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Abstract10

Background: In the absence of a consensus protocol to slow down the current SARS- CoV2 spread,11

policy makers are in need of real-time indicators to support decisions in public health matters. The Basic12

Reproduction Number (R0) represents viral spread rate and can be dramatically modified by the application13

of effective public control measures. However, current methodologies to calculate R0 from data remain14

cumbersome and unusable during an outbreak. Objective: To provide a simple mathematical formulation15

for obtaining R0 in Real-Time, and apply it to assess the effectiveness of public-health policies in different16

iconic countries. Study design: By modifying the equations describing the spread of the virus, we derived a17

real-time R0 estimator that can be readily calculated from daily official case reports. Results: We show the18

application of a time trend analysis of the R0 estimator to assess the efficacy and promptness of public health19

measures that impacted on the development of the COVID-19 epidemic in iconic countries. Conclusions: We20

propose our simple estimator and method as useful tools to follow and assess in real time the effectiveness of21

public health policies on COVID-19 evolution.22
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1. Background25

Several mathematical models have been proposed in recent weeks to fit public databases on the SARS-26

CoV2 outbreak (Chen et al., 2020; Simha et al., 2020; Calafiore et al., 2020; Yang et al., 2020). Despite their27

particularities, most of them have the structure of the well-known SIR model proposed by Kermack and28

McKendrick (1927). Besides the interest in modeling the spread of this virus, there is a need for indexes29
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to evaluate the efforts made to prevent new cases and assess how likely a particular demographic group is30

to be infected. One of the parameters used for that means is the Basic Reproduction Number R0, which31

value represents the number of persons a single infected individual might infect (Perasso, 2018). From its32

definition, R0 ≥ 1 indicate the outbreak might have an exponential growth, while R0 < 1 would account for33

a disappearing infection. An intuition on how it works is presented on Figure 1.34
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Figure 1: Different stages can be identified during the outbreak of an infection, characterized by the number of people that a

single infected individual may infect (R0). In the figure, a single infected individual (in red) can spread the virus among different

individuals (in black), not reaching part of the population (in gray). Some individuals go into isolation (in green), effectively

lowering their contagion chance. At the right-hand side of the plot, R0 represents the number of possible new infections caused

by a single patient in each outbreak stage. In the first days of the outbreak, a single individual can infect several people before

isolation, but as the amount of cases gets public awareness, health policies restricting movement and self-driven actions may

help to control the outbreak, which is effectively captured by a decreasing R0.

Even though several authors have claimed to have provided guidelines for its calculation (Heesterbeek,35

2002; Delamater et al., 2019; Breban et al., 2007; Perasso, 2018), the truth is that it remains uncertain,36

especially for non-specific public. The formulations presented in literature make the calculation of R037

nearly impossible for those untrained in mathematical modeling and inverse problems, both because of their38

complexity and the lack of a general procedure to follow. Then, its objective is not fulfilled, as the different39

decision-making actors could not use it for evaluating the different actions taken by the different public40

health plans.41

2

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.23.20076984doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.23.20076984


2. Objectives42

In the present work, we propose a useful and simple methodology to calculate R0 directly from available43

epidemiological data in real time during an outbreak. The key feature of this practical methodology is that44

no specific knowledge in mathematics or scientific computation is needed to generate estimations of this45

parameter, thus being particularly handy for its use for day-to-day assessment in public health matters. As46

our methodology does not involve a parameter fitting stage, which would be needed if solving the SIR system47

numerically to represent continuous trends, we can use it to evaluate the immediate impact of the different48

actions used to prevent the spread of SARS-CoV2. In a case of study, we assess the effect on R0 of the49

different ongoing measures taken by the Chilean government, and we compare their result with the current50

panorama of different iconic countries.51

3. Results52

Assuming the outbreak follows approximately an SIR model (equations 1-3), susceptible, infected and53

recovered patient dynamics are represented by:54

S′ = −βSI
N

, (1)

I ′ = βSI

N
− γI, (2)

R′ = γI. (3)

In terms of the parameters of the SIR model, we can calculate R0 as the ratio between the infection rate55

β and recuperation γ (Heesterbeek, 2002):56

R0 = β

γ
. (4)

In particular, equations 1 and 2 can be combined applying the chain rule and the derivative of the inverse57

function theorem, so we can write:58

dI

dS
=

βSI

N
− γI

−βSI
N

⇐⇒ dI

dS
= −1 + γ

β

N

S
. (5)

Using the definition of R0 given by equation 4, γ
β

= 1
R0

. Assuming that all persons are initially59

susceptible and a low percentage of the population is infected when data is taken, we may safely assume60

S

N
≈ 1. Therefore, equation 5 can be re-written as61
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dI

dS
= −1 + 1

R0
. (6)

Equation 6 can be discretized in an interval [ti−1, ti] where we can assume that R0(t) = R0(ti) is constant:62

R0(ti) = 1
∆iI

∆iS
+ 1

. (7)

Extending the classical SIR model to consider also deaths, a population balance dictates the discrete63

differences to follow ∆iS + ∆iI + ∆iR+ ∆iD = 0. Then, equation 7 takes its final form.64

R0(ti) = 1

1− ∆iI

∆iI + ∆iR+ ∆iD

⇐⇒ R0(ti) = ∆iI

∆iR+ ∆iD
+ 1. (8)

Equation 8 stands in front of other methods because of its simplicity and usability, as there is no need65

for specific mathematical or scientific computing knowledge for obtaining realistic values of R0 for a given66

population during an epidemic or pandemic outbreak. However, due to the nature of its dependence on67

real-time data, uncertainties on the input values would have a significant effect on the outcome. Since most68

common uncertainties are related to the time frame between contagion, sampling, detection and report (time69

misclassification), we suggest applying moving averages to smooth trends and using only official data sources70

to consistently estimate R0.71

4. Discussion72

Effect of quarantine measures on the COVID-19 outbreak in Chile and the current world context73

Figure 2 shows the values of R0 for different countries plotted against time. Countries that have successfully74

controlled the epidemics currently show R0 values consistently lower than 1. China, where the COVID-1975

pandemics started and is currently under control, shows a slight increase in the last week, which could76

indicate a new risk factor to be evaluated, such as the presence of a new contagion peak. Other countries77

currently show lower R0 values, which may represent better public health managements, with the exception78

of the current situation in the USA. However, the analysis is much clearer when the R0 values of all countries79

are plotted from the day when the first COVID-19 case was reported. In this plot (Figure 2), different80

control strategies may be straightfully compared. Countries that acted quickly to control viral spread can be81

recognized by an earlier decrease of their R0 indexes. The comparative efficacy of control measures can be82

assessed by the magnitude of the negative slope of the curves. China and Spain reacted at approximately83

the same time after the first case, but the slope magnitudes of the Chinese plot are noticeably higher and84

R0 reaches values below 1 earlier than Spain, and in this last country the contagion rate is not controlled85

yet. South Korea and Germany controlled the COVID-19 outbreak more or less at the same time, but at86
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much higher rates in the South Korean case, which could reflect different control rate efficiencies of control87

measures applied in both countries. The differences between Italian and Spanish control policies are also88

evident, as well as the worsening observed in Italian trends.89

Using the public database on the SARS-CoV2 outbreak in Chile, provided by the Chilean Health Ministry90

(MINSAL, 2020a), we studied the numbers up to date (MINSAL, 2020b), and contrasted them to those91

of countries that have adopted different strategies to control the outbreak. From March 27, the Chilean92

government declared a partial quarantine for highly affected municipalities in Santiago and other cities (with93

42% of the national population and 50% of confirmed cases). Considering an incubation time of 5 days94

(MINSAL, 2020a), from April 1st on the effects of this quarantine on the SARS-CoV2 spread in Chile can be95

observed as a decreasing trend in R0, quickly approaching the control threshold. Up-to-date, both the early96

onset and high slopes seem to indicate a good effect of the Chilean public-health management policies.97

Figure 2: Comparative analysis of the values of R0 for different countries, using a moving average window of ± 2 days. The

control threshold is represented by a horizontal red dashed line (R0 = 1). The plot on the left shows daily trends from March 25

to April 22. The rigth-hand charts show the same data plotted from the day of detection of the first case, in two different time

frames. Official data from Worldometers.info (16 April, 2020). Files with the data and calculations are available on request.

5. Conclusions98

We have developed a fast and accurate methodology to calculate the Basic Reproduction Number R099

directly from raw real-time data of an evolving epidemic outbreak. Our results have also shown that this100

index can be a useful decision parameter to evaluate the impact of public policies in the control of the101

outbreak of COVID-19. The simplicity of the proposed approach to calculate R0 (equation 8) remarks its102
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applicability, and our analysis of R0 trends in different countries during the current SARS-CoV2 outbreak103

highlights how it can be applied to assess both the speed of reaction and the efficacy of public-health measures.104

This provides decision-makers with a simple and easily calculable tool to timely understand the impact of105

their policies. As the proposed equation does not need vast volumes of data, it results particularly handy for106

its use when data resolution is not high enough to fit continuous models, in the analysis of short-time trends,107

or to compare different regions in the world or even inside a single country with different time density of data.108

As varied as the uses for the proposed methodology are the opportunities to improve it. We look forward to109

seeing how this contribution of a real-time estimator of R0 would impact the way we analyze the ongoing110

contingency and how the scientific and decision-making community would adapt it to tailor propagation111

models and obtain better and timely insights on the application of emergency public-health policies.112
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