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A straightforward scheme is developed for extending the equations of motion formalism to systems
with simple open shell ground states. Equations for open shell random phase approximation (RPA)
are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital
and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular
orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are
both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are

given.

I. INTRODUCTION

In several recent papers, 2 we have described the
equations of motion method as a conceptually and compu-
tationally simple method for obtaining properties of direct
physical interest to spectroscopists, e.g,, transition en-
ergies and moments. We have applied the equations of
motion method at various levels of approximation to sev-
eral atoms and small molecules including H,, N,, CO,
H,0, CO,, H,CO, and C H,.°

For closed shell systems, the simple approximations,
i.e., the Tamm-~Dancoff approximation (TDA) and the
random phase approximation (RPA), generally give oscil-
lator strengths in good agreement with experiment. To
obtain good agreement with experimental excitation en-
ergies and to eliminate instabilities in the triplet mani-
fold a higher order scheme is required. »2 We have used
the resulting transition densities and discrete oscillator
strength distributions in these approximations to calcu-
late frequency-dependent polarizabilities and photoion-
ization cross sections from both ground? and metastable
states.® The TDA and RPA results have also been used
to calculate transition moments between excited states
in He® and N,.% In electron-molecule scattering we have
calculated Born inelastic cross sections” and discussed
how these RPA results can be used to construct an opti-
cal potential, ®

There are many systems of chemical interest with
open shell ground states, e.g., Li, O,, and many mo-
lecular ions. The purpose of this paper is to extend the
equations of motion methods to atoms and molecules with
simple open shell ground states in a clear straightfor-
ward manner. Although we limit the scope of this paper
to the open shell random phase approximation, it is easy
to extend the method to higher orders. This is the first
step in a more general equations of motion theory.

In Sec. II, we review the equations of motion method
and explain the modifications necessary for open shells.
In particular, in Sec. II the cases of one electron out-
side a closed shell in a nondegenerate orbital and two
electrons outside a closed shell in two degenerate mo-
lecular orbitals are examined and the formulas derived
for the open shell random phase approximation (OSRPA).

We report results for lithium atom and oxygen mole-~
cule in Sec. IV. For lithium, since most low-lying
transitions are 2s—np there is little change due to cor-
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relation effects between the TDA and the RPA. For the
Schumann-Runge transition in oxygen (X3Z;~ B’2}) we
calculate an oscillator strength in good agreement with
experiment., However, several excitation energies are
not consistent, indicating that a higher order scheme is
necessary to accurately predict spectra. For several
uses, e.g., discretization of the continuum, when one
requires a distribution of f values, the RPA results may
be adequate. For both Li and O, no matrix larger than
50X 50 was diagonalized.

If. THEORY

A. General theory

Consider the excitation operator O{ which when oper-
ating on the exact ground state 10) generates an excited
state |N), i.e.,

oroy=|n. (1)

Operating with the Hermitian conjugate operator O, on
the ground state gives

0,/ 0 =0. (2)

We can solve for O} and the corresponding excitation en-
ergy, w,=E, - E,, from the equations of motion®

(0|[60,, H, 011]0)=w,0|[50,, Ot]1|0}, (3)

where 60, is a variation of the operator O,, H is the
Hamiltonian, and the symmetric double commutator is
defined

2[A, B, c]=[[4, B}, cl+I[A4, [B, c]]. 4)

We can obtain the matrix element (X [W]|0) of the operator
W from

| wloy=(o[0,, wllo). (5)

Equation (3) is exact. For many electron atoms and
molecules Eq. (3) cannot be solved exactly. There are
two approximations which can be made. The excitation
operator may be expanded as sums of one-body opera-
tors, two-body operators, etc. We can approximate O}
by truncating this sum. For example, in closed-shell
systems we can restrict O} to be 2 sum over one-body
operators

OL= 2 (YpoyeClayo = ZoyeClacs) . 6)

miyt
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If 0] is expanded a sum of elementary excitation op-
erators C}, which we will call p-% excitation operators,
and the corresponding Hermitian conjugates

0= 2_(¥C} - Z:C)) Q
i
the following matrix equation results from Eq. (3):
A B Y(x))_ ( U \'4 )(Y()\))
(B* A*)(Z(A) =to _yx _ul\zm) (8)
where

A;;=(0llcy, B, c}llo),
B;,=-(0llc;, H, ¢,;]j0),
U;;=<ollcy, ¢} lloy,

vy, =-0llcy, ;o).

Matrices A and U are Hermitian, B is symmetric, and
V is antisymmetric.

A second approximation is to use a nonexact ground
state, e.g., the Hartree-Fock ground state or some sin-
gle correlated state. The use of the double commutator
on the left and the commutator on the right of Eq. (3) re-
duces the particle-hole rank of the expression, making
it less sensitive to the choice of the approximate ground
state. Hence, in many cases, a low level choice of
ground state, e.g., the restricted Hartree-Fock (RHF)
in Egs. (8) and (9) may suffice.

B. The closed shell

In the RPA O} is restricted to the simple sum in Eq.
(6) and the ground state is chosen to be the Hartree—
Fock ground state. In the TDA the Z amplitudes are as-
sumed to be identically zero, i.e., correlation is com-
pletely neglected. The TDA and RPA matrix elements
of Eq. (9) are given elsewhere. *

In general, many TDA and RPA oscillator strengths
agree well with experiment while energies do not as well,
Additionally, in the triplet manifold low-lying states
often have imaginary eigenvalues which represent in-
stabilities in the RPA. An advantage of the RPA solution
is that by including the Z amplitudes in Eq. (8), we im-
plicitly assume a correlated ground state, even though
the Hartree-Fock ground state is used throughout and
no correlation coefficients are explicitly calculated. The
RPA oscillator strengths also satisfy the Thomas~
Reiche—Kuhn summation rule,

To obtain more reliable excitation energies and to
eliminate triplet instabilities, we extend the approxima-
tions used in Eq. (3) to higher orders by explicitly in-
cluding correlation in the ground state! and by including
double excitation operators in O} in a perturbative
scheme.? The method is called the equations of motion
method including double excitation mixing [EOM (1p - 1k)
+(2p - 2h)]. We have achieved excellent experimental
agreement for both energies and oscillator strengths for
several atoms and molecules. ®

C. Open shell systems

An advantage of deriving the RPA from the equations
of motion (3) is that the extension of the method to open
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shell ground states at all levels of approximation is
straightforward. The form of the Eq. (8) for open shell
cases remains the same, however, no general expres-
sion for the submatrices A and B can be given.

For the OSTDA and OSRPA we approximate |10) by the
restricted Hartree—Fock ground state. The orthonormal
sets of molecular orbitals are obtained from the OCBSE
open shell Hartree—Fock method of Hunt, Dunning, and
Goddard.'* This method does not explicitly make use
of the off-diagonal Lagrange multipliers to maintain or-
bital orthogonality. The converged SCF orbitals satisfy!!

GlH,-HQul kY, k=1, M;i>k, (10)

where there are P molecular orbitals, M occupied, and
Rip=0if i>M, Q;=1if i=M. H, is the usual Hartree-
Fock one-electron operator for orbital ¢,, i.e., H,=fF,
where f is the fractional occupation number. If i and k
are in the same shell @;,=0.

The Hamiltonian can be written

1
3= Zhi.,.,cl.cjw— Z ViegerChchcpc (11)

irge Zi:jlklp
_ 1 t 1 Z 1 1
_Zhij(ciucja +ClBCjB)_2 Z . Vines(ClaCia +CigCyp)
i i

1 t
+§ il:_; Vijkl(czacka +CTiBCk3)(cjacla +C}5015) 5 (12)
7

where primed indices denote spin orbitals and unprimed
indices orbitals. The sums are over all orbitals, In
general we will use lower case Greek letters for pure
hole orbitals; m, n, p, ... for pure particle (virtual)
orbitals; @, and @, for the open shell orbitals; and ¢, j,
k, 1 for any of the three types. Figure 1 illustrates this
nomenclature., V;,, is defined

Vigr= f &% (D)o (2)(715) 10,(1),(2)A T, (13)

Throughout this paper real orbitals will be assumed.

Equation (10) can be used to rewrite Eq. (12) in terms
of on-diagonal Lagrange multipliers which are associated
with the orbital energies. The exact form of the Ham-
iltonian will thus depend on the open shell case.

We can use Eq. (12) and an appropriate set of p-% ex-
citation operators in Eq. (9). If |0) is approximated by
the restricted Hartree—Fock wavefunction with spin S,
Mg, the result is the open shell RPA. Equation (8) re-
duces to the standard closed shell RPA form.

unoccupied
(virtuals or particles)

q

p

n

m

Qo ———
\Q.l“_4—“'—
v o
r—— |

} partially occupied (open shell)

occupied
(closed shell or holes)

FIG. 1. Labeling of the particle—hole basis for an open shell.
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(% —i*xg):ﬁ“’*@)- (14)

For closed shell systems O} contains only one-body
operators in the TDA and RPA. We write O} as in Eq.
(7

0= 2.(Y,C} - Z,C)) )

and consider that C! operating on the open shell re-
stricted Hartree—Fock ground state generates a configu-
ration which is an eigenfunction of S and M. For open
shell ground states unless certain two-body p-k opera-
tors are included in Eq. (14) we cannot account for all
linearly independent configurations which are eigenfunc-
tions of 8% and Mg for a given orbital occupancy. These
two-body p~#% excitation operators. allow for spin-flipping
of the open shell electron in addition to a simple excita-
tion, e.g., they include p-% operators such as

T t
cmacvacnscﬂa .

A simple example will clarify this, Lithium has a
[1salsp2sa) ground state. This state is an eigenfunc-
tion of 8% and M with spin & and spin projection 5. If the
p-h operator C! operating on I1salsB2sa) excites an
electron from a 1s orbital to a 3s orbital keeping Ms=§-,
there are three possibilities

| 150 2sa 3s8), |1s82sa 3sa), |1sa2sg3sa). (16)

Linear combinations of these kets must be :ca.ken to form
configurations which are eigenfunctions of S? with eigen-
value 5. There are two independent combinations which
have spin 3. The third ket in Eq. (16) involves a change
of spin of the 2s electron from « to B. Ifs p-k excitation
operator is C'= - ¢},,¢,,4Chs4C2sa, @ two-body operator.
That is

-c;&,cmc;sscml 1sa 1sB2sa)~ | 1sa 2s83sa). (17)

All CV’s are chosen to generate orthonormal states which
are eigenfunctions of 5% and M s when operating on the re-
stricted HF ground state.

A further consideration in choosing the p-k operators
is that they be tensor operators of a given rank % in spin
space and that the Hermitian conjugate operator C; be a
tensor of the same rank and have the same transforma-
tion properties within a phase under rotation of the spin
space. Although the p-% excitation operators chosen in
this manner are not the simplest possible, they assure
a unique definition of the B matrices of the equations of
motion. We can form excited states with pure spin S’
by operating with tensor operators 7"

|TS'MYGY= D T® SM ) (kSqMg|kSS'M L),  (18)
wMg

where I' differentiates states of the same spin. A simi-
lar equation exists for T, If k is zero, the dipole al-
lowed states, then there is only one term on the right
hand side of Eq. (18) and the Clebsch—Gordon coefficient
is unity. For example, to generate the excited singlet
manifold of O, starting from the ground state triplet with
Ms=0, we can choose a set of p-k excitation operators
of rank 1 component 0 which generate pure states with
$'=0, M =0 when operating on the restricted Hartree—
Fock ground state. The Hermitian conjugate operator
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C; operating on the correlated state by Eq. (18) may not
generate pure states. Similarly C} operating on the cor-
related state may not generate pure states. We expect
therefore the excited state manifold which has a different
spin from the ground state to have slight errors in higher
order schemes due to contamination of other spin states.

We now derive explicitly the open shell random phase
approximation for two simple cases. These cases are
those of a single electron outside a closed shell in a non-
degenerate molecular orbital and of two electrons outside
a closed shell in two degenerate molecular orbitals in a
triplet state. These cases are among the most common
open shell ground states, e.g., for the first case lithium
atom and many molecular ions and for the triplet case
0,. With very slight modifications the triplet case can
be applied to the lowest triplet state of closed shell
atoms and molecules. Extensions to other open shells
are obvious.

We have derived all formulas for these open shell sys-
tems via a computer program. Starting from the input
p-h operators and Hamiltonian and by Wick’s theorem®
this program generates a set of formulas on magnetic
tape which are in turn read into a standard randon phase
approximation program. Hence, even though program-
ming considerations for each open shell case may appear
lengthy, in reality the entire procedure is automated.

In summary our OSRPA procedure is:

1. Perform an open shell SCF OCBSE!! calculation to
obtain an orthonormal basis.

2. Rewrite 3C in terms of OCBSE orbital energies,
choosing the particle states to be eigenfunctions of the
last open shell Fock operator.

3. Use the restricted Hartree~Fock ground state
|HF) as an approximation to |0} in Eq. (8).

4, Choose excitation operators O] such that the p-k
excitation operators {C!} operating on |HF) generate
configurations which are eigenfunctions of 8% and M.
Furthermore all C} are one-body operators except for
those which change the spin of the open shell electron or
which move an electron between degenerate open shell
molecular orbitals, The latter C! will be two-body
operators.

5. The C} are chosen so that C} and C; are tensor op-
erators of the same rank and hence the Hermitian conju-
gate pairs transform in the same manner under rotation
of the spin space.

Extending this method to higher orders is straightfor-
ward. The ground state 10) can be replaced by a simple
correlated ground state instead of the restricted Hartree-
Fock ground state. Correlation coefficients can be ob-
tained from perturbation theory or possibly an iterative
scheme.! This is the higher open shell random phase
approximation (HOSRPA). Double excitations can be ac-
counted for in a manner similar to closed shell meth-
ods.? Again by including spin flipping in the open shell
molecular orbitals we may have to include certain
classes of three-body and even four-body operators to
properly account for the number of independent configura-
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tions of a given spin for an orbital occupancy.

Other open shell random phase approxXimations have
been proposed for atoms and molecules. **® Qur method
is a simple and clear way to extend the RPA to open
shell systems. We differ from Armstrong? in that we
have included certain two-body tensors in our excitation
operators, we use a specific restricted Hartree—Fock
particle~hole basis, we have generalized to molecules,
and we always require

0,/ 0)=0. (19)

We differ from Jgrgensen' by choosing an approximation
to 10) that is an eigenfunction of 8%, Mg, and N, where N
is the number operator. Furthermore our C} operators
include certain two-body operators and when operating
on the ground state produce kets which are always eigen-
functions of S?, M, and N. We believe that our method
offers the most straightforward extensions to higher
orders.

D. Transition moments

For closed shell molecules, we can expand Eq. (5) in
terms of the ¥ and Z amplitudes of Eq. (8) to yield

(0| D|n) =Dy, = V2 [ 3 <Y’;,+z::,)dm} : (20)

where D is the transition moment and 4,,, is (m Irly).
For open shell cases Eq. (20) is no longer correct but
must be modified to

D= ZRi(Yi+Zi)di1 (21)

where the sum is over all possible particle-hole pairs
including those pairs with spin flip in the open shell and
electron rearrangement among degenerate open shell
orbitals. R; is a number which may be zero, For exam-
ple, for a simple doublet ground state as in Li, R; may
be 1.0, -1.0, — V2, or 0 depending on the kind of exci-

* tation.

1. OPEN SHELL OPERATORS AND MATRIX
ELEMENTS

A. Doublet

The ground state is [(closed shell) Qa). We limit the
equations to the case where @ is nondegenerate, although

TABLE I. Spherical tensor p-k operators for the doublet
| {closed shell)Qa) ground state.

Doublet excited state (S=3, Mg=3)

CL,(00) =~ chg €y — chacus

C;'Q(OO) = cjmx Coa+ C::B Cop

1Ch(00)=1/V2{clg cp+ Cho Con

ZCI,W(OO) =vZ73 (- c:fna Cug ng Coa —~ CrTnB Cuy C}’Zu Cas+3 :na Cue C})B cas
+% Chs € Cha Ca =3 Cha Cua Cha Coa =3 chs ¢y chs Cap)

Quartet excited state (§=%, Mg=})

ClL(10)=1/V3 (cl, Cpo = Chp s = Chg Cus Chia C)
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TABLE II. A matrix formulas for the doublet | (closed shell)
Qa) ground state.

Doublet matrices
1. Atonn,-n2 = O0gim2(€a — €41+ Vagaa) = Vaterse + 3V inson
2. Aoy, @-an =~ Vieplan
3. Apiay,(p2-0) = Op1p2l€py ~ €0)
4o A1yt @un =1/ V2 (= 8414V p100a = 2Vimpia + Vitping)
5. Aypionn,pr-a) =1/ V2 OpipaViiaan + 2Vhipopta — Viipiopy)

6. A1p1n1),1P2-H = Onin2 Op1pal€py — €1 + 8y 1y2

X (Vpiapen = $Vpipma) + 2Vginapiee = Viipinope
7. Ayptnty, @0 = Y372 (Vgipiao = Onura Veiaaa)
8. Azpiny, )= V3/2(Wyipiaps — Viriaanbpipy)
9. Ayprenny,1@ran = V3/ 20y 13V piprnn — p1p2Viinaae)

10. Axpinn,2pr-n = Onin0p1pal€pt = €41) + Sy 10

1
X (Vpiopaa* 3 Vpipaaa) + 8p1eaVirinana = Vatpuraps

Quartet matrices

1. Aprry,penn = Op1p2Oy1n2l€ps — €41) + 6512 (Vpiapan

1
= Vpipaa) — 2 OpipaViinem— Viipiaar:

the degenerate case is no more difficult.
tem the Hamiltonian is

K= Zii(cgacia +C¥BCiB) + Z( Z (Viwj - zvivju)
i ) v

For this sys-

1
+0(zVi00; = Viasa) - 3 ; Vikkj>(c1;acja +¢}aCss)

1
5 Z Vum(chcaa +C§50k5)(03acza +C§BCm ),  (22)

+
2 im

where

b=1 when 7 and j are in the closed shell or when i or
7 is a virtual and the other is in the closed shell,

b=2 when 7 or j is open and the other is closed,

b=0 all other cases.

&=l +Y . (20, - K,) +3(2Jq, —Kq, ), (23)
v

eQ:kQQ+E(2Jﬂu_KQu)v {24)

€ =P+ O (2T = K1) (25)

The possible excitations are shown in Fig. 2. The op-
erators are given in Table I, the A matrix elements in
Table I, and the B matrix elements in Table III. R
values from Eq. (21) are in Table IV for the doublet
(dipole allowed) manifold.

B. Open shell triplet

The ground state is [(closed shell) Q,aQ,a), where @,
and €, may be degenerate. For this case the Hamilto-
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TABLE III. B matrix formulas for the doublet
| (closed shell)Qa) ground state.

Doublet matrices

Ba-n1),(0-a2=0

Bpi-ay, (-nn = = 3 Viopiaa

Bpiay, ety =0

Biwtan,@-#p =V 2 (= Vairpia + 3 Vawoar:)
Bip1nn, w22 = V2 Vyipwia = % Vyrprirse)
By p1-n1),1P2-2y = 2V i1 2p1p2 = Virimopopt
Bop1-ay,@-nn = 5 V372 Vaiaart
By, -2y = V372 Vigipipan

@ 0 1 O U ok W N
. . . h h . . H H

Bywpt1-n1y,1p2-a2 = 0

[
(=}

« Bapionty,atprnn = — Vainopor:

Quartet matrices

1. Bpigty,po-a2 =—V2/3 Vyiprr

nian is
1
K= Z(;(CL‘C&, +C¥BCiB) +{Z:(Z(Eviwj - zvivju)
i i v

+ ;[(b ~2)Vioas = Viasal = ;%Vl”j)(cviacja +¢}aCip)

1
+§" ‘Z;l Vijkl(c;acka +CIﬂckB)(c;acla +C;5015) , (26)
J
where

b=1 when ¢ and j are each either open shell or vir-
tual,

b=0 when ¢ or j is open and the other is closed,

b=73 all other cases.

1
&=yt 22 = Kp) +5 2 (20 =Koy, @7
€q=hgq +E(2Jm -K,q) +Z(Jnn -Kaq), (28)
v 4]
€n=Rpm+ E(ZJvm - Kum) +Z(Jnm ~Kgm). (29)
v o

The various possible excitations are shown in Fig. 3.
©, and &, are not degenerate except in g, since the same
kinds of excitations are present for the lowest triplet
excited state of a closed shell molecule, Type g excita-
tions are not included if ©, and €, are not degenerate.
For excitations of type e there are three triplets and two
singlets, only one of the triplets is generated by a one-
body operator. Type f excitations are for the different

TABLE IV. R values for the doublet
| (closed shell)2a ) ground state.

Ry =1.0
Reprgy=—1.0
Ryprpn=—+v2

Ryp1y1y=0

(a) _ b) — (c) _
Q4 o —4 ? o —4
—41_‘_ ‘Ilv 182
—H— —- ——
—H— T e

FIG. 2. Possible excitations for the simple doublet. The
figure on the right includes the possibility of spin flipping of
the electron in the Qo spin orbital.

possible states for the ground state orbital occupancy if

Q, and @, are degenerate, e.g., the alA, and bIE; states
in O,.

The p-h operators and R values are given in Tables V
and VI. The p-h excitation operators for the singlet
manifold are appropriate for the M =0 ground state while
for the triplet (dipole allowed) manifold p-k excitation
operators are for the Mg=1 ground state. These for-
mulas do not apply if ©, and §, are nondegenerate or if
there is one or more additional orbitals degenerate with
Q, and Q,, e.g., carbon atom. However, these cases
involve only minor modifications and are no more diffi-
cult, The formula list for the A and B matrices is
lengthy and is not included. The formulas are available
upon request from the authors.

IV. APPLICATIONS
A. Lithium

Lithium atom provides the simplest case for the dou-
blet open shell formulation of Sec. III. The basis set
used consists of 10s and 8 contracted Gaussian func-
tions. The results for this calculation along with experi-
mental and Hartree-Fock results are given in Table VII.

Since the low-lying transitions in Li principally are
2s—ns, np there is little change in the correlation en-
ergy upon excitation. Hence, the TDA and RPA results
are almost identical to three figure accuracy. This
agrees with the Hartree-Fock calculations of Goddard!*
where no correlation effects are included. The TDA and
RPA energies and oscillator strengths agree well with
experiment.

The Thomas—Reiche—Kuhn sum rule, i.e.,

(@ b () (@) () ) @

Qo4 o4 Qo4 Qo+ Q4 Q Qo+

Q4 0,4 Q+— ot Q4 2 Q4
b n H— H— 4 H— 4
% J'J 4 4 41 4‘ %7

FIG. 3. Possible excitations of the triplet | (closed shell)
Q10Q,0y ground state. e includes possible spin flipping in the
open shell. fincludes different open shell states for the same
orbital occupancy if Q; and 2, are degenerate. g is included
only for degenerate @ and ,.
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TABLE V. Spherical tensor p-h operators for the triplet
| (closed shell)2;£2,) ground state. @, and Q4 are degenerate.

Triplet excited states, | {(closed shell}) 0,0 ) ground state

a. C};lv(OO): —c}zlacm "CTQ18 c
b. Chy(00)=clncuy +chypcis

C. Chiyl00)=chy Cayn + Chs Cays

d. CLQI(OO) ==cly Cae -cla Cas
e. 1Ch,(00)=1/v2(ch, cp+chgcre)

f. ZCInv(Oo) = %((Cjnucvﬁcaga + cjnﬁcmcazacﬂgB + C:;w CVBCEHBCQM

+ CInB Cug Calucﬂlﬂ) +3(= Cjna CraCnqeBCO98
- c;uBchcz'lzacaza + Cjna Cug C¥22a + C;B Cyg CJS(I2B CQZB)
+ (= cIna Cya C}ZIB e c:rnﬂ Cug Cgﬁa Coia
+ CIna Cya C}Ma Coiat C:,.acvac}ziscms))

3CH00) = 1/V2((Ch ConchypCaga + Chs Cun chyacays
= Cfna Ci caiﬂcﬂlm'. CLB Cya 0}3111 0018)
+3(= c:na Cue C‘S-lze €QB CIM‘ Cug ngza Qo
+ C:na Cpa, C}Zm CQga * cInB Cug c}lzd CQQB)
- %(— chna Cva C}MB Cap— C;nB 7] 0}2101 CQ4a
+ c:mx Cug CI)W Coqa * ctnﬂ Cu CEIB 6918))

8. 4Ch(00)=1/V2(Chy cus chp Cap + Cha € Chia Cas

+ C:na Cua C}zla Caga C:nB CVBCB1B Ca,8+ C:not €8 Cazﬁcﬂia
+ o Oy Chigy €248+ Chuar v Che Cagar + Chs Cups Chyp ca,p)

5Cml00) = 1/V2(chy Cup chys Cage + Chs Cra Chya Cas
+ Cha Cua 6‘5104 Caga + Chs Cuﬂc}zlﬂ Cazs = Cha Cup C}zzs €

- ;rnB Cuva C}-lza €a8 = CInoz Coa Cg)za CQa InB Cu8 C}ZZB cﬂié
Singlet excited states, |(closed shell) %yoh ‘8}252' o oz) ground state

a. C}zi,,(lo)=c},1a Con —c;'mc,,s
b, Ch,(10)=—chyg cpy +chys s
c. 0;92(10) =clg Cap— A Cag
d. Cho,(10)=cly cq,a —Chscags

+ = I 1 T T 1
e. 9Cp(10)= 1/\[6(011.8 CuB €98 €8 ~ Cmo Coex €Q20™ Cmar CuB €098 CRg
\] I A\ 1 I
+Cpmpa CuaCQoa CQ98 t Crug Ci8 Q8 = CIM! Cyx Cgla o
¥ 1 I
~ Cma CuBCQ48 Cqa + CInB Cva COya CQ1B)
1 1 1
3Cm(10)=1/2v2 (chscyp o Caga — cha cus chys cays
A 1 \y
* Cma Coe €Oy €Q4a ™ Cmar Co ch 8Cq B"C‘LBCVBCB Cq
1 1 1/ 200780

1 1 T 1 ¥ 1
+ Coug €u €08 €048 = Cmaex Cvex Cger €Ay T Cmas Cue €298 C2g)

1
f. 1011291(10) = 3(chs Caga chia Cass ~ chys capchis Ca8

+

+Coa Cam C&a CQya — c})yx Caq8 c}liﬂ Coya

- CBZB Qe C}zza Cagt 0525 a8 0525 a8

- 05201 Qo C}zza CQoa ™ C}lzm €8 Cg}gﬂ cﬂza)
2Chy0(10) = 3(ch g Casy chye Ca s = chig o b cass

t I A5 i
€90 Cag €Q1ofRia ~ CR1a Com €Q8C04a
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TABLE V (Continued)

Singlet excited states, |(closed shell) ol ﬁ‘};—ﬂ B oz) ground state

+ CBZB Coqo c}‘)za Cagp = CBZB Cos 0525 CQq8
+ 015:2201 Cota Czlza Coga — 0}2204 Coq8 0}228 Cﬂza)
g. 4Ch(10)=1/2V2 (chg ey chyg cqp~clacug chia Cau
+ Cna Con 0}215 €8~ Cha Cun C}zla Cogat € Cup CBZB €8
- :nB Cu8 c})gacﬂia— C:n,otcva CTQez'B CaB Cfna Cuva C}zzacma)
5100 =1/2 V2 (el gc 50 g Cayp = Chp Cup Chya Coya
+ C;rna Coa 6}213 Cap— Cjna Cro, C}ZW CQga — C;:B CVBC}ZzB cas

1 T + t + t
*+ Cont o8 COp €0y ™ Crner Cvae €098 €018+ Cmar Cua €02y O34}

S(0)=2_ fon (30)
A

in the TDA and RPA are 3.03 and 2, 83, respectively.

The exact value is of course 3. The frequency indepen-

dent polarizability S(~ 2) = Z(f,,/w?,) is 169aj and 170a}

in the TDA and RPA, respectively, compared to the vari-

ational estimate of Stacey and Dalgarno'® of 163, 1a3.

The results for Li are in good agreement with experi-
ment primarily because the low-lying lithium atom tran-
sitions involve predominantly 2s—ns, np transitions.
The orbital energy of the 1s electrons is —2.478 a.u.
and the 2s electron — 0.196 a.u. For cases where there
are several valence electrons in addition to the open
shell electron, e.g., H,CO*, the TDA and RPA results
will differ and agreement with experiment will not in
general be as good. As in the closed shell cases,  high-
er order schemes should give close experimental agree-
ment,

We have also done an additional calculation where only
one-body p-k operators are included in the excitation
operator, i.e., formulas (7)-(10) in Tables II and IIT
are set equal to zero. The resulting TDA and RPA re-
sults are identical to those of Table VII. This is be-
cause the two-body p-h excitation operators describe
excitations from the closed (1s) shell and hence are
relatively unimportant.

Bl 02

The ground state Hartree—Fock orbital occupancy of
0O, is

TABLE VI. R values for the triplet
| (closed shell)Q4aQ,0) ground state.

Ruon==1.0
Rapran=1.0

Rep1an=1.0
Repron==—1.0
Rytp1a1y =2

Ryp1-un=0.0
R3prunn=0.0
Rywp1-a1y=0.0
R5p1y1y=0.0
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TABLE VII. OSTDA and OSRPA results for Li. Basis set is
[10s 8pl.

Exp* HF® TDA RPA

AE Exp® AE AE TDA AE RPA

State ev) f (eV) ev)  f evy  f

22p 1s%2p 1.85  0.753 1.84 1,83 0.758 1.83  0.75%
3% 1s%3s 3,37 3.33 3,383 3.33 ..
3P 1s%sp 3.84  0.006 3.80  3.80  0.004 3,80 0.004
4% 1s%4s 1,34 1,30 1,30
4P 1s%4p 1.52  0.005 1,50 0.003 1.50 0,004

*Atomic Energy Levels, compiled by C. E. Moore, National
Bureauof Standards, Circular No. 467 (U. S. Government
Printing Office, Washington, D.C., 1947).

®Compiled by T. C. Caves and A. Dalgarno, J. Quant. Spec-
trosc. Radiat. Transfer 12, 1539 (1972).

°Reference 14.

(10,)%(10,%(20,)%(20,%(30 (17, (17, P lm 17,

leading to %Z;, 'A,, and !Z} states. °Z; is the ground
state,

The basis set is the {4s 3p) set of contracted Gaussians
of Dunning, *® All calculations were done at the ground
state experimental geometry of 1.207 A. The TDA and
RPA results for low-lying transitions are given in Table
OI. Columns 7 and 8 are RPA results where no two-body
terms were included. No matrix larger than 50X 50 was
diagonalized.

Even though there are large discrepancies between
these results and the results of large CI calculations and
experiment, there are several interesting features.
Most striking is the excellent agreement of the transition
moment of the Schumann~Runge transition X°Z;~ B2
regardless of approximation. Experiment gives 0.193.!7
For the other allowed transition, X*Z;~%1,, the calcu-
lated transition moment is very small and the excitation
energy is 10.58 eV. Experimentally this transition may
have been observed at 9. 97 or 10.29 eV.!® The potential
curve may be theoretically dissociative. 1°

4867

Both the triplet and singlet manifolds can give insta-
bilities (imaginary solutions). We show in the appendix
that since Brillouin’s theorem is not satisfied for re-
stricted Hartree~Fock ground states, instabilities do
not necessarily imply that there is another approxima-
tion to the ground state, perhaps of broken symmetry,
which lies below the approximate ground state used here.
In fact, instabilities imply nothing about the ground state
and may occur for an excited state of any spin multi-
plicity.

For most of the other transitions both the TDA and
RPA results are low, e.g., C°A,, A’S:, c¢'Z;. This
indicates that we are describing the excited state much
better than the ground state. This could be easily cor-
rected by extending the RPA to higher orders. In the
HRPA! the ground state correlation coefficients are cal-
culated explicitly. Inclusion of double excitation type
operators in the closed shell EOM then gives excitation
energies in general excellent experimental agreement.?3

A simpler procedure that will improve excitation ener-
gies is a multiconfigurational random phase approxima-
tion approach.®® In this procedure after a RHF calcula-
tion is done on the ground state, a limited number of
correlation coefficients are calculated explicitly by a
small configuration interaction calculation. Excitations
can be from or to the correlated orbitals in addition to
ordinary excitations from the strictly closed shell con-
figuration.?! For example in ethylene we could assume
the ground state to be approximately

Tf* 7.['*>
T 7/

K, and K, are determined from a 2x 2 CI calculation. In
addition to excitations from the HF ground state there
can be excitations from the 7* orbitals and to the 7 or-
bitals. The MCRPA can also be used for extending ex-
cited state potential curves to large internuclear dis-
tances.

The MCRPA or HRPA approach is necessary in O,

| 0y~ K,| HF) + K, (31)

TABLE VIII. Low lying transitions in O,.
TDA RPA RPA RPA AE
Principal AE TDA AE RPA (one-body) (one-body) (eV)
State transition (eV) f (eV) f AE(eV) f C1 Expd
cda, 1m—1m, 3.91 a a 6.41° 6.1
A’zy img—1m 4.05 a a 6.54® 6.1
3115 30, —~ 17, 6.42 5.74 6.37 8. 20°
Bz, 1m,—~17, 7.67  0.207 5.81 0.196 6.26 0.201 9.51®* 8.3
my 1m,—~3%,  10.80 0,0003 10.58 0.001 10.92 0.0006 11.34°  9.97 or
, 10. 29
ala, 0.72 0.59 0.98
blz} 2.15 2.09 1.63
clsy 1m—1m, 3.64 a a 6.19°* 6.1
m, 30— 1n 8.19 7.74 8.40 9.65°
A Im—lm 10,11 9.71 12.81 14.53°
n, 1m,—30, 12.74 12,57 12.93 16. 36°

*RPA instability.

bReference 22.

°H. Schaefer and F. Harris, J. Chem. Phys. 48, 4946 (1968).
9Reference 18.
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for this basis set. This can be seen by examining the A
and B matrices for °Z; states. The smallest on-diagonal
elements for the A matrix is 0. 310 a.u. for 7,~ 7, tran-
sitions. The largest elements in the B matrix are off
diagonal and are 0. 165 and 0.172. They correspond to
deexcitations from the (17,)%(17,)* and (17,)*(17,)*(30,

~ 30,) components of the ground state respectively. We
have found for closed shell RPA calculations that when B
matrix elements are of similar magnitude as the on-
diagonal A matrix elements the RPA approximation be-
gins to break down. Morokuma and Konishi?® in large
scale CI calculations report a contribution to the X°%;
ground state of 1.5% for configuration (11r,‘)2(17rt,,)4 and
2.0% for (17,)%(17,)%(30,~ 30,) states.

The discrepancies between the RPA including only one-
body p-H operators (columns 7 and 8) and the RPA with
open shell spin flip operators (columns 5 and 8) indicate
that especially for excitation energies certain classes of
two-body operators are important and should be included

S(0) for the TDA is 7.19 and 5. 79 for the RPA. o,
the perpendicular component of the frequency independent
polarizability, is 2.78a} in the TDA and 2. 714} in the
RPA. a,, the parallel component, is 18,663 in the TDA
and 21.5@} in the RPA. Langhoff®® gives the perpendic-
ular csomponent as 8.17a3 and the parallel component as
15. 5a,.

V. CONCLUSIONS

We have derived an open shell random phase approxi-
mation starting from a restricted Hartree—Fock ground
state. Using an equations of motion approach, we choose
p-h excitation operators which are one-body and certain
types of two-body spherical tensors which when operating
on the ground state generate configurations which are
eigenfunctions of 5% and M 5. We have developed an auto-
mated procedure to calculate A and B matrix element
formulas of the equations of motion which are needed in
the OSTDA and OSRPA solutions for several different
open shells with little more work than for closed shells.
The matrices separated by spin and spatial symmetry
are usually no more than 50x 50,

We report results for two calculations using two dif-
ferent open shell ground states. As expected Li resulis
agree quite well with experiment. O, results do not ex-
cept for oscillator strengths. These results are due to
correlation effects manifested in the B matrix elements
that are large with respect to on-diagonal A matrix ele-
ments.

Even though for a case as complicated as Q, the OSRPA
fails to give a good description of the low-lying excita-
tion spectra, we believe that for certain purposes useful
information can be obtained from a limited calculation.
For example, in those applications where one needs all
the excitation energies and transition densities as a dis-
crete approximation to the complete spectrum the RPA
results are usually sufficient. These applications in-
clude the frequency-dependent polarizabilities and their
related applications to photoionization and photodetach-
ment cross sections and approximate optical potentials
for electron—-molecule scattering. It is clear from a

D. L. Yeager and V. McKoy: Open shell systems

comparison of the closed and open-shell RPA formula-
tions that the open-shell optical potential is not a simple
extension of the closed shell case. The resulting RPA
vectors can also be used to calculate transition moments
between excited states.® We can use the formalism to
directly calculate excitation energies starting from the
lowest triplet excited state of a closed shell system.

Furthermore, using the equations of motion, Eq. (3),
it is straightforward although somewhat tedious to extend
the method to higher orders. These ideas are being
actively investigated in this laboratory. We can expect
good agreement with experiment as with closed shell
EOM calculations.
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APPENDIX

Analogously to Thouless?! we examine instabilities in
the open shell RPA when |0) is approximated by the re-
stricted Hartree-Fock ground state.

Let IT) be a state generated by the anti-Hermitian
operator eT,

| T)=ef])

where T is single-particle-hole form with the additional
two-body operators which can flip the open shell spin and
excite. It can easily be shown?® that

Bl Ty = B +(|[H, TNy +5 ([T, B, T])+---

For closed shell systems, the Hartree-Fock variational
condition is that the energy be stationary with respect to
all single excitations, that is

(8, TI)=0.

Equation (A3) is known commonly as Brillouin’s theorem.

(A1)

. (A2)

(A3)

If Eq. (A3) holds, then for the Hartree-Fock solution
to be a true minimum

([7, 8, T])=0. (A4)

This implies that the RPA matrix is positive definite,
i.e., has only positive or zero eigenvalues and that the
RPA energy w, can never be complex. Of course, for
finite basis set expansions for closed shell Hartree-Fock
ground states we can obtain imaginary solutions of the
RPA matrix equations for triplet excited states. This
means that a state with lower energy which is not neces-
sarily an eigenfunction of S2 can be found. 28

For a restricted HF open shell ground state in general,
only a limited form of Brillouin’s theorem is satisfied,?’
that is

(1H, T]|)*0

even if T is restricted to purely one body operators.
Hence, the RPA matrix is not necessarily positive defi-
nite. Thus, instabilities in the RPA solutions do not
indicate that a lower ground state can be found. We ex-
pect for open shell RPA calculations when a restricted

(A5)
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HF ground state is used as an approximation to |0) fun-
damental instabilities in any spin manifold which cannot
be eliminated by increasing the size of the basis set but
may be only by going to higher order approximations.
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