CaltechAUTHORS
  A Caltech Library Service

Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions

Gahlmann, Andreas and Park, Sang Tae and Zewail, Ahmed H. (2008) Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. Physical Chemistry Chemical Physics, 10 (20). pp. 2894-2909. ISSN 1463-9076. https://resolver.caltech.edu/CaltechAUTHORS:GAHpccp08

[img]
Preview
PDF - Published Version
See Usage Policy.

1987Kb
[img]
Preview
Cover Image (.gif)
See Usage Policy.

14Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:GAHpccp08

Abstract

Pulsed electron beams allow for the direct atomic-scale observation of structures with femtosecond to picosecond temporal resolution in a variety of fields ranging from materials science to chemistry and biology, and from the condensed phase to the gas phase. Motivated by recent developments in ultrafast electron diffraction and imaging techniques, we present here a comprehensive account of the fundamental processes involved in electron pulse propagation, and make comparisons with experimental results. The electron pulse, as an ensemble of charged particles, travels under the influence of the space–charge effect and the spread of the momenta among its electrons. The shape and size, as well as the trajectories of the individual electrons, may be altered. The resulting implications on the spatiotemporal resolution capabilities are discussed both for the N-electron pulse and for single-electron coherent packets introduced for microscopy without space–charge.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1039/b802136hDOIArticle
http://pubs.rsc.org/publishing/en/Content/ArticleLanding/2008/CP/b802136hPublisherArticle
Additional Information:© The Authors 2008. This journal is © the Owner Societies 2008. Received 6th February 2008, Accepted 6th March 2008. First published on the web 31st March 2008.
Issue or Number:20
Record Number:CaltechAUTHORS:GAHpccp08
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:GAHpccp08
Official Citation:Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions Andreas Gahlmann, Sang Tae Park and Ahmed H. Zewail Phys. Chem. Chem. Phys., 2008,10, 2894-2909 DOI: 10.1039/B802136H
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:10669
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:03 Jun 2008
Last Modified:12 Dec 2019 17:07

Repository Staff Only: item control page