
Mach. Learn.: Sci. Technol. 2 (2021) 025035 https://doi.org/10.1088/2632-2153/abe91f

OPEN ACCESS

RECEIVED

9 November 2020

REVISED

22 December 2020

ACCEPTED FOR PUBLICATION

23 February 2021

PUBLISHED

21 April 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Learning to unknot
Sergei Gukov1, James Halverson2,3, Fabian Ruehle4,5 and Piotr Sułkowski1,6

1 Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, United States of America
2 Department of Physics, Northeastern University, Boston, MA 02115, United States of America
3 The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
4 CERN Theory Department, 1 Esplanade des Particules, CH-1211 Geneva, Switzerland
5 Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United
Kingdom

6 Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland

E-mail: gukov@theory.caltech.edu, j.halverson@northeastern.edu, fabian.ruehle@cern.ch and psulkows@fuw.edu.pl

Keywords: knot theory, string theory, machine learning, reinforcement learning

Abstract
We introduce natural language processing into the study of knot theory, as made natural by the
braid word representation of knots. We study the UNKNOT problem of determining whether or
not a given knot is the unknot. After describing an algorithm to randomly generate N-crossing
braids and their knot closures and discussing the induced prior on the distribution of knots, we
apply binary classification to the UNKNOT decision problem. We find that the Reformer and
shared-QK Transformer network architectures outperform fully-connected networks, though all
perform at &95% accuracy. Perhaps surprisingly, we find that accuracy increases with the length of
the braid word, and that the networks learn a direct correlation between the confidence of their
predictions and the degree of the Jones polynomial. Finally, we utilize reinforcement learning (RL)
to find sequences of Markov moves and braid relations that simplify knots and can identify
unknots by explicitly giving the sequence of unknotting actions. Trust region policy optimization
(TRPO) performs consistently well, reducing &80% of the unknots with up to 96 crossings we
tested to the empty braid word, and thoroughly outperformed other RL algorithms and random
walkers. Studying these actions, we find that braid relations are more useful in simplifying to the
unknot than one of the Markov moves.

1. Introduction

In work and in play, some of the most difficult or even unsolvable problems can be formulated by using a
fairly small set of rules. Indeed, even when the rules of the game are simple, the state space of all possible
configurations can be extremely large, way too large for a human brain or a deterministic algorithm to
identify a given configuration and tell where in a big scheme of things it belongs. This is precisely the domain
where machine learning and artificial intelligence hold a consistent record of winning the game, growing
stronger each year and outperforming the best chess grand masters [1] and go players [2, 3].

There are many such ‘games’ in fundamental science too, with simple rules and a vast landscape of
possible outcomes.

The one considered in this paper involves three Reidemeister moves (or, equivalently, Markov moves) as
‘rules of the game’ and the rich state space is spanned by many different knots or, more precisely, by different
presentations of knots. Although these basic rules can be counted on one hand and encode all possible
equivalences, the richness of the state space immediately gets in the way of identifying whether two different
presentations are equivalent or not. It is rather ironic that this is an obstacle to several fundamental problems
in low-dimensional topology, including the smooth 4-dimensional Poincaré conjecture. Other areas where
finding the simplest representation of a knot will be beneficial are for example the knots-quivers
correspondence [4, 5] in physics, or protein folding in biology [6].

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abe91f
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abe91f&domain=pdf&date_stamp=2021-4-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0535-2622
mailto:gukov@theory.caltech.edu
mailto:j.halverson@northeastern.edu
mailto:fabian.ruehle@cern.ch
mailto:psulkows@fuw.edu.pl


Mach. Learn.: Sci. Technol. 2 (2021) 025035 S Gukov et al

In the field of string theory, it has been realized [7–10] within the last three years that machine learning
can also be applied to the large state space of string vacua and compactification spaces; see [11] for an
introduction and overview. In particular, in [12], a Reinforcement learning was applied to find solutions to a
set of coupled quartic Diophantine equations that describe consistent string vacua, of which there are many
more [13–16] than configurations in Go.

From the AI/ML point of view, the problem of identifying equivalence classes, i.e. different presentations
of the same knot, is very similar to the problem of completing the sentence ‘I grew up in France… I speak
fluent …’. Roughly, the reason is that the latter task requires identifying the meaning of the sentence and
placing it next to other sentences with a similar meaning in a large space of possibilities. This is a classical
problem in Natural Language Understanding (NLU) or Natural Language Processing (NLP). Therefore, the
question we wish to ask here is: How quickly and how well can a neural network learn to speak the language
of knots?

This question was asked before, however, not from the NLP perspective, which is one novelty of this
paper. For example in [17], Hughes uses a simple feedforward neural network to predict knot invariants such
as quasi-positivity, the slice genus, and the Ozsv�ath-Szabó �-invariant. In [18] the authors also use a simple
feedforward network to compute the hyperbolic knot volume from the Jones polynomial.

The knot theory problem we are studying is the UNKNOT problem, i.e. recognition of whether a given
knot is the unknot. In addition to using NLP tools for the binary classification task, we also employ
reinforcement learning to explicitly find a sequence of moves that allow to transform a (potentially
complicated) representation of the unknot to its simplest representative, a circle with no crossings. Since the
algorithm finds the necessary Reidemeister moves, rather than just predicting a probability for the knot
being the unknot, the results can serve to prove that a given knot is the unknot.

Another novelty is that, for the NLP itself, the example of the ‘knot language problem’ studied here
presents new twists and opportunities. For example, the role of equivalence classes so central to this example
could be also useful in other problems, not only in fundamental science.

This paper is organized as follows. In section 2 we review the basics of NLP and knot theory and
introduce how the braid representation of knots yields an NLP description of knots. In section 3 we
introduce an algorithm by which trivial and non-trivial knots may be generated, represented by braids with a
fixed number of crossings. In section 4 we utilize a variety of neural networks to apply binary classification to
the UNKNOT problem, and use the trained networks to study correlations with the Jones polynomial and
notions of hardness. In section 5 we utilized reinforcement learning to find sequences of Reidmeister moves,
represented by braid relations and Markov moves on the braid, that simplify a non-trivial representation of
the unknot to the trivial one. In section 6 we summarize the main results of this work and discuss. In
appendix A we provide pseudo-code for some algorithms used in this paper and in appendix B we provide an
unknotting game.

2. Knots and natural language

In this section we review NLP and introduce its application to knot theory.

2.1. Embedding layers for semantics
A language L is composed of words from a vocabulary V(L). In NLP it is useful to have an embedding of a
word into a vector space that ideally encodes its meaning:

E : V(L) ! Rd; (1)

where d is the embedding dimension.
Since the vocabulary is a discrete set of words, one embedding, known as the one-hot encoding, maps the

ith word wi2V(L) as wi 7! ei, where ei is a unit vector and d = jV(L)j. From the NLP perspective, this
embedding has a number of issues. First, the dimension of the target vector space is jV(L)j, which for any
non-trivial language will be quite large. Second, all but one of the entries is zero; the vector is sparse. Finally,
the embedding only contains the information of the index in the set V(L), which is arbitrary and can be
permuted; no useful information is encoded in the embedding.

One would like a better technique for associating a vector to a word. The problem of sparseness may be
solved by choosing d < jV(L)j, typically d � j V(L)j. In some cases E is fixed by using pre-trained word
vectors for the embedding, while in others E has randomly initialized parameters and a useful embedding is
learned by training on some task. In the process, semantics may be learned that encoded meaning into the
vector representatives of words. (e.g. [19]) A famous example is

E(king) � E(man) + E(woman) ’ E(queen); (2)

2



Mach. Learn.: Sci. Technol. 2 (2021) 025035 S Gukov et al

an approximate equivalence at the level of the vector relationships that encodes an actual semantic
relationship in the language. Other semantic relations have also been learned, e.g. related to capitals:

E(Paris) � E(France) + E(Poland) ’ E(Warsaw); (3)

and pluralization:

E(cars) � E(car) + E(apple) ’ E(apples): (4)

Clearly, word embeddings that capture semantic features of a word or language could be useful in a variety of
machine learning tasks with respect to that language.

In what follows we will be discussing queries and keys, and it will be assumed that each word in a
sequence of length l has been mapped to d-vector via an embedding layer, so that each embedded sequence
has shape [l, d].

2.2. Attention and transformers
Recent years have seen great progress in NLP with the evolution of the attention mechanism and its
introduction into various architectures. It works as the name suggests: by training the neural network to pay
attention to the most important parts of sentences.

To explain the mechanism we will utilize the notion of queries, keys, and values [20]. This notion is used
because the mechanism mimics the retrieval of a value vq for a query q based on a key ki in a database, each
of which has its own value vi. In normal database retrieval, one finds the key ki that is identical to the query
and returns the value. In attention, we wish instead to have a similarity measure s(q, ki) between the query
and key, which is used as the weight to determine the attention paid to the different elements in a weighted
sum of values:

Attention(q;k;v) = vq =
X
i

s(q;ki)vi: (5)

In this formulation, the case of normal database retrieval is the case where s(q, ki)= 1 if q= ki and 0
otherwise. The different types of attention that exist in the literature [20–23] correspond to different choices
for similarity function s, which is chosen to be differentiable (unlike usual database retrieval) to allow for
backpropagation in a neural network. The similarity is usually softmax applied to some score function, so
that the weights sum to one.

The attention mechanism is a crucial component of the so-called transformer architecture [20], where
the version of attention used is known as scaled dot-product attention,

Attention(Q;K;V) = softmax

�
QKT

p
dk

�
V; (6)

where Q is a set of queries and the keys and values are packed into matrices K and V, and dk is the dimension
of the keys. The softmax function of a vector x is defined as

softmax : Rn ! Rn

xi 7! exiP n
j= 1 e

xj
;

(7)

which is applied to the dot product of the queries with the keys. The scaling in the softmax in (6) by a factor
of 1=

p
dk improves stability of the gradients.

Multi-head attention [20] is a simple variant of attention that can lead to improved training. In
multi-head attention, h 2 N different linear projections of the d-dimensional queries, keys, and values are
learned, to dq, dk, and dv dimensions, respectively. Attention is then computed for each of the projected
queries, keys, and values, which are then concatenated and projected again. The result is known as
multi-head attention, with h heads.

The Transformer [20] is an encoder-decoder language translation architecture that uses stacked
multi-head attention layers. Since we will be utilizing a memory-efficient modification of the Transformer,
we refer the reader to the original literature for further details.

3



Mach. Learn.: Sci. Technol. 2 (2021) 025035 S Gukov et al

2.3. Reformer
The Reformer is a new architecture, an efficient transformer, that makes a number of memory improvements
with respect to the original Transformer and related follow-ups. In this section we review the essential
elements of the Reformer, as presented in [24].

Perhaps the key improvement in the Reformer is the use of locality sensitive hashing (LSH) attention. The
essential idea behind LSH attention is that, due to the exponential dependence in the softmax in (6), some
keys contribute much stronger to attention (for fixed query) than others. This means that the matrix
softmax(QKT) is sparse and dominated by a few entries, and we want to only compute these dominant ones.
This will improve the complexity from O(l2) to O(l log l), which becomes especially important for long
sequences. In more detail, the softmax of a key kj contributes a factor exp(qi �kj) to the attention of a query
qi. One now wishes to find the keys kj with maximal qi �kj = jqij jkjj cos(�ij), i.e. finding keys that are nearest
neighbors to qi in a high-dimensional vector space.

Formulated abstractly, a hashing function (or scheme) h : V ! f 1; : : : ;bg assigns a vector x 2 V to one of
b hash values. In cryptography, h is chosen such that the hash values h(x) of nearby values x are as
uncorrelated as possible in order to avoid revealing whether a guessed secret x is close to the actual secret.
Here, we want the inverse situation: nearby values x should be mapped to nearby hashes h(x). Such a hashing
scheme is called locality-sensitive. An example for an LSH scheme uses

h(x) = argmax([xR;�xR]); (8)

where [u; v] denotes the concatenation of two vectors u and v, R is a fixed random matrix of shape
legnth(x)�b/2, and argmax returns the index of the largest vector component [25]. The idea is that under the
random projection, nearby vectors will map to nearby vectors and thus receive the same hash with high
probability.

Returning to computing the attention (6), we can now only evaluate those scalar products in QKT that
contribute the most. The attention ai of a query qi is given by

ai =
X
j2P i

exp(qi �kj � z(i;Pi)) vj: (9)

Here, Pi := f j : i � jg is the set that the query at position i attends to, the exponential structure comes from
the softmax, z is a normalizing term for the softmax, and we have omitted the factor 1=

p
dk for clarity. Note

that the structure of Pi ensures that the ith position in the query may only attend to itself and the prior
positions [20].

We now change this attention scheme by only paying attention to elements within the same hash bucket,
i.e. we set

PLSH
i = f j : h(qi) = h(kj)g: (10)

As discussed above, the computational and memory gains arise because jP LSH
i j � jP ij. Sometimes (but

rarely), similar vectors will fall in different hash buckets. The chance that this happens can be reduced by
performing multi-round LSH attention, i.e. the Reformer uses nhashes distinct hashing functions, defined by
distinct, random matrices R.

Additional details of LSH attention in the Reformer include causal masking that ensures positions may
only attend to prior positions, and also a chunking scheme that allows for efficient batch processing. In
practice, the input with batch-size N is a tensor of shape [N, l, d] which the Transformer then turns into Q,K,
and V via three different linear layers. However, for LSH attention in the Reformer to make sense we need
Q= K. Similarly, a shared-QK Transformer is a Transformer that has Q= K, and it turns out [24] that this
has little effect on performance. Further improvements are achieved by using reversible layers.

In summary, the Reformer is a modern NLP architecture where improvements relative to the
Transformer allow sophisticated sequence data to be trained effectively on a single GPU, bypassing the need
for extensive computational resources and therefore allowing easy exploration of new domains with NLP
techniques. The most important hyperparameters introduced by the Reformer are the number of hashes b in
LSH attention, and also the choice of LSH attention or full attention, for the sake of comparison.

2.4. Knots as language
Knots have various data presentation as words in appropriate sets of letters, which makes it natural to think
of them as language7. In this section we develop the idea in the context of natural language processing. We

7AnNLP that deals with letters and words would be to predict the next letter to be typed based on the letters that have already been input.

4



Mach. Learn.: Sci. Technol. 2 (2021) 025035 S Gukov et al

Figure 1. Examples of knots. From left to right: unknot (01), trefoil (31), figure-eight (41), 51, and 52.

Figure 2. Reidemeister moves.

start by briefly summarizing some basics of knot theory, and then introduce the braid representation of a
knot, which we use in most of our analysis and which can be interpreted as language.

A knot is an embedding of S1 in 3-dimensional space, without self-intersections and up to ambient
isotopy. The main goal of knot theory is to classify all knots, and to develop tools that enable to determine
whether two different embeddings of S1 are topologically equivalent, i.e. whether they represent the same
knot—in other words, whether one can be transformed onto the other without cutting. An important
specialization of this problem that we address in this paper is to determine whether a given knot is
topologically equivalent to the unknot, i.e. an unknotted loop, also referred to as the trivial knot. A collection
of several possibly entangled knots is called a link.

One useful approach to analyze knots is to consider their projections on a plane, see figure 1. Two knots
are topologically equivalent if and only if their projections can be related to each other by a sequence of
Reidemeister moves. These are three special moves that involve one, two, or three strands, see figure 2:

�A twist (figure 2(a)) takes a strand and twists it, changing the crossing number by 1,
�A poke (figure 2(b)) pulls one strand over another, changing the crossing number by 2,
�A slide (figure 2(c)) slides a strand over (or under) a crossing of two strands, not changing the crossing
number.

Furthermore, the most basic characteristic of a knot is the minimal number of crossings that one gets
upon its projection onto an (appropriately chosen) plane. The simplest knots are the unknot, trefoil and
figure-eight knot, denoted respectively 01, 31 and 41, whose (minimal) numbers of crossings are given by the
main number in this notation (i.e. 0, 3 and 4), while the subscript labels inequivalent knots with the same
number of crossings. The unknot, trefoil and figure-eight are the only knots with fewer than five crossings.
For a fixed, larger number of crossings there are many topologically inequivalent knots, e.g. there are two
knots with five crossings (denoted 51 and 52). In addition to these unique prime knots, new ‘composite’
knots can be formed as the sum of two or more prime knots. This can be thought of as taking two or more
prime knots, cutting them open at one position, and tieing the open ends of each knot together; see figure 3.

The number of inequivalent knots (and indeed already the number of inequivalent prime knots) with a
given number of crossings grows rapidly, so more elaborate characteristics must be employed to encode their
structure and to distinguish them. For example, there are 165 prime knots with 10 crossings, 1 388 705 prime
knots with 16 crossings, etc.

A given knot clearly has many representations; for example projections on various planes typically look
different, and in particular may yield different numbers of crossings. Therefore, one issue we have to deal
with is how to represent the structure of a given projection. The second issue one needs to deal with is how to
determine whether different representations represent topologically the same type of knot. Let us briefly
discuss these two points.

In order to determine a type of a knot, so-called knot invariants are constructed. Knot invariants are
various mathematical objects (numbers, polynomials, groups, homologies, etc) which depend only on the
topological type of a knot, and have the same form irrespective of the representative used to compute it. To
prove that a given quantity is a knot invariant, it is sufficient to show that it is invariant under each of the

5




	Learning to unknot
	1. Introduction
	2. Knots and natural language
	2.1. Embedding layers for semantics
	2.2. Attention and transformers
	2.3. Reformer
	2.4. Knots as language
	2.4.1. Dowker–Thistlethwaite
	2.4.2. Braids

	2.5. The UNKNOT problem
	2.5.1. Why unknotting?
	2.5.2. Complexity


	3. Generating knots and unknots
	3.1. Distribution of knots

	4. Unknot decision problem
	4.1. Confident predictions, hard knots, and the Jones polynomial
	4.2. Going up to go down: hard knots in Dowker–Thistlethwaite notation

	5. Unknotting with reinforcement learning
	5.1. The RL environment
	5.1.1. State space
	5.1.2. Reward function
	5.1.3. Action space

	5.2. The RL algorithm
	5.3. Results
	5.4. Actions taken to unknot

	6. Conclusion
	Acknowledgments
	Appendix A. Algorithms
	Appendix B. Knot or not? A game for children
	References


