A Caltech Library Service

Systematic two-scale image analysis of extreme deformations in soft architectured sheets

Agnelli, Filippo and Margerit, Pierre and Celli, Paolo and Daraio, Chiara and Constantinescu, Andrei (2021) Systematic two-scale image analysis of extreme deformations in soft architectured sheets. International Journal of Mechanical Sciences, 194 . Art. No. 106205. ISSN 0020-7403.

[img] PDF - Accepted Version
See Usage Policy.

[img] Video (MPEG) - Supplemental Material
Creative Commons Attribution.

[img] Video (MPEG) - Supplemental Material
Creative Commons Attribution.

[img] Video (MPEG) - Supplemental Material
Creative Commons Attribution.


Use this Persistent URL to link to this item:


The multi-scale nature of architectured materials raises the need for advanced experimental methods suitable for the identification of their effective properties, especially when their size is finite and they undergo extreme deformations. The present work demonstrates that state-of-the art image processing methods combined with numerical and analytical models provide a comprehensive quantitative description of these solids and their global behaviour, including the influence of the boundary conditions, of the manufacturing process, and of geometric and constitutive non-linearities. To this end, an adapted multi-scale digital image correlation analysis is used to track both elongations and rotations of particular features of the unit cell at the local and global (homogenized) scale of the material. This permits to observe with unprecedented clarity the strain fields for various unit cells in the structure and to detect global deformation patterns and heterogeneities of the homogenized strain distribution. This method is here demonstrated on elastic sheets undergoing extreme longitudinal and shear deformations. These experimental results are compared to non-linear finite element simulations, which are also used to evaluate the effects of manufacturing imperfections on the response. A skeletal representation of the architectured solid is then extracted from the experiments and used to create a purely-kinematic truss-hinge model that can accurately capture its behaviour. The analysis proposed in this work can be extended to guide the design of two-dimensional architectured solids featuring other regular, quasi-regular or graded patterns, and subjected to other types of loads.

Item Type:Article
Related URLs:
URLURL TypeDescription
Celli, Paolo0000-0001-7839-7472
Daraio, Chiara0000-0001-5296-4440
Additional Information:© 2020 Elsevier Ltd. Received 3 August 2020, Revised 20 October 2020, Accepted 15 November 2020, Available online 20 November 2020. This work was partly financed by the french-swiss ANR-SNF project MechNanoTruss (ANR-15-CE29-0024-01). F.A. acknowledges the support of the French doctoral fellowship “Contrat Doctoral Spécifique pour Normalien”. C.D. acknowledges support from the US Army Research Office Grant W911NF-17-1-0147. CRediT authorship contribution statement: Filippo Agnelli: Conceptualization, Investigation, Formal analysis, Writing - original draft. Pierre Margerit: Conceptualization, Formal analysis, Writing - original draft. Paolo Celli: Writing - review & editing. Chiara Daraio: Resources, Writing - review & editing. Andrei Constantinescu: Conceptualization, Resources, Supervision, Writing - review & editing. Declaration of Competing Interest: None.
Funding AgencyGrant Number
Agence Nationale pour la Recherche (ANR)ANR-15-CE29-0024-01
Contrat Doctoral Spécifique pour NormalienUNSPECIFIED
Army Research Office (ARO)W911NF-17-1-0147
Subject Keywords:auxetic, architectured solids, soft materials, digital image correlation, skeletal representation
Record Number:CaltechAUTHORS:20201120-111506487
Persistent URL:
Official Citation:Filippo Agnelli, Pierre Margerit, Paolo Celli, Chiara Daraio, Andrei Constantinescu, Systematic two-scale image analysis of extreme deformations in soft architectured sheets, International Journal of Mechanical Sciences, Volume 194, 2021, 106205, ISSN 0020-7403, (
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:106759
Deposited By: Tony Diaz
Deposited On:20 Nov 2020 19:35
Last Modified:09 Dec 2020 18:13

Repository Staff Only: item control page