close to the resonance
of the s wave in 40K atoms. We consider a fermion system
with an s-wave interaction between atoms with spin ↑ and
↓, together with a p-wave interaction between two spin-↑
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fermions. Without SOC, the interesting few- and many-body
physics have been studied in [67–71]. After adding the SOC,
the effective 1D Lagrangian is given by (h̄ = 1 throughout the
paper)

L̂ =
∑

k

�
†
k

(
i∂t − H0

k

)
�k

− gS

L

∑
Q,k,k′

ψ
†
Q/2−k′,↓ψ

†
Q/2+k′,↑ψQ/2+k,↑ψQ/2−k,↓

− gP

4L

∑
Q,k,k′

k′ψ†
Q/2−k′,↑ψ

†
Q/2+k′,↑kψQ/2+k,↑ψQ/2−k,↑,

(1)

where L is the system size and gS (gP/4) is the ef-
fective 1D s(p)-wave coupling constant. We have defined
�k = (ψk,↑, ψk,↓)T , where ψk,σ is the field operator for the
fermionic atoms with momentum k and spin σ . The single-
particle Hamiltonian is H0

k = (kI2+k0σz )2

2m + �σx, where atoms
in the state |↑〉 are coupled to the state |↓〉 by the Raman laser
with the strength �, and 2k0 is the momentum transfer during
the two-photon processes. Here, σx/y/z is the Pauli matrix and
I2 is the 2 × 2 identity matrix.

Before performing calculations, we would like to comment
on the validity of the the Lagrangian (1). Similar to previ-
ous studies [72–74], the microscopic Hamiltonian in three
dimensions can be divided into three parts: H = H0 + H⊥ +
Hint, where H0 is the free Hamiltonian with SOC along the
z direction, Hint is the three-dimensional (3D) interacting
Hamiltonian with the 3D scattering parameters, and H⊥ con-
tains the transverse kinetic energy and transverse confinement
potential. In real experiments, the trapping frequency of the
transverse confinement potential is 105 Hz [75], which is
much larger than a moderate SOC strength of ∼103 Hz [38].
Since the length of the SOC is much longer than the poten-
tial range, i.e., the SOC in experiments [37–41] can barely
reach the very short-range regime of the very deep short-
range potential [51], the SOC will not modify the scattering
inside the short-range potential. Consequently, when solving
the scattering problem, we could separate the z coordinate into
regions with z � 1/

√
ω⊥m and z � 1/

√
ω⊥m. In the region of

z � 1/
√

ω⊥m, the problem is intrinsically 3D at high energy
∼ω⊥ and one could neglect both the kinetic energy in the z
direction as well as the SOC. This gives the wave function
at z ∼ 1/

√
ω⊥m up to leading order. The higher-order cor-

rections are proportional to Ez/(ω⊥m), which is sufficiently
small compared with the leading-order term, where Ez can
be the kinetic energy in the z direction or the SOC strength.
The wave function for z � 1/

√
ω⊥m is determined by match-

ing the boundary condition at z ∼ 1/
√

ω⊥m, which can be
modeled by a contact pseudopotential. Since, to the leading
order, the boundary condition is determined by a Hamiltonian
without SOC, there is no coupling between the s- and the p-
wave contact pseudopotential, which leads to our Lagrangian
(1). This analysis is consistent with the results presented in
Refs. [72–74] when the transverse trapping frequency ω⊥ of
the confinement potential is much larger than the strength of
the SOC.

To conveniently calculate the Feynman diagrams, the
above Lagrangian (1) can be rewritten as follows:

L̂ =
∑

k

�
†
k

(
i∂t − H0

k

)
�k +

∑
Q;α=S,P

ϕ
†
Q,αϕQ,α

gα

− 1

2
√

L

∑
Q,k

[
ϕ

†
Q,S

(
�T

Q
2 +k

σS� Q
2 −k

) + H.c.
]

− 1

2
√

L

∑
Q,k

k
[
ϕ

†
Q,P

(
�T

Q
2 +k

σP� Q
2 −k

) + H.c.
]
, (2)

where we have used the definitions

ϕ
†
Q,S ≡ gS

∑
k′

ψ
†
Q/2−k′,↓ψ

†
Q/2+k′,↑/

√
L

and

ϕ
†
Q,P ≡ 1

2
gP

∑
k′

k′ψ†
Q/2−k′,↑ψ

†
Q/2+k′,↑/

√
L.

ϕQ,S (ϕQ,P) is the field operator of the s(p)-wave dimer with
momentum Q. Note that although we have introduced a dimer
field for convenience, the Lagrangian contains no dynamics
of dimers and is essentially single channel. The generalization
to two-channel models is straightforward and gives the same
universal relations to the leading order. Interaction vertexes σS

and σP can be related to Pauli matrices σ j as σS = iσy, σP =
1
2 (1 + σz ), which is equivalent to

1
2�T

Q/2+kσS�Q/2−k = ψQ/2+k,↑ψQ/2−k,↓, (3)

�T
Q/2+kσP�Q/2−k = ψQ/2+k,↑ψQ/2−k,↑. (4)

To regularize the possible divergence, we impose a mo-
mentum cutoff at k ∼ 
. The bare interaction parameters gS
and gP can be related to the physical scattering lengths by

as = − 2

mgS

,
1

ap
= 4

mgP

+ 2


π
, (5)

where as (ap) is the 1D s(p)-wave scattering length.
According to Eq. (5), gS has unit of length−1 and gP has

unit of length. Moreover, since ψσ (x) = ∑
k eikxψk,σ /

√
L, the

dimension of ψk,σ is length0, knowing the dimension of ψσ (x)
is length−1/2. In addition,

∑
k → L

∫ ∞
−∞ dk/(2π ) is dimen-

sionless. Therefore, the unit of ϕQ,S is length−3/2 and the unit
of ϕQ,P is length−1/2. ϕQ,S and ϕQ,P have different scaling
dimensions and these quantities differ by a factor of length.

As mentioned before, we focus on a very special quasi-1D
case where � and k2

0 are much smaller than the transverse
trapping frequency ω⊥ of the confinement potential, i.e.,
ω⊥ � � and ω⊥ � k2

0/m. Consequently, in this limit, the
scattering length would not depend on the SOC parameters,
i.e., the reduction from 3D to 1D of the interaction receives
no contribution from the SOC, consistent with the previous
references [72–74]. In this case, the quasi-1D s(p)-wave scat-
tering length connected to the three-dimensional (3D) one is
given by [76–84]

as = − �2
⊥

2a3D
+ C�⊥

2
, ap = 3Vp

�2
⊥

, (6)
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(a) (b)

(d)(c)

FIG. 1. (a) Diagrams for the matrix elements of the
dimer-atom interaction operator. (b) Diagrams for the matrix
elements of the dimer local operator ϕ†

α (R)ϕβ (R) and its
derivatives ϕ†

α (R)[i∂t + ∂2
R/(4m)]u(−i∂R )vϕβ (R), with u, v =

0, 1, 2, 3, . . . . (c) Diagram for the matrix elements of the
operator ψ†

σ (R + x)ψσ ′ (R). (d) Diagram for the matrix element of∫
dt eiωt−ikx

∫
dxT Oσ3(R + x, t )O†

σ ′3(R, 0) (σ = ↑,↓). The single
line denotes the atom propagator matrix G, the double lines denote
the matrix elements of the dimer propagator matrix Dαβ with
α, β ∈ {S, P}, the blue dot represents the interaction vertex, −iσα or
−iσβ , and the open dot represents the insertion of operators.

where a3D is the 3D s-wave scattering length, C = 1.4603,
�⊥ = √

2/(mω⊥), ω⊥ is the transverse trapping frequency,
and Vp is the 3D p-wave scattering volume.

With the above renormalization relation of gP, the scat-
tering amplitude of the model (2) is finite. Explicitly, the
nontrivial part of the scattering amplitude is from the renor-
malization of the dimer Green’s function Dαβ (E0, Q) =
〈ϕQ,α (E0)ϕ†

Q,β (E0)〉, where E0 is the total energy. Here the
expectation is under the real-time path integral with the La-
grangian (2). As shown in Fig. 1(a), the inverse of the dimer
propagator matrix is given by

D−1(E0, Q)

=
(

(igS )−1 − �SS (E0, Q) −�SP(E0, Q)

−�PS(E0, Q) (igP )−1 − �PP(E0, Q)

)
,

(7)

where the polarization bubble reads

�αβ (E0, Q) = −
∫

d pdω0

(2π )2

plα+lβ

2
Tr[GT (ω0, Q/2 + p)σα

× G(E0 − ω0, Q/2 − p)σ †
β ], (8)

where α, β ∈ {S, P} and we have defined lS = 0 and lP = 1.
Tr denotes the trace over the spin degrees of freedom. G is the
time-ordered Green’s function matrix for fermions defined as
Gσσ ′ (ω, k) = 〈ψσ (ω, k)ψ†

σ ′ (ω, k)〉. We have

[G−1(ω, k)]σσ ′ = −i
[
(ω + i0+)δσσ ′ − (

H0
k

)
σσ ′

]
. (9)

The integral in (7) can be carried out analytically and we
present the result with Q = 0 in the Supplemental Material
[85]. Here, for simplicity, we only present the result for small

k0 and �:

D−1(E0, 0) ≈
⎛
⎝−mas

2 + m
2
√−mE0

√
mk0�

8(−E0 )3/2

√
mk0�

8(−E0 )3/2

m−apm
√

−mE0+k2
0

4ap

⎞
⎠. (10)

We have assumed E0 < 0 and kept terms up to the k2
0 and �

order. The result shows that all divergence can be absorbed by
the renormalization relation (5). In particular, the off-diagonal
terms �SP and �PS are proportional to k0� and thus finite,
indicating the physics is universal. This is due to a nontrivial
SOC, where we need both � and k0 to be nonzero. In con-
trast, for the higher partial-wave systems in higher dimension,
additional divergence may appear and new renormalization
relations are needed.

III. CONTACT MATRIX

For a dilute atomic gas system described by (2), we expect
universal behaviors governed by two-body physics when we
focus on physics at some momentum scale k that satisfies

 � k � max{kF ,

√
mT }. Here, kF is the Fermi momentum

determined from the density of fermions and T is the temper-
ature.

Theoretically, operator product expansion (OPE) is an ideal
tool to explore such universal physics [4,5]. One can expand
the product of two operators as

Oi(x + R)O j (R)|x→0 =
∑

n

Ck
i j (x)Ok (R), (11)

where {Oi} is a set of local operators and Ck
i j (x) are expansion

functions. After the Fourier transform, this gives the major
contribution at large momentum. There is a similar expansion
in time direction.

For a cold-atom system with only s- or p-wave interaction,
it is known that the leading-order contribution is from the con-
tact operator Ĉ(0,0)

SS (R) or Ĉ(0,0)
PP (R), which is given by Eq. (12).

Intuitively, these contact operators count the effective number
of dimers in a many-body system. When we turn on SOC,
there is a finite correlation between the s- and p-wave dimers.
We expect the system should instead be governed by the
contact operator matrix,

Ĉ(u,v)
αβ (R) = m2+uϕ†

α (R)

(
i∂t + ∂2

R

4m

)u

(−i∂R)vϕβ (R), (12)

where u, v = 0, 1, 2, 3, . . . . The contact matrix of the system
is then defined as Cαβ = ∫

dR〈Ĉαβ (R)〉. The idea of a matrix
form contact was introduced in [65,66,86]. We now derive the
universal relations for the momentum distribution and Raman
spectral by matching their asymptotic behaviors with contact
operators.

IV. MOMENTUM TAIL

Physically, we know that SOC should make spin ↑
and ↓ different. Hence, we consider the momentum distri-
bution matrix nσ ′σ (q) = 〈ψ†

q,σ ψq,σ ′ 〉 = ∫
dxdRe−iqx〈ψ†

σ (R +
x)ψσ ′ (R)〉/L, where q is the relative momentum. This corre-
sponds to considering Oi = ψ†

σ and O j = ψσ ′ in (11).
To determine the coefficient of OPE, we take the matrix

elements for both sides of (11). Usually, one considers both
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incoming and outgoing states with two fermions. However,
in our model (2), two fermions can only interact by first
combining to dimers and we could equivalently consider a sin-
gle incoming dimer |Iαi〉 = ∫

dtdR ei(E0t−QR)ϕ†
αi

(R, t )|0〉 and a
single outgoing dimer 〈Oαo| = ∫

dtdR e−i(E0t−QR)〈0|ϕαo (R, t ).
Here, E0 is the total energy and Q is the total momentum.

We first consider the matrix element of the contact operator
matrix, which is expected to be the right-hand side of the
OPE equation (11). The corresponding diagram is shown in
Fig. 1(b):

C(u,v)
αβ

m2+u
=

∫
dR〈Oαo|ϕ†

α (R, t )

(
i∂t + ∂2

R

4m

)u

× (−i∂R)vϕβ (R, t )|Iαi〉

=
(

E0 − Q2

4m

)u

QvDαoα (E0, Q)Dβαi (E0, Q), (13)

where E0 is the total energy and Q is the total momentum.
Notice that in one dimension, the momentum is still a vector

because a 1D vector has two opposite directions, and the 1D
momentum can be defined as [87] q ≡ |q|sgn(q), with the
signum function sgn(q). Therefore, the quantity “bold Q” is
defined as Q ≡ |Q|sgn(Q), which means that the 1D center-
of-mass momentum has two opposite directions. In this case, a
vector or a scalar can be distinguished by their representation
under inversion. If v is an odd number, the corresponding
contact is a vector. This is to be matched with the matrix
element of ψ†

σ (R + x)ψσ ′ (R). The nontrivial interaction effect
comes from the diagram shown in Fig. 1(c). After the Fourier
transform, we get the momentum distribution matrix as

n(q) =
∑

α,β=S,P

(−i)2Dαoα (E0, Q)Dβαi (E0, Q)
∫ ∞

−∞

dω0

2π
qlα+lβ

× G(E0 − ω0, q)σβGT (ω0, Q − q)σ †
α G(E0 − ω0, q).

(14)

Keeping every element up to the order in the 1/q4 expansion,
we have the momentum distribution matrix,

n(q) ∼
⎛
⎝CPP

q2L + 2q̂·CQ1

q3L + 2Cr−2k2
0CPP−2k0q̂·CQ1+5CQ2/2

q4L + CSS
q4L −CSP

q3L − 2k0CSP+2q̂·CSPQ1

q4L − m�CPP
q4L

−CPS
q3L − 2k0CPS+2q̂·CPSQ1

q4L − m�CPP
q4L

CSS
q4L

⎞
⎠, (15)

where ∼ means expanding to a certain order in the large-q
limit, q̂ ≡ q/|q| is the unit vector, and we use CPP = C(0,0)

PP ,
CQ1 = C(0,1)

PP , Cr = C(1,0)
PP , CQ2 = C(0,2)

PP , CPS = C(0,0)
PS , CSP =

C(0,0)
SP , CPSQ1 = C(0,1)

PS , CSPQ1 = C(0,1)
SP , and CSS = C(0,0)

SS . Re-
call that the effective Lagrangian (2) is different from that in
the laboratory frame by a momentum shift. For subleading
terms, this momentum shift would modify the coefficient,
as in [61,63]. However, the leading-order results in Eq. (15)
are free from such complications. Moreover, note that this
derivation can also be carried out for systems without SOC,
which leads to the same leading-order results in Eq. (15).
However, in that case, we have CSP = CPS = 0 due to the
reflection symmetry. Here, the SOC plays a role of breaking
the rotational symmetry and making CSP and CPS finite.

Experimentally, we could measure each component sep-
arately and extract their leading-order behaviors. As an
example, for the off-diagonal terms, we could measure the
momentum of fermions in the spin states |±x〉 = 1√

2
(|↑〉 ±

|↓〉). Up to the leading order, this gives

n++(q) − n−−(q) = n↓↑(q) + n↑↓(q) ∼ −CPS + CSP

q3L
.

Similarly, measuring in the spin states | ± y〉 gives CPS − CSP.

V. RAMAN SPECTROSCOPY

The Raman spectroscopy can be used as an important
experimental tool in cold-atom systems. When the transfer
momentum and frequency are large, the Raman spectroscopy
can also be related to the contacts. We consider applying
a Raman coupling with frequency ω > 0 and momen-
tum k to transfers fermions from the internal spin state
|σ 〉 (σ = ↑,↓) into a third spin state |3〉. The Hamilto-

nian reads Hc = ∑
σ �σ

∫
dx ei(kx−ωt )Oσ3(x, t ) + H.c., where

Oσ3(x, t ) ≡ ψ
†
3 (x, t )ψσ (x, t ). The transition rate function

R(ω, k) to |3〉 is given by the Fermi golden rule, which is
related to the imaginary part of the time-ordered two-point
correlation function [88,89]:

R(ω, k) = 2π
∑
σσ ′

�σ�∗
σ ′�

R
σσ ′ (ω, k), (16)

�R
σσ ′ (ω, k) = 1

π
Im

∫
dR

∫
dt eiωt

∫
dx e−ikx

× i〈T Oσ3(R + x, t )O†
σ ′3(R, 0)〉, (17)

where T is the time-ordering operator. We thus study the OPE
of Oσ3 and O†

σ ′3. The diagram is shown in Fig. 1(d):

�R
σσ ′ (ω, k)

= 1

π
Im i

∑
α,β=S,P

(−i)2Dαoα (E0, Q)Dβαi (E0, Q)

×
∫

d pdω0

(2π )2
plα+lβ G0(E0 − ω0 + ω, p + k)

× [G(E0 − ω0, p)σ †
β GT (ω0, Q − p)σαG(E0 − ω0, p)]σσ ′ .

(18)

Matching Eq. (18) with Eq. (13), we have the Raman transfer
rate in the high-frequency and large-momentum limit,

�R(ω, k) = 2m

π
√

4mω − k2

×
⎛
⎝ 2mωCPP

(k2−2mω)2
k(k2−6mω)CSP

(k2−2mω)3

k(k2−6mω)CPS

(k2−2mω)3

2[4(mω)2+4k2mω−k4]CSS

(k2−2mω)4

⎞
⎠. (19)

043321-4



UNIVERSAL RELATIONS FOR HYBRIDIZED S- AND p- … PHYSICAL REVIEW A 102, 043321 (2020)

Here we have assumed ω > k2/(4m) and kept each element
to the leading order. Taking the limit of k = 0 leads to the
high-frequency tail of the radio-frequency spectral �rf

σσ ′ (ω) =
�R

σσ ′ (ω, 0),

�rf (ω) = m

2π

(
CPP

(mω)3/2 0

0 CSS
(mω)5/2

)
. (20)

The result of �R(ω, k) provides an individual experimental
observable to determine different contacts by tuning �σ (16).
The Raman spectroscopy, together with the momentum distri-
bution, serves as a nontrivial check for the universal relations
in the hybridized system (2).

VI. OTHER UNIVERSAL RELATIONS

In this section, we discuss other universal relations, in-
cluding the adiabatic relations and thermodynamical relations.
Since the derivation is standard, we focus on presenting the
results here and we give details of the derivations in the
Supplemental Material [85].

We first focus on the adiabatic relations. The tra-
ditional s/p-wave contacts correspond to the change of
energy when varying as or −1/ap, which can be seen
from taking the derivative with gα in the Lagrangian
(2) as

CSS

2m
≡ ∂E

∂as
,

CPP

4m
≡ − ∂E

∂a−1
p

. (21)

However, there is no direct s- and p-wave dimer mix-
ing in (2) and thus no adiabatic relation for CSP or CPS.
On the other hand, we could consider a nonspherical po-
tential between atoms where microscopic mixing terms
δSPϕ

†
Q,SϕQ,P + H.c. exist in the action. In this case, the off-

diagonal components of the contact matrix correspond to
varying δSP.

When SOC is present, there are two new parameters k0 and
�. One can define two new contacts Cλ and C� as

Cλ ≡ ∂E

∂k0
, C� ≡ ∂E

∂�
. (22)

Here, Cλ and C� only refer to single-atom operators which
give nonzero matrix elements in the single-atom sector. The
momentum distribution under single-particle states is just

a delta function, so that Cλ and C� will not contribute
to the large-momentum tail, which is different from CSS

and CPP. However, both k0 and � have a nonzero energy
scale, so that they would appear in the pressure relation
and viral theorem. For a uniform gas, the pressure relation
reads

P = 2E + asCSS

2mL
+ CPP

4mapL
− k0Cλ

L
− 2�C�

L
, (23)

where E = E/L is the energy density. For an atomic gas in
a harmonic potential VT = mω2x2/2 with the trapping fre-
quency ω, the viral theorem is written as

E = 2〈VT 〉 − asCSS

4m
− CPP

8map
+ k0Cλ

2
+ �C�, (24)

with 〈VT 〉 being the trapping energy.

VII. CONTACTS IN TWO-BODY BOUND STATES

To give an explicit example of the contact matrix in the
hybridized s- and p-wave system, we now perform a calcu-
lation for the two-body bound state. Generally, the binding
energy Eb with momentum Q is given by solving det[D−1

(E0, Q)] = 0. We consider the case with small SOC strength
where we could use (10).

We focus on Q = 0 with both as > 0 and ap > 0. For
� = 0, there is both an s-wave bound state with binding en-
ergy E (s)

b = −1/(ma2
s ) and a p-wave bound state with binding

energy E (p)
b = −1/(ma2

p) + k2
0/m. Here the presence of k0 is

because Q = 0 corresponds to a center-of-mass momentum
2k0 for the p-wave bound state in the laboratory frame. In this
case, we have CSS = 4/a3

s , CPP = 8/ap, and CSP = CPS = 0.
When we turn on finite but small �, the binding

energies receive an important correction only near
the resonance with 1/(a0

s )2 = 1/(a0
p)2 − k2

0 . We then
approximate

D−1(Eb, 0) ≈
(

I1
(
Eb − E (s)

b

)
K�

K� I2
(
Eb − E (p)

b

)
)

, (25)

where I1 = m2a3
s

4 , I2 = m2ap

8 , and K� = k0�m2(a0
s )3

8 . Then the
binding energy can be derived as

2E (±)
b = E (p)

b + E (s)
b ±

√(
E (p)

b

)2 − 2E (p)
b E (s)

b + (
E (s)

b

)2 + 4K2
�

I1I2
. (26)

The contacts CSS and CPP can be derived by taking the deriva-
tion with as or −1/ap. To calculate CSP or CPS, we apply the
trick by adding the additional δSP terms and set them to be
zero after taking derivatives.

The explicit formula for all contacts are given in the Sup-
plemental Material [85]. A plot for E (±)

b and contacts for E (−)
b

are shown in Figs. 2(a) and 2(c). Away from the degenerate
point, E (±)

b approaches E (s)
b or E (p)

b . Comparing Figs. 2(a)

with 2(c), it is found that the SOC parameters can open a
gap between the two banding energies E (+)

b and E (−)
b . Con-

sequently, for the diagonal components of the contact matrix,
we have CSS ≈ 0 for as/ap � 1 and CPP ≈ 0 for as/ap � 1.
Near the degenerate point as/ap ∼ 1, we see a peak for CSP,
indicating a large mixing between s- and p-wave dimers as
expected. Moreover, we also calculate the amplitude of the
hybridized new contacts compared to the s- and p-wave ones
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FIG. 2. (a) Dimensionless two-body banding energy vs as/ap

with SOC. The black dashed curve denotes E (+)
b ma2

p and the blue

solid curve denotes E (−)
b ma2

p. (b) Dimensionless two-body contacts
vs as/ap with SOC. (c) Dimensionless two-body banding energy vs
as/ap without SOC. The black dashed curve denotes E (p)

b ma2
p and the

blue solid curve denotes E (s)
b ma2

p. (d) Dimensionless two-body con-
tacts CSS and CPP vs as/ap without SOC. As a comparison, we also
plot the CSP with finite SOC [the same curve as (b)]. The red solid
curve denotes CSPa2

p, the blue dashed curve denotes CSSa3
p, the green

solid curve denotes CPPap, and the black dot-dashed curve denotes√
CSSCPPa2

p. Here, we choose the SOC parameters as k0ap = 0.2 and
m�a2

p = 0.3.

without SOC, as shown in Fig. 2(d), to give the possibility of
the measurement.

VIII. DISCUSSIONS

In this work, we have derived the momentum tail and the
Raman spectroscopy for hybridized s- and p-wave interactions
from spin-orbital coupling in 1D. We find new contacts appear
at the leading order of certain observables due to the mixing
between different partial waves.

We finally comment on the generalization to higher-
dimensional systems with 1D (NIST) SOC. In higher
dimensions, first, we have the additional quantum number
m = −1, 0, 1 in 3D or m = ±1 in 2D for p-wave dimers.
Depending on whether their resonance splits, we may have
a larger contact matrix. To the leading order, the off-diagonal
components of the momentum distribution should again corre-
spond to the off-diagonal contacts and should be proportional
to 1/q3. On the contrary, the scaling of the Raman spectral
would change (by a factor of ∼ω(D−1)/2 for large ω) due to
the difference of the density of state.
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