CaltechAUTHORS
  A Caltech Library Service

Branes, quivers and wave-functions

Kimura, Taro and Panfil, Miłosz and Sugimoto, Yuji and Sułkowski, Piotr (2021) Branes, quivers and wave-functions. SciPost Physics, 10 . Art. No. 51. ISSN 2542-4653. doi:10.21468/SciPostPhys.10.2.051. https://resolver.caltech.edu/CaltechAUTHORS:20201118-104305243

[img] PDF - Published Version
Creative Commons Attribution.

447kB
[img] PDF - Submitted Version
See Usage Policy.

665kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20201118-104305243

Abstract

We consider a large class of branes in toric strip geometries, both non-periodic and periodic ones. For a fixed background geometry we show that partition functions for such branes can be reinterpreted, on one hand, as quiver generating series, and on the other hand as wave-functions in various polarizations. We determine operations on quivers, as well as SL(2,Z) transformations, which correspond to changing positions of these branes. Our results prove integrality of BPS multiplicities associated to this class of branes, reveal how they transform under changes of polarization, and imply all other properties of brane amplitudes that follow from the relation to quivers.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.21468/SciPostPhys.10.2.051DOIArticle
http://arxiv.org/abs/2011.06783arXivDiscussion Paper
ORCID:
AuthorORCID
Panfil, Miłosz0000-0003-1525-4700
Sułkowski, Piotr0000-0002-6176-6240
Additional Information:© 2021 T. Kimura et al. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation. Received 14-12-2020; Accepted 19-02-2021; Published 26-02-2021. We thank Andrea Brini for discussions on these and related topics. The work of TK has been supported in part by “Investissements d’Avenir” program, Project ISITE-BFC (No. ANR-15-IDEX-0003), and EIPHI Graduate School (No. ANR-17-EURE-0002). The work of MP has been supported by the National Science Centre, Poland, under the SONATA grant 2018/31/D/ST3/03588. The work of YS has been supported by the national Natural Science Foundation of China (Grants No.11675167 and No.11947301). The work of PS has been supported by the TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (POIR.04.04.00-00-5C55/17-00).
Group:Walter Burke Institute for Theoretical Physics
Funders:
Funding AgencyGrant Number
Investissements d'AvenirANR-15-IDEX-0003
Investissements d'AvenirANR-17-EURE-0002
National Science Centre, Poland2018/31/D/ST3/03588
Natural Science Foundation of China11675167
Natural Science Foundation of China11947301
Foundation for Polish ScienceUNSPECIFIED
European Regional Development FundPOIR.04.04.00-00-5C55/17-00
Other Numbering System:
Other Numbering System NameOther Numbering System ID
CALT-TH2020-049
DOI:10.21468/SciPostPhys.10.2.051
Record Number:CaltechAUTHORS:20201118-104305243
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20201118-104305243
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:106722
Collection:CaltechAUTHORS
Deposited By: Joy Painter
Deposited On:18 Nov 2020 18:55
Last Modified:16 Nov 2021 18:56

Repository Staff Only: item control page