
1.  Introduction
A large portion of Turkey is located on the Anatolian Plate (AP), which is slowly extruding westward as 
a result of the north-south collision between the Arabian and Eurasian tectonic plates (e.g., McClusky 
et al., 2000; Mckenzie, 1970, 1972). The westward motion of the AP is predominantly accommodated along 
the North and East Anatolian faults (NAF and EAF, Figure 1). The NAF experienced a sequence of de-
structive earthquakes that struck within the last 80 years (e.g., Armijo et al.,  1999; Barka, 1996; Şengör 
et al., 2005; Stein et al., 1997). In contrast, the EAF is generally assumed to be less active, and has only ex-
perienced small to moderate events over the last century, although large (M > 7) earthquakes have occurred 
in the historical record (e.g., Ambraseys, 1970; Ambraseys & Jackson, 1998; Hubert-Ferrari et al., 2020).

The EAF is a left-lateral 600-km-long strike-slip fault linking the Dead Sea fault (DSF, Figure  1) to the 
Karlıova Triple Junction (KTJ, Figure  1) where it intersects with the right-lateral NAF (e.g., Duman & 
Emre, 2013; Yilmaz et al., 2006). The EAF has a complex geometry divided into several main segments, each 
of them characterized by bends, pull-apart basins or compressional structures (e.g., Duman & Emre, 2013), 
and also comprises multiple secondary subparallel and seismically active structures delineating a 50-km-
wide fault zone (e.g., Bulut et al., 2012). The EAF accommodates a displacement of 9–15 mm/yr (Aktug 
et al., 2016; Bletery et al., 2020; Cavalié & Jónsson, 2014; Cetin et al., 2003; Reilinger et al., 2006), with creep 
dominantly at depths greater than 5 km (Bletery et al., 2020; Cavalié & Jónsson, 2014). As a comparison, 
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Plain Language Summary  The Elazığ earthquake ruptured the central portion of the East 
Anatolian Fault (EAF), a major strike-slip fault in eastern Turkey, on January 24, 2020. Before this event, 
the region had only experienced moderate magnitude earthquakes over the last century. We aim at 
understanding the rupture of this earthquake, and how it relates to the historical ruptures of the EAF. To 
do so, we use measurements of displacement at the surface to image the subsurface slip on the fault that 
occurred during the earthquake. As the characteristics of the crust are poorly known, we make realistic 
assumptions on the fault geometry and Earth structure, and build on novel approaches to account for the 
possible biases of our assumptions and to characterize the uncertainties of the imaged slip. We suggest 
that the Elazığ earthquake rupture may be controlled by structural complexity of the fault, and that two 
main regions of slip surround a fault bend acting as a barrier to rupture propagation. We also suggest that 
the fault segment located between Lake Hazar and the city of Palu is the last portion of the central EAF, 
showing a large deficit of the fault slip, which has not yet ruptured in the last 145 years.
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the NAF shows creep rates around 20–25 mm/yr below a locking depth of 7–25 km (e.g., Cakir et al., 2014; 
Hussain et al., 2018; Kaneko et al., 2013; Walters et al., 2011; Wright et al., 2001). Shallower portions of the 
EAF are characterized by a highly varying interseismic slip deficit, some portions being fully coupled while 
others appear to be at least partially creeping (Bletery et al., 2020).

The January 24, 2020 Mw 6.8 earthquake ruptured the EAF between the Hazar Pull-apart Basin and the city 
of Pütürge (Figure 1). In the area, the main fault has been mapped, from the interpretation of aerial photos 
and field studies, as a sinuous trend interrupted by bends and step-overs whose widths do not exceed a 
kilometer (Duman & Emre, 2013). Coseismic surface rupture does not show a significant horizontal com-
ponent and is probably mostly gravitational (Tatar et al., 2020). In this study, we investigate the subsurface 
rupture of the Elazığ earthquake and its relationship to fault geometry and interseismic slip deficit. While 
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Figure 1.  Tectonic setting and assumed characteristics for the Elazığ earthquake. (a) Tectonic setting of the area, plate 
boundaries are shown in thick black lines. East and North Anatolian Faults are labeled (EAF and NAF), as well as the 
Dead Sea fault (DSF) and Karlıova Triple Junction (KTJ). (b) Active fault traces (Basilic et al., 2013) and seismicity since 
1976 (GCMT, Dziewonski et al., 1981) around the EAF and NAF. The Elazığ earthquake focal mechanism (GCMT) is in 
red. (c) Details of assumed (dark red) and mapped (gray) fault trace at the surface. Two structural bends of the causative 
fault geometry are highlighted. Possible epicenters are shown with white, red, purple, and orange stars (from left to 
right on the map), respectively, from GCMT, Jamalreyhani et al. (2020) and KOERI and AFAD (2020). (d) Assumed 
fault geometry at depth and associated uncertainty (standard deviation of 5° around the assumed dip and 1 km around 
the fault surface trace). (e) Assumed shear moduli with depth (derived from Maden, 2012; Ozer et al., 2019) and 
associated uncertainties.

(a)
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assuming a fault structure with a realistic geometry, we also account for its inherent uncertainties, as well 
as uncertainties related to assumptions on the crustal structure. We adopt a Bayesian sampling approach 
which allows us to sample a large panel of possible slip models and to estimate the posterior uncertainty on 
the inverted slip distribution. This approach allows us to describe the rupture of the Elazığ earthquake in 
detail, while discussing how it may have been driven by structural complexity. Finally, we also provide an 
updated interpretation of the seismic budget for the central EAF.

2.  Bayesian Inference Framework
2.1.  Data

We derive the earthquake surface displacement from four Synthetic Aperture Radar (SAR) interferometric 
pairs and two SAR pixel-offsets images (summarized in Table S2, Figures for a closer view on the deforma-
tion). We computed two ALOS-2 ascending and descending interferograms, and two Sentinel-1 ascending 
and descending interferograms. Copernicus Sentinel-1 data have been acquired by the European Space 
Agency (ESA) and processed with the NSBAS software (Doin et al., 2012, p. 98). ALOS-2 data are collected 
by the Japan Aerospace Exploration Agency (JAXA) and have been processed using the InSAR Scientific 
Computing Environment (ISCE) software (Rosen, 2012) augmented with an additional module for process-
ing ALOS-2 data (Liang & Fielding, 2017a).

We also applied pixel-offset tracking analysis to ALOS-2 images on both tracks (Liang & Fielding, 2017b). 
Resulting surface displacements have lower precision and higher noise than LOS measurements, but pro-
vide useful information on the deformation along the satellite track (azimuthal) direction. Due to snowy 
conditions in January, both L-band ALOS-2 and C-band Sentinel-1 data decorrelate at higher topograph-
ic elevations. Note that surface displacements derived from the InSAR data contain from 3 to 7 days of 
postseismic deformation, which might affect our modeling of the coseismic phase (Ragon, Sladen, Bletery, 
et al., 2019; Twardzik et al., 2019). InSAR and dense pixel-offsets from the ALOS-2 descending track cover 
1 year of preseismic and 1 month of postseismic deformation, and thus also include long-term deformation. 
To improve computational efficiency, we resample InSAR observations based on model resolution (Lohman 
& Simons, 2005) with quadtree regions ranging from 12 to 1.2–2 km wide. We remove data points that are 
within 500 m of the fault trace to prevent spatial aliasing. We estimate measurement uncertainties following 
Jolivet et al. (2012, Figure S2). We also use three components coseismic GNSS offsets at six stations located 
within 120 km of the rupture (Figure 2). These offsets have been processed by Melgar et al. (2020) and ex-
tracted from high-rate GNSS displacements.

2.2.  Fault Geometry and Elastic Structure

Duman and Emre (2013) mapped the main surface trace of the Pütürge segment as a relatively continuous 
sinusoidal trend interrupted by small bends and step-overs whose width do not exceed the kilometer. Over 
the Lake Hazar releasing bend (Figure 1c), the fault trace divides into multiple parallel lineaments that out-
line a 10 km wide fault zone (e.g., Garcia Moreno et al., 2011). Around Doğyanol, the fault strike abruptly 
changes by 10°. West of the rupture area, two major bends affect the Pütürge segment before it links to the 
Erkenek segment. The strike change around Doğyanol has been well outlined by InSAR data as well (Fig-
ures 2 and S1), although the rupture did not reach the surface. We build on these observations, as well as 
on the location of the aftershocks and previous seismicity (Bulut et al., 2012; Melgar et al., 2020) to define 
the surface geometry of the causative fault. Hereafter, we will refer to the two bends of the causative fault 
as the main bend (bend of ∼ 10° around the city of Doganyol, refer to Figure 1c) and the second bend (east 
of the main bend).

InSAR data show largest amplitudes north of the fault (Figure 2), suggesting that the fault is slightly dip-
ping northward, as confirmed by the aftershocks (Melgar et al., 2020; Pousse-Beltran et al., 2020). We thus 
assume a fault dipping of 79° northward (Figure 1d), from its south-western end to 30 km eastward, the 
dip angle linearly decreases to 75° further east. We discretize the fault into 203 triangular subfaults whose 
side range from 1.5 km at the surface to 4–5 km at depth. We also assume a layered crustal model (Table S1) 
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derived from the seismic velocity models for NE Turkey proposed by Maden (2012) and by the Vp/Vs ratio 
proposed by Ozer et al. (2019), and compute coseismic Green’s functions following Zhu and Rivera (2002).

2.3.  Bayesian Sampling of the Inverse Problem

In this study, we explore the full solution space of coseismic slip distributions compatible with geodetic ob-
servations in order to sample the range of plausible models. The sampling is performed with a Bayesian ap-
proach implemented in the AlTar2 package, originally formulated by Minson et al. (2013). AlTar combines 
the Metropolis algorithm with a tempering process to iteratively sample the solution space. A large number 
of samples are tested in parallel at each transitional step, which is followed by a resampling step, allowing us 
to select only the most probable models. The probability of each sample to be selected depends on its ability 
to fit the observations dobs within the uncertainties Cχ = Cd + Cp, where Cd represents the observational 
errors and Cp the epistemic uncertainties introduced by approximations of the forward model (e.g., Duputel 
et al., 2014; Minson et al., 2013; Ragon et al., 2018; Ragon, Sladen, & Simons, 2019).

The solution space is evaluated through repeated updates of the probability density function (PDF) of each 
sampled parameter

( , ) ( ) exp[ ( )],i ip p     m m m� (1)

where m is the sampled model, p(m) the prior information on this sample, i corresponds to each iteration, 
and β evolves dynamically from 0 to one to optimize the parameter space exploration (Minson et al., 2013). 
χ(m) is the misfit function which quantifies the discrepancies between observations and predictions 
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Figure 2.  Observations used in thus study. (a) Surface displacement in the satellite line-of-sight (LOS) direction from a Sentinel-1 (S1) ascending (asc.) 
interferogram, overlayed with coseismic GNSS offsets (Melgar et al., 2020). (b) Surface displacement from a Sentinel-1 descending (dsc.), (c) an ALOS-2 
(A2) ascending interferogram, and (d) an ALOS-2 descending interferogram. (e) Pixel-offset (PO) surface displacement in the satellite along-track (azimuth) 
direction from the ALOS-2 descending pair, and (f) from the ALOS-2 ascending pair. The surface projection of the satellite LOS direction is positive in the 
ground-to-satellite direction.

(a) (b) (c)

(f)(e)(d)
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within uncertainties described by the covariance matrix Cχ (Duputel et al., 2014; Minson et al., 2014, 2013; 
Tarantola, 2005)

     1
obs obs

1( ) [ ( )] [ ( )].
2

Tm d G m C d G m� (2)

We solve for both slip amplitude and rake, within the assumed unrestrictive positive uniform prior distribu-
tion ( )p m  (0 m, 20 m) for the strike-slip parameters, and within the restrictive Gaussian prior distribu-
tion centered on zero for the dip-slip parameters ( )p m  (0 m, 1 m).

Ad hoc choices of regularization, such as smoothing or moment minimization, artificially restrict the range 
of possible models and strongly bias the inferred slip distributions toward simplistic overly smoothed solu-
tions (e.g., Causse et al., 2010; Du et al., 1992). In our approach, we do not impose any type of prior regular-
ization and explore the entire solution space, i.e., the entire range of possible slip models. The final output 
thus consists in a series of models sampled from among the most plausible models of the full solution space. 
To explore the results, we consider probabilistic variables, such as a combination of the mean of the sam-
pled models and the associated posterior uncertainty (standard deviation).

2.4.  Accounting for Epistemic Uncertainties

Our estimates of fault slip are driven by the quality and quantity of observations, but also by the way we 
build the forward model and any other prior information we include in the problem. Any prior choice made 
to evaluate the Green’s function (including problem parameterization and description of the Earth interior) 
will have a significant impact on inferred model parameters (e.g., Beresnev, 2003; Diao et al., 2016; Duputel 
et al., 2014; Gallovič et al., 2015; Hartzell et al., 2007; Mai et al., 2016; Razafindrakoto & Mai, 2014; Yagi & 
Fukahata, 2008). So-called epistemic uncertainties stem from our imperfect description, or simplification, 
of the parameters describing the Earth interior, such as crustal properties (e.g., rheology), fault geometry or 
regional characteristics (e.g., topography, Langer et al., 2020). In contrast, aleatoric uncertainties will derive 
from random, or unknown, processes. In this study, we account for the epistemic uncertainties caused by 
our poor knowledge of the fault dip, the fault position, and the elastic layered crustal structure, follow-
ing the methodologies presented by Duputel et  al.  (2014), Ragon et  al.  (2018), and Ragon, Sladen, and 
Simons (2019). A part of the aleatoric uncertainties is also quantified with our stochastic approach.

We assume 1 km uncertainty (1σ) in the location of the surface projection of the fault, and 5° uncertainty 
(1σ) in the fault dip, the fault rotating as a whole around its assumed dip (Figure 1). We assume uncertain-
ties on the shear modulus for every layer (Poisson’s ratio is held constant within each layer), the uncertainty 
decreasing with depth (Figure 1 and Table S1).

3.  Results
We infer primarily strike-slip fault slip (Figure 3). Most of the slip is imaged around the main bend (lo-
calized around the city of Doganyol, Figure 3a). Slip exceeds 3 m within two slip patches, from 2 to 10 km 
depth west of the main bend and from 7 to 10 km depth east of the main bend. Associated posterior uncer-
tainty for these patches can reach up to ∼1 m for highest amplitudes (Figure 3c). West of the main bend, the 
rupture extends down to greater depths (7–15 km) with moderate slip amplitudes of ∼2 m. At depth, the 
posterior model uncertainty reaches up to 1 m. The posterior marginal distributions all show well-deline-
ated Gaussian shapes (Figure S3), even for the smallest slip amplitudes. The posterior PDFs on subfaults in 
between these two main slip patches indicate well resolved very low slip amplitudes (Figure S3), suggesting 
that the two patches are disconnected (Figure 3c).

One other narrow slip patch can be observed west of the main bend, at the location of the second bend. 
Slip is imaged from the surface to 4 km depth, with maximum amplitudes reaching 2.5 m at the surface, 
and with relatively small posterior uncertainty. This patch is not connected with the main slip patches, and 
does not seem to correspond to any Mw > 4 aftershock (relocated by Melgar et al., 2020; Pousse-Beltran 
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et al., 2020). This slip may be coseismic or afterslip (given that the InSAR data span a period up to one 
month after the mainshock).

Observations are well fit by the predictions of our model (Table S3, Figures 3d and 3S5, S6, S7, and S8 for 
the InSAR and GNSS data, respectively), within the assumed uncertainties and possible remaining noise 
(in particular for the pixel-offset data). Accounting for epistemic uncertainties mitigates overfitting (Ragon 
et al., 2018). Residuals are expected to be larger than if epistemic biases are neglected. The descending in-
terferograms present larger residuals (Figures S5, S6, S7) because the assumed fault geometry is primarily 
constrained by ascending data, and the descending imaging geometry is less favorably oriented (the LOS 
has a 45° angle with the fault strike).

We also infer the slip distribution of the Elazığ earthquake assuming a planar fault structure dipping of 85° 
toward the north and embedded within a homogeneous half space, without introducing any epistemic un-
certainty (Figure S9). Unlike our preferred model, the slip is concentrated in a single shallow and extended 
slip patch with low posterior uncertainty. Highest amplitudes (up to 3.5 m) are reached above the main 
bend, from 1.5 to 9 km depth. Low slip values are inferred at depths greater than 10 km and lower than 
1.5 km. Some slip is also inferred around the second bend. As expected, the fit of the predicted displacement 
to the observations is good (Table S3, Figures S10, S11, S12, and S13), descending interferograms still pre-
senting larger residuals, and slightly better than with our preferred inference.
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Figure 3.  Inferred average slip model and associated posterior uncertainty for the Elazığ earthquake. (a) Map view of the fault trace, subfaults contours at 
depth and local setting. Possible epicenters are shown with white, red, purple, and orange stars (from left to right on the map), respectively, from GCMT, 
Jamalreyhani et al. (2020) and KOERI and AFAD (2020). (b) Depth view of the average total slip amplitudes and directions. (c) Standard deviation of the 
inferred strike-slip parameters. (d) Observed and predicted surface displacement in the LOS direction from Sentinel-1 ascending and descending, and ALOS-2 
ascending, InSAR.
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4.  Discussion and Conclusion
4.1.  A Stochastic View of the 2020 Elazığ Coseismic Rupture

Assuming a realistic fault geometry and crystal structure, and accounting for related epistemic uncertain-
ties, we estimate the slip distribution of the 2020 Elazığ earthquake with a Bayesian inference approach. 
We show that the coseismic rupture affects almost the full width of the Pütürge segment, down to 15 km 
depth, with a geodetic moment M0 = 2.34 ± 0.25 1019 N m and an equivalent moment magnitude of 6.84 
(μ = 2.8 ± 0.3 101 GPa). Two disconnected slip patches host most of the slip: one patch shows slip exceeding 
3 m from ∼3 to ∼10 km depth east of the main bend, while the second slip patch extends from 7 km depth 
down to 15 km depth with slip amplitudes larger than 2 m just west of the main bend (Figure 3).

A large shallow slip (0–5 km, 2.5 m in amplitude) is also imaged around the second bend. While the stand-
ard deviation associated with this shallow slip patch is relatively small, its amplitude is poorly constrained 
by scarce, and possibly noisy, data points largely affected by snowy conditions (Figures S5, S6, and S7). 
Some of our InSAR data covering up to one month after the mainshock, some imaged deformation, such as 
this shallow patch, might actually be postseismic. Yet, the surface displacement from 1 week to 5 months 
after the mainshock does not reach more than a few centimeters (Figure S14), suggesting that, if afterslip 
occurred, it was in the hours following the mainshock and with a limited amplitude (as the amplitude of 
early afterslip often scales with the longer term postseismic deformation, e.g., Twardzik et al., 2019), thus 
probably not excessively affecting our slip estimates.

The inferred slip distribution changes significantly if we assume a planar fault embedded in a homogeneous 
crust and we neglect uncertainties stemming from the assumption of a simplified Earth interior. In particu-
lar, a single and shallower slip patch is inferred around the epicenter, no slip larger than 50 cm being imaged 
above 2 km, or larger than 80 cm below 10 km depth. The pronounced slip deficit imaged when assuming 
a simplified forward model (Figure S15) might suggest that the shallow slip deficit observed by Pousse-Bel-
tran et al. (2020) may be an artifact deriving from modeling choices, as proposed by Xu et al. (2016) and 
Ragon et al. (2018).

The location of the epicenter, as estimated from different institutions and authors, comes with more than 16 
and 20 km uncertainty in depth and position, respectively (e.g., Jamalreyhani et al., 2020; Tatar et al., 2020). 
While some models proposed a location around the main bend, many others proposed epicenters rather lo-
cated in between the two bends (Figure 3). Robust interpretation on rupture directivity is largely affected by 
uncertainty in epicenters location, although our results suggest the rupture of the Elazığ earthquake might 
be mostly unilateral to the SW.

Our estimates of the pattern of fault slip differ from other estimates based on similar data (e.g., Cheloni & 
Akinci, 2020; Doğru et al., 2020; Melgar et al., 2020; Pousse-Beltran et al., 2020). Our preferred model is 
very different from Pousse-Beltran et al. (2020), Cheloni and Akinci (2020), and Doğru et al. (2020), where 
peak slip reaches only 2 m over the main bend. In contrast, our preferred model shares many characteristics 
with the preferred one of Melgar et al. (2020), especially for the peak slip location and the overall shape of 
the ruptured areas, although they image large slip values east of the KOERI epicenter. Melgar et al. (2020) 
preferred model being primarily driven by high-rate GNSS data and assuming a 1D crustal structure, these 
shared characteristics suggest that assuming a layered crustal model is necessary to infer robust slip esti-
mates in this region.

4.2.  Structurally Driven Slip on the Pütürge Segment

Fault segmentation and bends are thought to act as geometric barriers that can influence, or even drive, rup-
ture initiation, termination and propagation (e.g., Aochi et al., 2002; Barka & Kadinsky-Cade, 1988; Duan & 
Oglesby, 2005; King & Nabelek, 1985; Klinger, 2010; Perrin et al., 2016; Wesnousky, 2006). Similarly, creep-
ing sections might act as barriers to earthquake propagation (e.g., Chlieh et al., 2008; Kaneko et al., 2010; 
King, 1986; Perfettini et al., 2010).
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The coseismic rupture of the Elazığ earthquake likely started in a relatively planar portion of the fault, in 
between its two main bends (refer to Figure 3, Jamalreyhani et al., 2020). Similarly, peak slip amplitudes 
and most of the slip are located in relatively smooth areas, and surround the main bend where well-resolved 
low slip values have been imaged. The absence of slip in the main bend is a robust characteristic of our 
preferred slip model, which has not been imaged in previous studies (e.g., Melgar et al., 2020). The event 
thus likely ruptured a first portion of the Pütürge segment, stopped at the main bend acting as a barrier, 
and then broke a second portion, a process that has been observed in numerical simulations (e.g., Duan & 
Oglesby, 2005; Kato et al., 1999). A perturbation of the rupture propagation by the main bend well correlates 
with the apparent rupture velocity decrease around the geometrical complexity (imaged by back-projection 
of waveforms, Pousse-Beltran et al., 2020), and the two distinct peaks of the source time function (automat-
ically determined, Vallée & Douet, 2016).

Slip slowly decreases toward Lake Hazar (Figure 4). Aftershocks activity also declines abruptly at the basin 
boundary (Jamalreyhani et al., 2020; Melgar et al., 2020). The pull-apart basin hosting Lake Hazar might 
thus have acted as a geometrical barrier to the ruptured asperity (as also observed for the Haiyuan fault, 
China, Liu-Zeng et al., 2007; Jolivet et al., 2013). To the west, no specific geometrical complexity is imaged at 
the surface, and the rupture may have stopped at the maximum length of the fault segment (Klinger, 2010).

Finally, the location of the main bend also corresponds to the portion of the EAF that shows maximum 
shallow interseismic slip deficit (>90%, Figure 4). Inferred slip partly overlays this portion of maximum slip 
deficit, but the coseismic rupture also extends over moderately coupled regions (30–40%) at greater depths 
(from 8 to 15 km depth). The second bend, to the northeast of the main bend (Figure 3), is also surrounded 
by large (>2 m) slip amplitudes at shallow depths.

Altogether, these observations suggest that the distribution of subsurface fault slip during the Elazığ earth-
quake may largely reflect complexities in the fault geometry. Ruptured portions appear to be relatively 
smooth. In contrast, the main fault bend likely acted as a barrier to rupture propagation, over which no slip 
has been imaged, similarly to the structure responsible for the pull-apart basin of Lake Hazar. The bend is 
not prone either to aseismic slip (at least at shallow depths). The deepest imaged slip patch, down to 15 km 
depth, confirms that the seismogenic depth is deeper than 10 km for the central EAF (Bulut et al., 2012). 
Our results do not seem to corroborate the shallow locking depth (full creep below 5 km) inferred by Cavalié 
and Jónsson (2014). This behavior appears similar to the NAF, where large earthquakes occur on faults also 
prone to aseismic slip (Cakir et al., 2005, 2014; Schmittbuhl et al., 2016).

4.3.  Seismic Potential of the Palu Segment

From Pütürge to Bingöl, interseismic slip deficit above 5 km depth varies along strike, as inferred from ge-
odetic data from 2003 to 2010 (Bletery et al., 2020, Figures 4 and S16). Three main sections of large shallow 
interseismic slip deficit (>70%) are clearly distinct: one on the Pütürge segment, another on the West Palu 
segment, and a last one east of the city of Palu, on the East Palu segment. Before the Elazığ event, this por-
tion of the EAF was struck by 4 large earthquakes in the last 200 years. Two M ∼ 6.8 and M ∼ 7.3 occurred 
west of Lake Hazar in 1893 and 1905 (Ambraseys, 1989). In 1874–1875, a sequence of two M ∼ 7.1 and M 
∼ 6.7 likely struck the region between Sivrice and Palu (Ambraseys, 1989; Cetin et al., 2003; Hubert-Ferrari 
et al., 2017). East of the locality of Palu, the region around the city of Bingöl was affected by a Mw 6.8 in 1971 
(Ambraseys, 1989; Ambraseys & Jackson, 1998).

Slip deficit has accumulated on the EAF since these recent historical ruptures, and the newly coupled 
portions (from 2003 to 2010) are preferably located in between the historically ruptured segments (Bletery 
et al., 2020). The 2010 Mw 6.1 earthquake that occurred near Kovancılar (Akkar et al., 2011) appears to have 
filled the possible seismic gap between the 1874 sequence and the 1971 Bingöl event (Figure 4b). Similarly, 
the extent of the Elazığ rupture well overlays with a highly coupled portion of the EAF, and it may have 
filled a possible gap between the 1893/1905 earthquakes and the 1874 sequence (Duman & Emre, 2013; 
Melgar et al., 2020).

We compare the seismic moment accumulated since the possible last historic rupture of the Pütürge seg-
ment (1905) with the seismic moment released during the 2020 Elazığ earthquake (Figure 4d). To do so, we 
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calculate the seismic moment for the area ruptured by the event according to our slip model, and account 
for uncertainties in ruptured area (σ = 3 km2), shear modulus (μ = 2.8 ± 0.3 101 GPa), coupling and slip 
rates (according to Bletery et al., 2020). The moment released by the 2020 event is largely greater than the 
one accumulated since 1905 (2.34 ± 0.25 ≫ 0.72 ± 0.19 1019 N m). Around 475 years (since 1646) would be 
necessary to accumulate the moment released by the Elazığ earthquake, assuming constant coupling and 
slip rates, confirming that the Pütürge segment did probably not rupture during the last historical events, 
and effectively was a seismic gap. We make the same comparison for the East Palu segment, and show that 
the moment released by the 2010 Mw 6.1 Kovancılar earthquake well matches the moment accumulated 
from the 1971 Bingöl event to 2010 (1.58 ± 0.2 ≈ 2.19 ± 0.56 1018 N m, Figure 4d), suggesting this portion of 
the EAF actually ruptured during the 1971 event, and that all of the accumulated moment has been released 
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Figure 4.  Comparison between the spatial distributions of the 2020 Elazığ earthquake rupture, historical earthquakes, highly coupled sections of the EAF, and 
seismic moment accumulated since last historical rupture in relation with seismic moment released by the most recent event. (a) Map view of two segments the 
East Anatolian Fault (black lines), overlayed with historical and recent seismicity from 1900 to January 2020 (Retrieved from AFAD, 2020; NEIC, 2020; Melgar 
et al., 2020), shallow interseismic slip deficit (Bletery et al., 2020) and our assumed fault trace for the 2020 Elazığ event (thick black line). (b) Possible rupture 
extents for the four most recent Mw > 6.5 earthquakes that struck the mapped segments of the EAF before the Elazığ event, inferred from Ambraseys (1989) 
and Hubert-Ferrari et al. (2020). Red stars denote the locations of the mainshock and aftershock of the 1874 sequence (Ambraseys, 1989). Fault segments of the 
central EAF are indicated, from Duman and Emre (2013). (c) Depth extent of the slip amplitude inferred for the 2020 Elazığ event (Figure 3), along with the 
highly coupled sections of the EAF between 2003 and 2010 (Bletery et al., 2020), and the possible extent of the 2010 Mw 6.1 Kovancılar earthquake estimated 
from the spatial coverage of aftershocks and basic scaling laws (Tan et al., 2011; Wells & Coppersmith, 1994), as well as historical and recent seismicity from 
1900 to January 2020. (d) For highly coupled portion of each segment, comparison of PDFs of accumulated seismic moment since last historical rupture (in 
purple), with the seismic moment (M0) of last recent earthquakes, i.e., the 2020 Elazığ (red) or 2010 Kovancılar (orange) events. For the Pütürge segment, the 
PDF and mean of accumulated seismic moment since the time needed to accumulate the Elazığ event M0 are shown in gray, and the PDFs of the Elazığ M0 are 
derived from our preferred slip model (red), with a version accounting for uncertainties in the shear modulus (μ = 2.8 ± 0.3 101 GPa, light red).

(a)

(b)

(c)

(d)
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at the time of the Kovancılar earthquake. Since 2010, the seismic moment of the East Palu segment likely 
accumulated again to reach 4.48 ± 0.5 1017 N m, which corresponds to a Mw ≈ 5.73

Although the portions of the EAF that have been affected by the Elazığ and Kovancılar events show seismic 
activity in the 20 years preceding these events, the West Palu segment is characterized by relatively low 
seismic activity (Figure 4). Together with the low slip deficit at depth (or shallow 5 km locking depth, Cav-
alié & Jónsson, 2014; Bletery et al., 2020), the lack of seismicity might suggest that the West Palu segment 
is creeping. However, this segment also shows large interseismic slip deficit in its shallow portion (<5 km 
depth), and at greater depths even larger than for the Pütürge segment (before the 2020 event, Bletery 
et al., 2020, Figure S16). Ground shaking maps derived from press reports and testimonies suggest the 1874 
sequence likely initiated at depth just west of Lake Hazar (Ambraseys, 1989), near the epicenter of a Mw ∼ 
5 earthquake that occurred in 2010. The West Palu segment is thus capable of producing large earthquakes. 
Cheloni and Akinci (2020) also suggest that the Elazığ event led to an increase in the Coulomb stress of the 
Palu segment. Altogether, these observations suggest that the West Palu segment of the central EAF is likely 
seismogenic. If it were to rupture, the moment accumulated since 1875 on the highly coupled portion is of 
7.58 ± 2.2 1018 N m (light purple in Figure 4d), and may reach 1.08 ± 0.25 1019 N m if the rupture extends 
from Lake Hazar to the city of Palu (dark purple in Figure 4d), which would correspond to a Mw ∼ 6.6 ± 0.15 
earthquake.
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