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Appendix A: The p3-PPT condition

In this section we present, prove and discuss the p3-
PPT condition. The p3-PPT condition is the contraposi-
tive of the following statement about moments of positive
semidefinite matrices with unit trace.

Proposition 1. For every positive semidefinite matrix
X with unit trace (Tr(X) = 1) it holds that

tr(X2)2 ≤ tr(X3). (A1)

Note that Eq. (A1) resembles the following well-known
monotonicity relation among Rényi entropies (see e.g.,
Ref. [1]):

S3(ρ) ≤ S2(ρ) for Sn(ρ) = 1
1−n log2

(
tr(ρn)

)
. (A2)

However, this relation only applies to density matrices,
i.e. positive semidefinite matrices with unit trace. The
p3-PPT condition, in contrast, is designed to test the ab-
sence of positive semidefiniteness. Hence, it is crucial to
have a condition that does not break down if the matrix
in question has negative eigenvalues. Rel. (A1) (and its
direct proof provided in the next subsection) do achieve
this goal, while an argument based on monotonicity rela-
tions between Rényi entropies can break down, because
the logarithm of non-positive numbers is not properly
defined.

1. Proof of the p3-PPT condition

Let X be a Hermitian d × d matrix with eigenvalue

decomposition X =
∑d
i=1 λi|xi〉〈xi|. For p ≥ 1, we intro-
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duce the Schatten-p norms

‖X‖p =
( d∑
i=1

|λi|p
)1/p

= Tr (|X|p)1/p
,

where |X| =
√
X2 =

∑d
i=1 |λi||xi〉〈xi| denotes the

(matrix-valued) absolute value. The Schatten-p norms
encompass most widely used matrix norms in quantum
information. Concrete examples are the trace norm (p =
1), the Hilbert-Schmidt/Frobenius norm (p = 2) and the
operator/spectral norm (p =∞). Each Schatten-p norm
corresponds to the usual vector `p-norm of the vector of
eigenvalues λ = (λ1, . . . , λd)

T ∈ Rd:

‖λ‖`p =
( d∑
i=1

|λi|p
)1/p

for p ≥ 1. (A3)

Hence, Schatten-p norms inherit many desirable proper-
ties from their vector-norm counterparts. Here, we shall
use vector norm relations to derive a relation among
Schatten-p norms. It is based on Hoelder’s inequality
that relates the inner product

〈v, w〉 =

d∑
i=1

viwi for v, w ∈ Rd (A4)

to a combination of `p norms.

Fact 1 (Hoelder’s inequality for vector norms). Fix
p, q ≥ 1 such that 1/p+ 1/q = 1. Then,

|〈v, w〉| ≤
d∑
i=1

|viwi| ≤ ‖v‖`p‖w‖`q (A5)

for any v, w ∈ Rd.
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The well-known Cauchy-Schwarz inequality is a special
case of this fact. Set p = q = 1/2 to conclude

|〈v, w〉| ≤ ‖v‖`2‖w‖`2 = 〈v, v〉1/2〈w,w〉1/2. (A6)

At the heart of our proof for the p3-PPT condition is a
simple relation between Schatten-p norms of orders p =
1, 2, 3.

Lemma 1. The following norm relation holds for every
Hermitian matrix X:

‖X‖42 ≤ ‖X‖1‖X‖33
Proof. Let λ = (λ1, . . . , λd)

T be the d-dimensional vec-
tor of eigenvalues of X. Apply Hoelder’s inequality with
p = 3, q = 3/2 to the inner product of this vector of
eigenvalues with itself:

Tr(X2) = 〈λ, λ〉 ≤ ‖λ‖`3‖λ‖`2/3 = ‖X‖3‖λ‖`3/2 . (A7)

Next, we apply Cauchy-Schwarz to the remaining `3/2-
norm:

‖λ‖`3/2 =
( d∑
i=1

|λi|3/2
)2/3

=
( d∑
i=1

|λi||λi|1/2
)2/3

≤
(( d∑

i=1

|λi|2
)1/2( d∑

i=1

|λi|2/2
)1/2)2/3

=‖λ‖2/3`2
‖λ‖1/3`1

= ‖X‖2/32 ‖X‖
1/3
1 .

Inserting this relation into Eq. (A7) reveals

‖X‖22 ≤ ‖X‖2/32 ‖X‖
1/3
1 ‖X‖3

which is equivalent to the claim (take the 3rd power and
divide by ‖X‖22).

Proposition 1 is an immediate consequence of Lemma 1
and elementary properties of positive semidefinite ma-
trices. Recall that a Hermitian d × d matrix is pos-
itive semidefinite (psd) if every eigenvalue is nonnega-
tive. This in turn ensures |X| = X and, by extension,
‖X‖p = Tr(Xp)1/p for all p ≥ 1.

2. Discussion and potential generalizations

The p3-PPT condition tests the absence of positive
semidefiniteness based on moments Tr(Xp) of order p =
1, 2, 3. It is natural to wonder whether higher order mo-
ments allow the construction of more refined tests. It is
possible to show that every positive semidefinite matrix
X with unit trace must obey

tr(Xp−1)p−1 ≤ tr(Xp)p−2 for all p > 2. (A8)

As this is a direct extension of the p3-PPT condition
(p = 3), we omit the proof. Unfortunately, we found nu-
merically that these direct extensions actually produce

weaker tests for the absence of positive semidefiniteness,
i.e. there exist matrices X that violate the p3-PPT con-
dition but satisfy Rel. (A8) for higher moments p ≥ 4.
This is not completely surprising, since Rel. (A8) com-
pares (powers of) neighboring matrix moments with or-
der (p − 1) and p. As p increases, these matrix mo-
ments suppress contributions of small eigenvalues ever
more strongly. In the case of partially transposed quan-
tum states, the eigenvalues are required to sum up to
one and must be contained in the interval [−1/2, 1] [2].
Thus, the negative eigenvalues can never dominate the
spectrum and high matrix moment tests for the existence
of negative eigenvalues suffer from suppression effects.

This observation suggests that powerful tests for neg-
ative eigenvalues should involve all matrix moments
tr(Xp) up to a certain order pmax. It is useful to change
perspective in order to reason about potential improv-
ments. The p3-PPT condition checks whether the fol-
lowing inequality is true:

F3(X) = −tr(X3) + tr(X2)2 > 0. (A9)

For matrices X with unit trace, we can reinterpret the
matrix-valued function F3(X) as a sum of (identical)
degree-3 polynomials applied to all eigenvalues λ1, . . . , λd
of X. Set p2 = tr(X2) and use tr(X) =

∑d
i=1 λi = 1 to

conclude

F3(X) =− tr(X3) + 2p2tr(X2)− p2
2tr(X)

=

d∑
i=1

(
−λ3

i + 2p2λ
2
i − p2

2λi
)

=

d∑
i=1

−λi(λi − p2)2 =:

d∑
i=1

f3(λi). (A10)

Note that the polynomial

f3(x) = −x(x− p2)2 for x ∈ R (A11)

depends on p2 and, by extension, also on the matrix X.
We will come back to this aspect later. For now, we
point out that – regardless of the actual value of p2 –
this polynomial has three interesting properties:

f3(x) ≤ 0 if x > 0,
f3(0) = 0,
f3(x) > 0 if x < 0.

(A12)

These properties reflect the behavior of another well-
known function – the (negated) rectifier function (ReLU):

r(−x) = max {0,−x} =

{
0 if x ≥ 0,

|x| if x < 0.
(A13)

See Figure A1 for a visual comparison. Applying the
(negated) rectifier function to the eigenvalues of X would
recover the negativity:

N (X) =
∑
λi<0

|λi| =
d∑
i=1

r(−λi). (A14)
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FIG. A1. Comparison of f3(x) = −x(x−p2)2 with the negated
rectifier function r(−x) = max {−x, 0} for different values of
p2 in the relevant interval [−1/2, 1] [2].

Hence, it is instructive to interpret F3(X) as a polyno-
mial approximation to the (non-analytic) negativity func-
tion.

On the level of polynomials, the condition f3(x) ≤ 0
whenever x > 0 is most important. It implies that pos-
itive eigenvalues of X can never increase the value of

F3(X) =
∑d
i=1 f3(λi). In particular, F3(X) ≤ 0 when-

ever X is positive semidefinite – as stated in Proposi-
tion 1. The p3-PPT condition is sound, i.e. it has no
false positives.

Conversely, f3(x) > 0 for x < 0 implies that F3(X) can
become positive if X has negative eigenvalues. Hence,
the p3-PPT condition is not vacuous. It is capable of
detecting negative eigenvalues in many, but not all, unit-
trace matrices X.

Let us now return to the (matrix-dependent) param-
eter choice in Eq. (A11). In principle, every polynomial

of the form f
(a)
3 (x) = −x(x − a)2 with a ∈ R obeys the

important structure constraints (A12) and therefore pro-
duces a sound test for negative eigenvalues. For fixed X,
the associated matrix polynomial evaluates to

F
(a)
3 (X) = −tr(X3) + 2atr(X2)− a2tr(X). (A15)

We can optimize this expression over the parameter
a ∈ R to make the test as strong as possible. The opti-
mal choice is a] = tr(X2)/tr(X) and produces a matrix

polynomial that obeys F
(a])
3 (X) ≥ maxa∈R F

(a)
3 (X) for

X fixed. If X has also unit trace, the optimal parame-
ter becomes a] = p2 and produces the p3-PPT condition
(A9).

This construction of PPT conditions readily extends
to higher order polynomials fp(x) = apx

p + · · · a1x+ a0.
Increasing the degree p produces more expressive ansatz
functions that can approximate the (negated) rectifier
function – and its core properties – ever more accu-
rately. Viewed from this angle, it becomes apparent that
measuring more matrix moments can produce stronger

tests for detecting negative eigenvalues. However, it is
not so obvious how to choose the parameters ap, . . . , a0

“optimally”, or what “optimally” actually means in this
context. Some well-known polynomial approximations
of the rectifier function r(−x) – like Taylor expansions
of s(−x) = ln(1 + e−x) (the “softplus” function) – are
not well-suited for this task, because s(−x) > 0 even for
x > 0. This in turn would imply that the associated test
condition may not be sound. We believe that a thorough
analysis of these questions is timely and interesting, but
would go beyond the scope of this work. We intend to
address it in future research.

Appendix B: p3-PPT condition for Werner States

Werner states are bipartite quantum states in a Hilbert
space HAB = HA ⊗ HB with dimensions dA = dB ≡ d,
defined as

ρW = α

(
d+ 1

2

)−1

Π+ + (1− α)

(
d

2

)−1

Π− (B1)

with parameter α ∈ [0, 1] and Π± = 1
2 (I±Π12) pro-

jectors onto symmetric H+ and anti-symmetric H− sub-
spaces of H = H+ ⊕ H−, respectively [3]. Here, Π12 =∑d
i,j=1 |i〉 〈j| ⊗ |j〉 〈i| is the swap operator. We note that

the eigenvalues of ρW are thus given as λ+ = α
(
d+1

2

)−1

with multiplicity
(
d+1

2

)
and λ− = (1−α)

(
d
2

)−1
with mul-

tiplicity
(
d
2

)
. The reduced state ρA of qudit A is given by

ρA = TrB [ρW ] = IA/d.

Using furthermore that ΠTA
± = 1/2(∆1 ± (d ± 1)∆0)

with ∆0 = |φ+〉 〈φ+| being a projector onto the maxi-
mally entangled state and ∆1 = I−∆0 [3], we find

ρTA

W =
2α− 1

d
∆0 +

1 + d− 2α

d

∆1

d2 − 1
(B2)

with eigenvalues λ0 = (2α− 1)/d with multiplicity 1 and
λ1 = (1 + d− 2α)/d(d2 − 1) with multiplicity d2 − 1.

We note that, for any d, λ0 < 0 for 0 ≤ α < 1/2. Thus,
using the PPT condition, we find that ρW is entangled
for 0 ≤ α < 1/2. Using the explicit expression of the
eigenvalues, we can furthermore determine Tr

[
(ρTA)n

]
for any n. We find for all local dimensions d

Tr
[
(ρTA)2

]2
> Tr

[
(ρTA)3

]
for 0 ≤ α < 1

2
(B3)

Thus, for Werner states the p3-PPT condition is equiv-
alent to the full PPT condition. It can be furthermore
shown that Werner states are separable for α ≥ 1/2 [3].
Thus, for Werner states, the p3-PPT condition is a neces-
sary and sufficient condition for bipartite entanglement.
This also holds true for “isotropic” states of the form
ρ = α1/d2 + (1− α)|φ+〉〈φ+|, which are closely related.

We note that Werner states can have non-positive PT-
moments. For local dimension d > 3 there exists a pa-
rameter interval [0, α∗) such that the associated Werner
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state (B1) obeys p3 = Tr
[
(ρTA

W )3
]
< 0 for all α ∈ [0, α∗).

This highlights that the logarithm of PT-moments, ap-
pearing also in the ratio R3 = − log2(p3/Tr[ρ3]), need
not be properly defined, justifying a claim from the pre-
vious subsection. It is difficult to use entropic arguments
for reasoning about relations between (logarithmic) PT-
moments.

Finally, as shown in Ref. [4], we remark that R3 is not
an entanglement monotone. For separable Werner states
with 1/2 ≤ α < 1/2 + 1/(2d), it holds that 0 < p3 <
Tr[ρ3]. Thus, R3 = − log2(p3/Tr[ρ3]) can be greater than
zero, even for separable states. Since R3 equals zero for
all product states, it is not an entanglement monotone
[5].

Appendix C: Comparison of entanglement
conditions for quench dynamics

In this section, we compare the diagnostic power of the
full PPT-condition, the p3-PPT condition and a condi-
tion based on purities of nested subsystems to detect bi-
partite entanglement of mixed states. Specifically, given
a reduced density matrix ρAB in a bipartite system AB,
we consider:

1. the PPT-condition detecting bipartite entangle-
ment between A and B for a strictly positive neg-
ativity N (ρAB) =

∑
λ<0 |λ| > 0, with λ the spec-

trum of ρTA

AB [5].

2. the p3-PPT condition detecting bipartite entangle-
ment between A and B for 1− p3/p

2
2 > 0.

3. a condition based on the purity of nested subsys-
tems detecting bipartite entanglement between A
and B for Tr[ρ2

A] < Tr[ρ2
AB ] with ρA = TrB [ρAB ]

the reduced density matrix of subsystem A [5].

The latter ’purity’ condition was used in previous exper-
imental works measuring the second Rényi entropy [6–9]
to reveal bipartite entanglement of weakly mixed states.

To test these conditions, we consider here, as an exam-
ple, quantum states generated via quench dynamics in
interacting spin models. Specifically, we study quenches
in the XY -model with long-range interactions, as defined
in Eq. (6) of the main text, in a total system with N = 10
spins. The initial separable product state is a Néel state
|↑↓↑↓ . . .〉.

As shown in Fig. C1, the negativity (red lines) de-
tects bipartite entanglement for all partitions sizes and
all times after the quench. The p3-PPT condition (blue
lines) performs similar for the partitions considered in
panel (b) and (c) and is thus able to detect bipartite
entanglement for highly mixed states ρAB whose purity
decreases to 0.3 for the panel (b) at late times. The
p3-PPT conditions fails however to detect the entangle-
ment for the close-to completely mixed states of small
partitions |AB| = 4 at late times, displayed in panel (a).

−1.0

−0.5

0.0

0.5
A = [4, 5], B = [6, 7]

−1

0

1
A = [3, 4, 5], B = [6, 7, 8]

0 (0.0) 1.25 (0.5) 2.5 (1.0) 3.75 (1.6) 5 (2.1)
t[ms] (J0t)

0

1

2

A = [2, 3, 4, 5], B = [6, 7, 8, 9]

N (ρAB) 1 − p3/p
2
2 1−Tr[ρ2

A]/Tr[ρ2
AB]

a)

b)

c)

FIG. C1. Comparing conditions for bipartite entanglement
between two subsystems A and B for states generated with
quench dynamics governed by HXY arising from an initial
Néel state in a total system with N = 10 spins. Modeling
the experiment of Ref. [9], we chose J0 = 420s−1, α = 1.24,
while other parameter choices lead to similar results. In all
panels, and for all quantities, a strictly positive value signals
bipartite entanglement.

This can be attributed to the fact that the p3-PPT con-
dition only relies on low order PT-moments. The purity
condition (green lines) is only useful for the detection
of entanglement for large partitions AB with |AB| = 8
(panel (c)). These remain weakly mixed during the entire
time evolution, since the total system of N = 10 spins is
described here by a pure state.

Appendix D: Error bars for PT moment predictions

Let us first review the data acquisition procedure. To
obtain meaningful information about an N -qubit state
ρ, we first perform a collection of random single qubit
rotations: ρ 7→ uρu†, where u = u1 ⊗ · · · ⊗ uN and each
ui is chosen from a unitary 3-design. Subsequently, we
perform computational basis measurements and store the
outcome:

ρ 7→ uρu† 7→ |k1, . . . , kN 〉. (D1)

Here, k1, . . . , kN ∈ {0, 1} denote the measurement out-
comes on qubits 1, . . . , N . As shown in [10–12], the out-
come of this measurement provides a (single-shot) esti-
mate for the unknown state:

ρ̂ =

N⊗
i=1

[
3(ui)

† |ki〉 〈ki|ui − I2
]

(D2)

This tensor product is a random matrix – the unitaries
u(i), as well as the observed outcomes ki are random –
that produces the true underlying state in expectation:

E [ρ̂] = ρ. (D3)



5

Thus, the result of a (randomly selected) single-shot mea-
surement provides a classical snapshot (D2) that repro-
duces the true underlying state in expectation. This de-
sirable feature extends to density matrices of subsystems.
Let AB ⊂ {1, . . . , N} be a subset of |AB| ≤ N qubits
and let ρAB = Tr¬AB(ρ) the associated reduced density
matrix. Then,

ρ̂AB = Tr¬AB(ρ̂) =
⊗
i∈AB

[
3(ui)

† |ki〉 〈ki|ui − I2
]

(D4)

obeys E [ρ̂AB ] = ρAB .

This feature can be used to estimate linear properties
of the subsystem in question: o = Tr (OρAB). Perform
M independent repetitions of the data acquisition proce-
dure and use them to create a collection of (independent)

snapshots ρ̂
(1)
AB , . . . , ρ̂

(M)
AB – a “classical shadow” [12] – and

form the empirical average of subsystem properties:

ô = 1
M

M∑
r=1

Tr
(
Oρ̂

(r)
AB

)
. (D5)

Convergence to the target value o = E [ô] = Tr(OρAB)
is controlled by the variance. Chebyshev’s inequality as-
serts

Pr [|ô− o| ≥ ε] ≤ Var [ô]

ε2
=

Var [Tr(OAB ρ̂AB)]

Mε2
. (D6)

The remaining (single-shot) variance obeys the follow-
ing useful relation.

Fact 2 (Proposition 3 in [12]). Fix a subsystem AB and a
linear function Tr(OρAB). Then, the single-shot variance
associated with ρ̂AB defined in Eq. (D4) obeys

Var [Tr (Oρ̂AB)] ≤ 2|AB|Tr
(
O2
)
. (D7)

This inequality is true for any underlying state ρ and
bounds the variance in terms of the subsystem dimension
dA = 2|AB| and the Hilbert-Schmidt norm (squared) of
the observable O. Thus, roughly M ≈ 2|AB|Tr(O2)/ε2

measurement repetitions are necessary to predict o up to
accuracy ε.

1. Predicting quadratic properties (p2)

The formalism introduced above readily extends to
predictions of higher order polynomials. The special
case of quadratic functions has already been addressed in
Refs. [9, 10, 13, 14], and Ref. [12] (for the present formal-
ism). The key idea is to represent a quadratic function
in ρ as a linear function on the tensor product ρ⊗ ρ:

o = Tr (OρAB ⊗ ρAB) . (D8)

This function can be approximated by replacing ρ ⊗ ρ
with a symmetric tensor product of two distinct snap-
shots ρ̂(i), ρ̂(j) (i 6= j):

1
2!

∑
π∈S2

ρ̂
(π(i))
AB ⊗ ρ̂(π(j))

AB

= 1
2

(
ρ̂

(i)
AB ⊗ ρ̂

(j)
AB + ρ̂

(j)
AB ⊗ ρ̂

(i)
AB

)
. (D9)

There are
(
M
2

)
different ways of combining a collection

of M snapshots ρ̂(1), . . . , ρ̂(M) in this fashion. We can
predict o = Tr(OρAB ⊗ ρAB) by forming the empirical
average over all of them:

ô =

(
M

2

)−1∑
i<j

Tr

(
O 1

2!

∑
π∈S2

ρ̂
(π(i))
AB ⊗ ρ̂(π(j))

AB

)

=

(
M

2

)−1∑
i<j

Tr
(
O(s)ρ̂

(i)
AB ⊗ ρ̂

(j)
AB

)
. (D10)

Here, we have implicitly defined the symmetrization O(s)

of the original target function O. This ansatz is a special
case of Hoeffding’s U-statistics estimator [15]. Averaging
boosts convergence to the desired expectation E [ô] = o
and the speed of convergence is controlled by the variance
(D6).

Restriction to subsystems is also possible. Suppose
that O only acts nontrivially on a subsystem AB of both
state copies. Then,

ô =

(
M

2

)−1∑
i<j

Tr
(
O(s)ρ̂

(i)
AB ⊗ ρ̂

(j)
AB

)
(D11)

and the effective problem dimension becomes d2
AB =

4|AB|. The tensor product structure (D2) of the indi-
vidual snapshots allows for generalizing linear variance

bounds to this setting. Simply view ρ̂
(i)
AB ⊗ ρ̂

(j)
AB as a sin-

gle snapshot of the quantum state ρAB ⊗ ρAB . Fact 2
then ensures

Var
[
Tr
(
O(s)ρ̂

(i)
AB ⊗ ρ̂

(j)
AB

)]
≤ 4|AB|Tr

(
O2

(s)

)
. (D12)

The full variance of ô is controlled in part by this relation,
but also features linear variance terms [12, App. 6.A].
Rather than reviewing this argument in full generality,
let us focus on the task at hand: computing the variance
associated with predicting the PT-moment of order two.
Fix a bipartite subsystem AB of interest and rewrite p2

as

p2 = Tr
(

(ρ
(TA)
AB )2

)
= Tr

(
ρ2
AB

)
= Tr (ΠABρAB ⊗ ρAB) . (D13)

Here, ΠAB denotes the swap operator that permutes the
entire subsystems AB within two copies of the global
system. We refer to Table I below for a visual deriva-
tion of this well-known relation. The swap operator is
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symmetric under permuting tensor factors, Hermitian

(Π†AB = ΠAB) and orthogonal (Π2
AB = IAB). These

properties ensure that the associated general estimator
(D11) can be simplified considerably:

p̂2 =

(
M

2

)−1∑
i<j

Tr
(

ΠAB ρ̂
(i)
AB ⊗ ρ̂

(j)
AB

)
=

(
M

2

)−1∑
i<j

Tr
(
ρ̂

(i)
AB ρ̂

(j)
AB

)
. (D14)

By construction, E [p̂2] = p2 = Tr(ρ2) and the speed of
convergence is controlled by the variance. This variance
decomposes into a linear and a quadratic part. We ex-
pand the definition of the variance:

Var [p̂2] = E
[
(p̂2 − E[p̂2])2

]
= E

[
p̂2

2

]
− E [p̂2]

2
(D15)

=

(
M

2

)−2∑
i<j

∑
k<l

(
Tr
(
ρ̂

(i)
AB ρ̂

(j)
AB

)
Tr
(
ρ̂

(k)
AB ρ̂

(l)
AB

)
− Tr(ρ2

AB)2
)
.

The size and nature of each contribution depends on the
relation between the indices i, j, k, l [15]:

1. all indices are distinct: distinct indices label in-
dependent snapshots. In this case the expec-
tation value factorizes completely and produces

E
[
Tr(ρ̂

(i)
AB ρ̂

(j)
AB)Tr(ρ̂

(k)
AB ρ̂

(l)
AB)

]
= Tr(ρ2

AB)2. This is

completely offset by the subtraction of the expecta-
tion value squared. Hence, terms where all indices
are distinct do not contribute to the variance.

2. exactly two indices coincide: In this case,
the expectation value partly factorizes, e.g.

E
[
Tr(ρ̂

(i)
AB ρ̂

(j)
AB)Tr(ρ̂

(k)
AB ρ̂

(j)
AB)

]
= E

[
Tr(ρAB ρ̂

(j)
AB)2

]
for i 6= k and j = l. Such index combinations
produce a linear variance term Var [Tr(Oρ̂)] with

O = ρAB . The entire sum contains
(
M
2

)(
2
1

)(
M−2
2−1

)
=(

M
2

)
2(M − 2) terms of this form.

3. two pairs of indices coincide: there are(
M
2

)(
2
2

)(
M−2
2−2

)
=
(
M
2

)
contributions of this form

and each of them produces a quadratic variance
Var [Tr (Oρ̂AB ⊗ ρ̂′AB)] with O = ΠAB (swap).

We conclude that the variance of p̂2 decomposes into lin-
ear and quadratic terms. These can be controlled via
Rel. (D7) and Rel. (D12), respectively:

Var [p̂2] =

(
M

2

)−1 (
2(M − 2)Var [Tr(ρAB ρ̂AB)]

+Var
[
Tr(ΠAB ρ̂

(1)
AB ⊗ ρ̂

(2)
AB)

])
≤4(M − 2)2|AB|

M(M − 1)
Tr
(
ρ2
AB

)
+

2× 4|AB|

M(M − 1)
Tr
(
Π2
AB

)
≤4

(
2|AB|p2

M

)
+ 4

(
21.5|AB|

M

)2

. (D16)

Chebyshev’s inequality (D6) allows us to translate this
insight into an error bound.

Lemma 2 (Error bound for estimating p2). Fix a subsys-
tem AB of interest and suppose that we wish to estimate
p2 = Tr

(
(ρTA

AB)2
)
. For ε, δ > 0, a total of

M ≥ 8 max

{
2|AB|p2

ε2δ
,

21.5|AB|

ε
√
δ

}
(D17)

snapshots suffice to ensure that the estimator (D14) obeys
|p̂2 − p2| ≤ ε with probability at least 1− δ.

It is worthwhile to briefly discuss this two-pronged er-
ror bound. Asymptotically, i.e. for M →∞, the approx-
imation error decays at a rate proportional to 1/

√
M .

This is the expected asymptotic decay rate for an estima-
tion procedure that relies on empirical averaging (Monte
Carlo). The actual rate is also multiplicative, i.e. the ap-
proximation error is proportional to the target p2. In the
practically more relevant, non-asymptotic setting, things
can look strikingly different. For small and moderate
sample sizes M , the variance bound (D16) is dominated
by the next-to-leading order term (21.5|AB| > 2|AB|p2,
especially if p2 is small). Lemma 2 captures this discrep-
ancy and heralds an error decay rate proportional to 1/M
in this regime.

Finally, we point out that the dependence on δ in
Eq. (D17) can be considerably improved by using me-
dian of means estimation [12]: split the total data into
equally sized chunks, construct independent estimators
and take their median. For this procedure, a sampling
rate proportional to log(1/δ) suffices. Moreover, median
of means is much more robust towards outlier corruption
and allows for using the same data to predict purities
of many different subsystems simultaneously. This, how-
ever, comes at the price of somewhat larger constants in
the error bound (D17) and heralds a tradeoff. In sta-
tistical terms, median of means estimation dramatically
increases confidence levels (1 − δ) at the cost of slightly
larger error bars (confidence intervals). This tradeoff be-
comes advantageous when one attempts to predict very
many properties from a single data set.

2. Predicting cubic properties (p3 and Tr(ρ3AB))

Cubic properties can be predicted in much the same
fashion as quadratic properties [12]. Write o =
Tr (OρAB ⊗ ρAB ⊗ ρAB) and approximate ρ ⊗ ρ ⊗ ρ by
a symmetric tensor product of three distinct snapshots

ρ̂
(i)
AB , ρ̂

(j)
AB , ρ̂

(k)
AB :

1
3!

∑
π∈S3

ρ̂
(π(i))
AB ⊗ ρ̂(π(j))

AB ⊗ ρ̂(π(k))
AB . (D18)

There are
(
M
3

)
different ways of combining a collection of

M (independent) snapshots ρ̂
(1)
AB , . . . , ρ̂

(M)
AB in this fash-

ion. We estimate the cubic function o by averaging over
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all of them (U-statistics [15]):

ô =

(
M

3

)−1 ∑
i<j<k

Tr

(
O 1

3!

∑
π∈S3

ρ̂(π(i)) ⊗ ρ̂(π(j)) ⊗ ρ̂(π(k))

)
.

(D19)

Once more, the variance controls the rate of convergence
to the desired target value E [ô] = Tr (Oρ⊗ ρ⊗ ρ). This
variance decomposes into a linear, a quadratic and a cu-
bic part. The argument is a straightforward generaliza-
tion of the analysis from the previous subsection. Rather
than repeating the steps in full generality, we directly fo-
cus on the 3rd order PT-moment p3 of a subsystem AB:

p3 = Tr
(

(ρTA

AB)3
)
. (D20)

For notational simplicity, we suppress the subscript AB
indicating the subsystem of interest and label the shad-

ows by lower-case indices: ρ̂
(i)
AB 7→ ρ̂i for i = 1, . . . ,M .

Due to the cyclicity of the trace, the U-statistics estima-
tor simplifies to(
M

3

)
p̂3 =

∑
i<j<k

Tr

(
1
3!

∑
π∈S3

ρ̂TA

π(i)ρ̂
TA

π(j)ρ̂
TA

π(k)

)
(D21)

=
∑
i<j<k

1
2

(
Tr
(
ρ̂TA
i ρ̂TA

j ρ̂TA

k

)
+ Tr

(
ρ̂TA
j ρ̂TA

i ρ̂TA

k

))
,

where we have moved the normalization factor
(
M
3

)−1

to the left hand side in order to to increase readabil-
ity. When computing the variance, we need to consider
two sums over triples of distinct indices in {1, . . . ,M}.
If all indices are distinct, the overall contribution van-
ishes. Otherwise the contribution depends on the number
c ∈ {1, 2, 3} of indices the triples have in common. The
number of distinct choices for two triples with exactly c
integers in common is

(
M
3

)(
3
c

)(
M−3
3−c

)
and we infer(

M

3

)
Var [p̂3]

=

(
3

1

)(
M − 3

2

)
Var

[
Tr
(

(ρTA)2ρ̂TA
1

)]
+

(
3

2

)(
M − 3

1

)
Var

[
Tr
(
ρTA 1

2

(
ρ̂TA

1 ρTA
2 + ρ̂TA

2 ρ̂TA
1

))]
+Var

[
1
2

(
Tr
(
ρ̂TA

1 ρ̂TA
2 ρ̂TA

3

)
+ Tr

(
ρ̂TA

2 ρ̂TA
1 ρ̂TA

3

))]
≤
(
M

3

)(
9

M
L+

18

M2
Q+

12

M3
C

)
. (D22)

Here, ρ̂1, ρ̂2, ρ̂3 denote independent, random realizations
of the snapshot ρ̂ and we have introduced place-holders
for linear (L), quadratic (Q) and cubic (C) contributions,
respectively. For the task at hand, these contributions
can be bounded individually and depend on the subsys-
tem size AB:

1. linear contribution: set O = (ρTA

AB)2 for notational
brevity. We can use Tr(Oρ̂TA) = Tr(OTA ρ̂) to ab-
sorb the partial transpose in the linear function.
Rel. (D7) then ensures

L ≤ 2|AB|Tr(ρ2)2, (D23)

where we have also used Tr((OTA)2) = Tr(O2), as
well as Tr(O2) = ‖O‖22 ≤ ‖O‖21 = Tr(O)2, because
O = ρ2 is psd.

2. quadratic contribution: We can bring
1
2

(
Tr(ρTA ρ̂TA

1 ρ̂TA
2 ) + Tr(ρTA ρ̂TA

2 ρ̂TA
1

)
into the

canonical form Tr
(
Oρ̂

(1)
AB ⊗ ρ̂

(2)
AB

)
by introducing

O = 1
2 (ΠA(ρ⊗ IAB)ΠB

+ΠB(ρ⊗ IAB)ΠA) . (D24)

We refer to Table I for a visual derivation. Here,
ΠA and ΠB are permutation operators that swap
the two A- and B-systems, respectively. Rel. (D12)
then ensures

Q ≤ 22|AB|Tr
(
O2
)
≤ 23|AB|Tr(ρ2). (D25)

The final estimate follows from exploiting Π2
A =

Π2
B = IAB , as well as Tr

(
ρ2 ⊗ I2AB

)
= 2|AB|Tr(ρ2).

3. cubic contribution: We can bring the cubic func-
tion 1

2

(
Tr(ρ̂TA

1 ρ̂TA
2 ρ̂TA

3 ) + Tr(ρ̂TA
2 ρ̂TA

1 ρ̂TA
3 )
)

into the

canonical form Tr
(
Oρ̂1 ⊗ ρ̂2 ⊗ ρ̂3

)
by introducing

O = 1
2

(−→
ΠA ⊗

←−
ΠB +

−→
Π †A ⊗

←−
Π †B

)
, (D26)

see Table I below. Here,
−→
ΠA is a cyclic permuta-

tion that exchanges all A-systems in a “forward”
fashion (A1 7→ A2, A2 7→ A3, A3 7→ A1), while←−
ΠB is another cyclic permutation that exchanges
all B-systems in a “backwards” fashion (B3 7→ B2,
B2 7→ B1, B1 7→ B3). A staightforward extension
of Rel. (D12) to cubic functions implies

C ≤ 23|AB|Tr(O2) ≤ 26|AB|, (D27)

because permutations are orthogonal (ΠΠ† = I)
and Tr(O2) is dominated by Tr(IAB⊗IAB⊗IAB) =
23|AB|.

Inserting these bounds into the variance formula for p3

reveals

Var [p̂3] ≤ 9

M
L+

18

M2
Q+

12

M3
C (D28)

≤9
2|AB|

M
Tr(ρ2)2 + 18

23|AB|

M2
Tr(ρ2) + 12

26|AB|

M3
.

Combining this insight with Chebyshev’s inequality (D6)
produces a suitable error bound. Recall that p2 =
Tr
(
(ρTA)2

)
= Tr(ρ2) ∈ [2−|AB|, 1] denotes the purity of

the subsystem in question.
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Lemma 3 (Error bound for estimating p3). Fix a subsys-
tem AB of interest and suppose that we wish to estimate
p3 = Tr

(
(ρTA)3

)
. For ε, δ > 0, a total of

M ≥ 39 max

{
2|AB|p2

2

ε2δ
,

21.5|AB|p2

ε
√
δ

,
22|AB|

ε2/3δ1/3

}
(D29)

snapshots suffice to ensure that the estimator (D21) obeys
|p̂3 − p3| ≤ ε with probability at least 1− δ.

This bound on the sampling rate provides different er-
ror decay rates for different regimes. For M → ∞, the
first term in the maximum dominates and the error de-
cays at an asymptotically unavoidable rate proportional
to 1/

√
M . Conversely, for very small sample sizes M , the

third term dominates and conveys a much larger decay
rate proportional to 1/M3/2. In the intermediate regime,
the second term may dominate and lead to a inverse lin-
ear decay rate 1/M , instead. The dependence on the er-
ror parameter δ can once more be considerably improved
(from 1/δ to log(1/δ)) by using median of means estima-
tion. This refinement also allows for using the same data
to predict the cubic PT-moment of very many subsys-
tems simultaneously [12].

Finally, we point out that the estimation error for
s3 = ‖ρ‖33 = Tr(ρ3) can be bounded in exactly the same
fashion. For ε, δ > 0, a sampling rate M that obeys
Rel. (D29) also ensures that the U-statistics estimator
U-statistics estimator

ŝ3 =

(
M

3

)−1 ∑
i<j<k

1
2

(
Tr
(
ρ̂iρ̂j ρ̂k

)
+Tr

(
ρ̂j ρ̂iρ̂k

))
(D30)

obeys |ŝ3 − s3| ≤ ε with probability 1− δ.
The proof is almost identical to the p3-analysis and we

leave it as an exercise for the dedicated reader.

3. Additional numerical simulations

Here, we complement Fig. 2 of the MT by showing in
Fig. D1 statistical errors in the estimation of p2 and p3

for the ground state of the transverse Ising model H =
J(
∑
i σ

x
i σ

x
i+1 + σzi ) at criticality. We observe the same

scaling behavior as in the case of the GHZ state. For
p2 [panel a)], there are indeed two regimes with different

decay rates (1/M and 1/
√
M). For p3 [panel b)], the

latter two decay rates 1/M and 1/
√
M are also clearly

visible. In contrast, the early regime decay rate is not as
pronounced. This is likely due to limited system sizes –
1/M3/2 does appropriately capture the decay of red dots
(largest system size considered) in the top left corner,
but seems to be absent in decay rates for smaller system
sizes.

100 101 102 103 104

M/2|AB|

10−3

10−2

10−1

100

101

E
rr

.
p 2

|AB| = 2

|AB| = 4

|AB| = 6

|AB| = 8

100 101 102 103 104

M/2|AB|

10−3

10−2

10−1

100

101

E
rr

.
p 3

|AB| = 2

|AB| = 4

|AB| = 6

|AB| = 8

a) b)

FIG. D1. Statistical errors for the ground state of the trans-
verse field Ising model. Dashed lines represent scalings of
∝ 1/M , and ∝ 1/

√
M . In all cases, the number of measure-

ments to estimate p2 a) and p3 b) with accuracy 0.1 is of the

order of 100× 2|AB|.

Appendix E: Auxiliary results and wiring diagrams

The arguments from the previous subsections make use
of identities satisfied by traces of partial transposes of
bipartite operators. Wiring diagrams – also known as
tensor network diagrams – provide a useful pictorial cal-
culus for deriving such identifies. We refer the interested
reader to Refs. [16–18] for a thorough introduction and
content ourselves here with a concise overview that will
suffice for the purposes at hand. The wiring formalism
represents operators as boxes with lines emanating from
them. These lines represent contra- (on the left) and
co-variant indices (on the right):

X =
∑
i,j

[Xij ] |i〉〈j| = X
i j . (E1)

Two operators X and Y can be multiplied to produce an-
other operator. This corresponds to an index contraction
and is represented in the following fashion:

XY =
∑
i,k

(
∑
j

[X]ij [X]jk)|i〉〈k| = X Y
ji k .

(E2)

Transposition exchanges outgoing (contravariant) and in-
coming (covariant) indices

XT =
∑
i,j

[X]ij |j〉〈i| = X
j i , (E3)

while the trace pairs up both indices and sums over them:

Tr(X) =
∑
i

[X]ii = X

i

= X . (E4)

We abbreviate this loop (contraction of leftmost and
rightmost indices) by putting two circles at the end points
of lines that should be contracted. This notation is not
standard, but will considerably increase the readability
of more complex contraction networks.

This basic formalism readily extends to tensor prod-
ucts if we arrange tensor product factors in parallel. For
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expression diagram representation diagram reformulation modified expression

Tr(XTA
ABY

TA
AB ) XAB YAB XAB YAB Tr (XABYAB)

Tr (XABYAB) XAB YAB

ΠB

ΠA YAB

XAB

Tr (ΠBΠAXAB ⊗ YAB)

ΠB ,ΠA: swaps

Tr(ρTA
ABX

TA
ABY

TA
AB ) ρAB XAB YAB

ρAB

IAB

ΠB

ΠA YAB

XAB

Tr (ΠB(ρAB ⊗ IAB)ΠAXAB ⊗ YAB)

Tr(ρTA
ABY

TA
ABX

TA
AB) ρAB YAB XAB

ρAB

IABΠA

ΠB

YAB

XAB

Tr (ΠA(ρAB ⊗ IAB)ΠBXAB ⊗ YAB)

Tr
(
XTA

ABY
TA
ABZ

TA
AB

)
XAB YAB ZAB

−→
ΠB

←−
ΠA ZAB

YAB

XAB

Tr
(−→

ΠB
←−
ΠAXAB ⊗ YAB ⊗ ZAB

)
−→
ΠB ,

←−
ΠA: cycle permutations

Tr
(
Y TA
ABX

TA
ABZ

TA
AB

)
YAB XAB ZAB

−→
ΠA

←−
ΠB

ZAB

YAB

XAB

Tr
(←−

ΠA
−→
ΠBXAB ⊗ YAB ⊗ ZAB

)
←−
ΠA
−→
ΠB =

(−→
ΠB
←−
ΠA

)†

TABLE I. Reformulations of relevant tensor product expressions: The variance bounds in Sub. D 1 and Sub. D 2 are contingent
on bringing certain expressions into canonical form, i.e. Tr (OXAB ⊗ YAB) for bilinear functions and Tr (O′XAB ⊗ YAB ⊗ ZAB)
for trilinear ones. This table supports visual derivations for these reformulations. Expressions of interest (very left) are first
translated into wiring diagrams (center left). Subsequently, the rules of wiring calculus are used to re-arrange the diagrams
(center right). Translating them into formulas (very right) produces equivalent expressions that respect the desired structure.

instance, a bipartite operator features two parallel lines
on the left and on the right:

XAB = XAB

A A

B B
(E5)

The upper lines represent the system A, while the lower
lines represent systemB. Two important bipartite opera-
tors are the identity I (do nothing) and the swap operator
Π that exchanges the systems:

I = and Π = . (E6)

Rules for multiplying and contracting operators readily
extend to the tensor setting. This allows us to reformu-

late well-known expressions pictorially. For instance,

Tr(XY ) = X Y =
X

Y
(E7)

=Tr (ΠX ⊗ Y ) . (E8)

The wiring formalism is also exceptionally well-suited to
capture partial operations, like the partial transpose:

XTA

AB = XAB
. (E9)

These elementary rules can be used to visually represent
more complicated expressions – like a trace of multiple
partial transposes. The wiring formalism provides a pic-
torial representation for such objects and a visual frame-
work for modifying them. In particular, it is possible to
bend, as well as unentangle, index lines and rearrange
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tensor factors at will. Table I collects several such mod- ifications that are important for the arguments above.
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