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It is shown that Harrison’s Backlund transformation for the Ernst equation of general relativity is
a two-parameter subset (not subgroup) of the infinite-dimensional Geroch group K. We exhibit
the specific matrix u(t ) appearing in the Hauser~Ernst representation of K for vacuum spacetimes
which gives the Harrison transformation. Harrison transformations are found to be associated
with quadratic branch points of u(t ) in the complex ¢ plane. The coalescence of two such branch
points to form a simple pole exhibits in a simple way the known factorization of the (null
generalized) HKX transformation into two Harrison transformations. We also show how finite
(i.e., already exponentiated) transformations in the B group and nonnull groups of Kinnersley and
Chitre can be constructed out of Harrison and/or HK X transformations. Similar considerations
can be applied to electrovac spacetimes to provide hitherto unknown Bicklund transformations.
As an example, we construct a six-parameter transformation which reduces to the double
Harrison transformation when restricted to vacuum and which generates Kerr-Newman-NUT

space from flat space.

PACS numbers: 04.20.Cv, 04.20.Jb, 04.40.c

1. INTRODUCTION

Since the pioneering work of Geroch,'? it has been
known that the partial differential equations governing the
metric of the stationary axisymmetric vacuum gravitational
field admit an infinite-dimensional internal symmetry group
of transformations. This large internal symmetry group (the
Geroch group K) has encouraged many authors to hope that
the complete class of solutions could some day be generated
systematically from a particular solution, such as flat space,
or from the important subclass of Weyl static solutions. In
fact, a number of special transformations, some contained in
K** and some Bicklund transformations known or pre-
sumed to be outside K,>~!! are now known which, when iter-
ated, generate asymptotically flat solutions with an arbitrar-
ily large number of parameters. A detailed study of the
mathematical interrelationships between these various
transformations has been undertaken by the author.'?

A workable and very fruitful representation in terms of
infinitesimal generators for the Geroch group K and its elec-
trovac extension K’ has been provided by Kinnersley and
Chitre'*'® (KC). Possibly, the most important discoveries
arising from their formalism are the B group'® which, among
other things, generates the Kerr solution'” from Schwarzs-
child, and the HK X transformation.? More recently, Hauser
and Ernst'®*?° (HE) have deduced (initially from the KC for-
malism and later by a direct method) a qualitatively different
representation which exploits the theory of functions of a
complex variable. The HE formalism has the distinct advan-
tage that elements of K and K’ appear already exponentiated
and each may be specified unambiguously by a matrix func-
tion u(t ) of a complex variable ¢ satisfying certain conditions,
a closed contour L in the complex ¢ plane, and a choice of
gauge for the F (¢ ) matrix potential’' of the solution to be
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transformed. Composition of several transformations is con-
veniently represented by multiplication of corresponding
u(t ) matrices. The generation of new solutions from old in
their formalism can be accomplished by either solving a lin-
ear integral equation'® or a homogeneous Hilbert problem. '
A remarkable result of Hauser and Ernst’s work is a formula
for all u(t ) matrices which transform a given initial solution
into a given final solution.2’ This provides a quantitative
settlement of one form of a well-known conjecture of
Geroch.??

The present paper addresses certain problems for which
the Hauser-Ernst formalism is particularly well suited.
First, we study two large classes of u(t ) matrices for which
the homogeneous Hilbert problem (HHP) can be solved by
elementary methods. Itisalready known'® that when u(t ) has
only simple poles in L, (the interior of the contour L ), the
solution of the corresponding HHP is a product of null gen-
eralized HKX transformations®*'? and nonsimple poles
correspond to confluent forms such as the rank-&z
transformation.?

On the other hand, for certain classes of u(t ) matrices for
vacuum spacetimes which have quadratic branch points and
branch cuts in L , we find that the solutions of the HHP’s
are products of Harrison’s Bicklund transformations.® In
particular, the Harrison transformation, which was discov-
ered by methods inspired by soliton theory and quite remote
from the Geroch group, is here shown to be a two-parameter
subset (not a subgroup) of K. This result should not be entire-
ly unexpected according to a suggestion of Kinnersley?’ and
the fact that arguments given in Ref. 12 to rule out certain
other Bicklund transformations being in K** were inconclu-
sive for the Harrison transformation.

Conversely, the formula for the Harrison transform of
the F (¢ ) potential given by Eqgs. (4.44a) and (4.44b) of Ref. 12
can be substituted directly into the HE formula for «(¢) in
terms of the initial and final solutions® [see Eq. (2.25) below]
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to give, explicitly,

u(t)=(1— S;)m(_lc_l "c;’_l), (1.1)

s and c real constants, The product of several Harrison trans-
formations is represented by the product of corresponding
u(t ) matrices [the individual s and ¢ parameters of such a
product may be complex such that the product u(z ) is real for
real ¢ ]. In Ref. 12, we proved that the product of two Harri-
son transformations with same s parameters is a null general-
ized HKX transformation by directly composing the trans-
formation laws for F(z). In the HE formalism, the proof of
this theorem reduces to matrix multiplication.

As yet, finite algebraic transformations have not been
written down for the B group'® whose generators are?

RSN falk-n k01,2, ., (1.2)
and the nonnull KC group, whose generators are®
Ve k=0,1,2, ..., ¢,y #0, (1.3)

¢~ being a symmetric constant SL(2, R ) tensor, independent
of k, which includes the nonnull HKX transformations.'?
We find that, although we cannot exponentiate the infinites-
imal transformations, we can express a large number of finite
transformations in these groups as products of Harrison
and/or HKX transformations.

Finally, in Sec. 5, we attempt to generalize the Harrison
transformation to electrovac spacetimes by considering 3 X 3
u(t ) matrices with cubic branch points. Surprisingly, we man-
age to find a Bicklund transformation with six parameters
which reduces to the double Harrison transformation with
two complex conjugate s parameters when restricted to
vacuum, while the method fails to yield an electrovac version
of the single Harrison transformation. The new transforma-
tion maps flat space to Kerr—-Newman-NUT space, which is
asatisfying result. However, in the conclusion, we present an
argument based on analogy with vacuum that the single
Harrison transformation should exist in the electrovac case
and have perhaps four parameters. A possible reason for the
failure of the HE formalism to account for the electrovac
analog of the single Harrison transformation is that the lat-
ter is not expected to preserve the reality of the metric and
electromagnetic potentials and so an extension to two com-
plex dimensions is indicated.

2. THE HOMOGENEOUS HILBERT PROBLEM OF
HAUSER AND ERNST

In this section, we include enough details on the F(t)
potential, the matrix representation u(¢ ) for K, and the homo-
geneous Hilbert problem (HHP) for later use. We wish to
follow the SL(2) tensor notation of Kinnersley'? (see also
Appendix A of Ref. 12) in which we would identify
F(t)=F,5(t), ut)=us(t), 4, B =1, 2.2° The electrovac
case will be postponed till Sec. 5.

The metric of stationary axisymmetric spacetime can be
written

ds’ = f,zdx"dx? — f~'e?"dp® + d2?), (2.1)
where f,,, f = f},, and y are functions of cylindrical coordi-
nates p and z only; x' is time, x? is azimuthal angle. We use
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the parametrization

fu=rf fuo=fi=—fo, fro=fu’ “sz‘l- (2.2)
Asis well known, the vacuum field equations are the integra-
bility conditions for further potentials. The Ernst potential
& and its tensor generalization H ,, are defined by*’

& =H, =f+1iy, (2.3a)
Vo= —p~ Vo, (2.3b)
Hyp =f45 + 45, (2.4a)
Vibaw = —p " VUfin, (2.4b)
and satisfy
fV3E =VEVE, (2.5a)
VH,, = —ip”"f,*VH,,, (2.5b)
H,p — Hp, = 2ize,p, (2.6a)
Sxaf s = —p€as, (2.6b)

where V = (3 /dp, 9 /32), V = (3 /32, — 3/3p),

Vit =3*/3dp* + 3°/32* + p~'3/Ip. An asterisk (*) will de-

note complex conjugation, e.g., H* 5 = f,;, — it ,p.
When H ,; is known, a potential F,(¢)

[ = F.s(p, z, t)] whichis a function of a complex variable 7,

as well as p and z, can be constructed from the linear differen-

tial equation,?®

VE,5(t) = itS ~(1)[(1 — 22)VH . — 2t pVH oy JF ¥, (2),

(2.7)
where
S(t)=[(1 - 2z)* + 43212, S(0)=1, (2.8)
subject to
F,p(0) = i€y, (2.9a)
Fop(0)=H,y, (2.9b)

F(t)=dF(t)/dt. Two important firstintegrals of Eq. (2.7) are
Fyut)F¥g(t)= —S " '(t)ey or detF(t)= —8'(t),

(2.10)
(2.11)

where F'* (¢ ) is to be understood as the complex conjugate
of F g(t ™).
The differential equation (2.7) and initial conditions
{2.9a) and (2.9b) define F () up to a gauge change,
Fap(t)>F, " (t)gxa(t) or F(t)>Fitlg(t),  (2.12)
where g(t) = — g*;(¢) depends on ¢ only. Equations (2.9}~
(2.11) imply

845(0) =¢€,5 or gl0) =1, g*(r)=glt),

S(E)F* () = 2itfu F¥p(t) — (1 — 22)F 5(),

detg(t) =1,

(2.13)
I being the unit matrix. This gauge freedom may be used to
minimize the singularities of # (¢ ) in the complex ¢ plane. '*?
Inallcases, F (¢ )is analytic at and in a neighborhood of r = 0.
Also, it is always possible to choose gauge so that F (¢ ) is
analytic at and near f = . Hauser and Ernst (HE) have
imposed the slightly stronger condition

1 0
Ft )(O t) analyticat = o (“HE gauge”), (2.14)
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which can be brought about by a translation, w— + con-

stant. Later, in SL(2)-covariant applications, we shall wish to
permit an arbitrary additive constant in @, so we relax this

condition to

F(t) analyticatt = o (“modified HE gauge”).

(2.14)

Next, HE'"?* have shown that, in a{ p, z) domain covering at
least one point of the z axis in which & is analytic®® and f #0,
gauge can be chosen so that the only singularities of 't} in
the ¢ plane (including ¢ = «) are quadratic branch points
with index — { at

t, =1 ;21'0 and ¢t = Z_zrzlp (7
i.e., the zeros of S (¢ ), and the cut is a finite arc from ¢ = ¢, to
t =t_ {not through ¢ = 0). On the z axis, where p = 0, the
branch points and cut degenerate to a simple pole at
t = (2z)~'. This very special gauge will be called ““special HE
gauge” if condition (2.14) is also imposed; otherwise [condi-
tion (2.14')] we shall call it “modified special HE gauge.”

If F {1 )is in (modified) special HE gauge, then achange of
gauge will automatically introduce ( p, z)-independent singu-
larities in the finite ¢ plane and/or at t = o . Furthermore,
analytic continuation of F () across the cut will reveal, in
general, ( p, z)-independent singularities of various types (in-
cluding at ¢ = 0) on the second Riemann sheet. If # is not
analytic anywhere on the z axis, then special HE gauge may
not exist. Nevertheless, in this case, HE'® have proved that
F () can be chosen to be analytic in the whole 7 plane except
for four quadratic branch points of index —lat#=7_ and
att =1, , the latter being complex conjugate points inde-
pendent of p and z, each pair being joined by a cut.

In Ref. 20, HE have demonstrated that Eqs. {2.3)—(2.11)
are easily solved on the z axis (o = 0), thereby providing a
remarkably simple and convenient characterization of
(modified) special HE gauge. First, if € is analytic and f #0
on an open interval .# of the z axis, then dH ,5/Jp,

OF ,5(t)/Jp, and all derivatives of odd order with respect top
vanish on .# ", Then, w = constant = w,, say, on .# . In spe-
cial HE gauge, @ = 0 on .# . Hence, integrating Egs. (2.5b)

and (2.7} along .#, we find

—p’+2) (219)

£0,z) 2z
H,;(0,2) = ( 0 0 ) (2.16a)
t%(0, z) [
F0,zt)=|1-2z 1-2z |, (2.16b)
—1i 0

in special HE gauge. In modified special HE gauge, where
©=w,on.f,

& 2iz — w,&
Hipl0.2)= ( —wo,& -2z, + (0022)”)’ (2.17a)
t% [ — oy
1— 21z 1— 21z
Fas0.2,0)= . og¥ —2itzwy + @ tE
1—2z 1 -2z
(2.17b)

where & = (0, z). Clearly, the only singularity in the ¢
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plane is a simple pole where ¢, and ¢ coalesce at t = (2z)~".

Let us now turn to the description of the matrix element
u(t) = u";(t ) which represents an element of K in a manner
depending on the choice of gauge for F (¢ ) and a contour L in
the complex ¢ plane.'*?° For convenience of expression, we
shall often denote an element of K by its corresponding u(t )
matrix if the gauge and choice of L is clear from the context.
First, since F (¢ ) is always analytic in an open region contain-
ing ¢ = 0, we can draw a simple closed curve L surrounding
t = 0, symmetric about the real axis, whose interior we de-
note L ., exterior L _, such that F (¢ )isanalyticin L , and on
L. In particular, the points 7 = ¢ _ and the cut joining them
must be in L _. The interior L | can be made as large as
desired by putting F (¢) in (modified) special HE gauge and
considering points ( p, z) close to (0, 0). The matrix u(z ) must
be analytic at least in an open annulus containing L. Further,
it satisfies the algebraic constraints

detu(t)=1 or
u*(t) = u(t).

(2.18a)
(2.18b)

In addition, HE impose a boundary condition at t = « [Eq.
{2.19) below] which is not merely a restriction on the gauge,
but actually excludes a significant portion of the group K.
This topic will be discussed in a sequel to the present paper.
Here, we shall require that F (¢} be put in either HE gauge or
modified HE gauge and that u(¢ ) be analytic in a neighbor-
hood of t = oo and

Uy (¥ p(t) = €4p,

(i) ' (2), tu's(t), £ ~'uP(t), u?,(¢) are analytic at t = oo
whenever F{r) is in HE gauge; (2.19)

(il) (¢ ) is analyticat 7 = o whenever F(¢)inin modified
HE gauge (2.199

[cf. Egs. (2.14) and (2.14')]. When combining or multiplying
transformations in K [represented by multiplication of cor-
responding u(t ) matrices], it is important not to mix the two
types (2.19) and (2.19’).

When F (¢ ), u(t ), and L are given, the F'(t )-potential F'(t )
of a new solution &’ of the field equations may be found by
solving the matrix homogeneous Hilbert problem (HHP),

X_(t)=X_ ()G (), (2.20)
where

X, ()=F'()F{t)~", {2.21a)

G(t)=F(t)ult)F(¢)™". (2.21b)

In Eq. (2.20), G (¢) is a given matrix analytic on L, and the
unknowns X_ and X, are required to satisfy

X_{t)analyticin L + L _ and at? = oo, (2.22a)

X (t)analyticinL +L,, X (0)=1 {2.22b)
The HHP can also be written

X (t)y=F'(tult)F(r) ", (2.23a)

inwhich X_ and F' are the unknowns, F',;(0) = i€ 45, 01, in
tensor notation,

X )= = S{F (0 W™y (e )F V(). {2.23b)
With the boundary conditions at t = 0 and t = 0, the solu-
tion of the HHP is unique if it exists.'® The new metric tensor
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f' 45 and Ernst potential &' follow from

HIABZF,AB(O)i fIAB :ReH,AB, &”':H'“,

(2.24)

There is no loss of generality in requiring (¢ ) to be ana-
lytic throughout L _ as singularities can be absorbed by
gauge changes. First, suppose F (¢ )is in (modified) special HE
gauge. Then Eq. (2.23) shows that F'(¢ ) is in the same special
gauge if and only if #(¢ ) is analytic throughout L _. If u{t ) is
not analytic in L _, then perform the factorization u(t) =
u {t)u_(t),whereu  andu __ satisfy the conditions fora u(z)
matrix and, in addition, & , is analyticinL _,u_ in L _, and
u (0) = I(thisisan HHP). It follows that F'(t Ju , (¢t )isan F (¢
potential in (modified) special HE gauge while u (¢ } merely
effects a gauge change [cf. Egs. (2.12) and (2.13)]. Similarly, if
F (z) for the original solution is not in (modified} special HE
gauge but still satisfies (2.14) or (2.14’), then write it as
F(t)=F,,(t)g(t)where F_ (¢ )is in the special gauge and g(¢)
satisfies Egs. (2.13). Then perform the factorization
u(t)g(t)™" = u (t)u_(t),asbefore,and the HHP will take the
form

X _(£)=F(t)u_(t)F ()"

where F/ (t) = F'(t )Ju . (t). Except where otherwise stated,
we shall henceforth assume that u(z ) is analytic throughout
L _. [Notice that the full group of gauge transformations
cannot be handled by the HE formalism because F'(¢ ) is re-
quired to be analytic in L , . In some cases where F'(¢ ) is not
analytic in L , it may be possible to deform the contour L
without crossing singularities of « _(¢ ), but this is clearly im-
possiblewhen F’(t Jand u _ (¢ ) have coincident singularities in
L, . An example of such a coincidence is the “extended”
HKX transformation.'?]

The Hauser—Ernst formula, mentioned in Sec. 1, which
gives all u(t ) which map a given initial solution & to a given
final solution & is derived as follows. Suppose that & and
&’ are analytic on an open interval .# of the z axis containing
(p,z) = (0, 0) and put F(¢) and F’(r) in special HE gauge.
Then,on #, F(t)and F'(t )are given by Eq. (2.16b). Substitute
into the HHP Eq. (2.23a) and observe that the left-hand side
is analyticin L _ whereas the right-hand side apparently has
a simple pole at # = (2z)~'in L _. Setting the residue to be
zero gives

W ()EE + 1WA \(t) — i ()8 + i (t)E =0,
(2.25)

where & and &' are tobe evaluatedatp = 0,z = (2¢)~'. The
real and imaginary parts of Eq. (2.25), together with Eq.
(2.18a), provide three equations for the four components of
u”g(t). If, instead, we put F(t) and F'(t) in modified special
HE gauge, with w = w,, @' = w{ on .7, then

uft) = ((1) “f’)uo(z (™)

where u,(t ) satisfies Eq. (2.25). This matrix product expresses

the composition of three transformations: (i) wv—w — w,, (ii)

& —& "' preserving special HE gauge, and (iii} o' —0’ + ;.
The Ehlers group P is given by

(2.26)
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gl=(P)ug=m’ a___(a| az)’ (2.27)
a, —ia,& a; oy
deta = 1, (P), € P. The Matzner-Misner group L (rotation
of Killing vectors) is given by

0 _ D . n B _ B B
Fron = (Llpfan = b:b5cp, B=bs —(53 34),

(2.28)

detB = 1, (L Jg € L. Both groups are one-to-two homomor-
phic to SL(2, R ). The (L )5 transformation is represented by

B4 _B3

" denoting transpose, and the solution of the HHP (trivial in
this case) is
F'p(t)=b, bsFcplt) or F'(t)=BF(t)B". (2.30)

Note that u(t ) obeys condition (2.19’) and preserves modified
special HE gauge. The (P), transformation can be substitut-
ed into the HE formula (2.25] to yield

a —a, !
an=( % TE
—ayt a,

obeying condition (2.19). The solution of the HHP in this
case can be obtained by a straightforward application of
methods outlined in Secs. 3 and 5 below. The result is

W)= — b4 =87 =

(2.31)

Fo{t)= (4 + = 'BIF(tuie), (2.32)
where
i, %’ 0
A:(, Gatio e . ) (2.33a)
iaH, + H'\, — 2iz) a,—ia,&
0 0
B= ( ) (2.33b)
a, O
Here, &' is given by Eq. (2.27) and H' |, by
aH H Y
B, =2mnt B (2.34)
o, —ia,%

where H'?), = | F,;(0). Eq. (2.32) preserves special HE
gauge.

3. QUADRATIC BRANCH POINTS AND THE HARRISON
TRANSFORMATION

The homogeneous Hilbert problem can be solved by
elementary methods in the case when (¢ ) has only poles in
L, andforalarge class of cases where u(r ) has also quadratic
branch points and cuts contained in L, . The case of N sim-
ple poles (at points ¢ %0 in L _ ) has been treated adequately
by Hauser and Ernst'® using their integral equation. They
have identified the transformation for which

2 (01
u(t)=I+~ZNlti:(0 ) (3.1

a;, s; real constants, with the product of N HKX transfor-

mations.* Allowing all four components of u(¢ ) to have sim-
plepolesats =5, ..., sy #0leads to a product of null gener-
alized HKX transformations.'? HE have also obtained the

electrovac counterparts of the latter transformations.'® The
case of nonsimple poles can be treated directly by the same
methods or by regarding a pole of multiplicity V as a coales-
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cence of NV simple poles. The corresponding limit of the prod-
uct of ¥ HKX transformations is a combined HKX trans-
formation of ranks 0, 1, ..., N — 1.*

It is instructive to see the null generalized HKX trans-
formation derived from the HHP in an SL(2)-covariant man-
ner. Consider

W)= — e, +%q"3, (3.2)

where 5, @, and ¢ are constants and ¢ ,, is symmetric and
null {recall — €', = €7 = 8%). The contour L is drawn to
enclose t = 0 and the pole at t = 5. The HHP is

X Py = ~S(r>F'Ax<r)[ &+ %q"y]F”v \
(3.3)

The left-hand side is analyticin L + L_ and att = o. The
right-hand side is analyticin L + L, except for a simple pole
at ¢t = 5 and has the value €, % at t = 0. Hence

s )F'Axm[ et %qﬂ]F”(r)

t
=6AB+—

R,%, (3.4)
t—35

where R, is a constant (in ¢ ) tensor to be determined. Ex-
pressing F',z(t) as the subject, we have

' ! at
F'plt) = [FAY(t) + P RAXFXY(t)][fBY_ t—quy].
(3.5)
Comparing residues at f = s of both sides of Eq. (3.4), we find
RSP = —aSIF ksl F7s). (3.6)

Since g, is null and symmetric, it admits the factorization
G.s = q.95. An expression for the vector F',,(s)g* and
hence for R, can be obtained by multiplying both sides of
Eq. (3.5) by ¢® and taking the limit as #—s. The results are

F'x(5)g" = F oy (5)g° [1 + asS (s)g°F zc()F %5 (5)] 7, (3.7)
R, b= —aS (S)FAX(S)QXYFBY(S)
X [1 + aSS(S)qCDFZC(S)FZD(S)]_" (3.8)

Theexpression for the transformed F (¢ ) potential simplifies if
we introduce the generating function G4 (s, ¢ ) of Kinnersley
and Chitre'® which is given in terms of F (¢ ) by’

L
€. + S (s)
s—1 s—1
with a suitable limit for G (s, s). Then Egs. (3.5), (3.8), and
(3.9) give

Gypls, t)= Fy, (S)FXB(”’ (3.9)

F’AB([)
:[FAX(I)+aq FAC(S)[GD (s,tﬂ]—S(S—I)_ €p ]]
1 — ag® Gpls, s)
X[f et (3.10)
XB s —1t XB

This is precisely the formula given in Ref. 12 for the general-
ized HKX transformation, whose infinitesimal form is de-
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fined by
S asfe v,
k=0
for the case of null g*Y. It is easy to show that the apparent
pole at ¢ = s in the right-hand side of Eq. (3.10) is absent.

The second factor in Eq. (3.10) is a gauge function. The
first factor, with the index X lowered by €, is the transform
of F,z(t) under the “extended”” HKX transformation,'? de-
fined by (3.11) with the sum taken fromk = — o tok = .
In Ref. 12, the extended HKX transformation was derived
as the limit of the double soliton transformation of Belinsky
and Zakharov® when the two simple poles of their matrix
1 (4 ) coalesce to form a double pole.

Transformations corresponding to a simple or nonsim-
ple pole at t = 0 have a longer history. These can be de-
scribed as or represented by: (i) products of a finite number of
(P), and (L), transformations'-; (i} a broken null curve in
the Geroch representation?; (iii) repeated applications of the
Lagrangian invariance transformations of Hoenselaers®;
(iv) transformations ¢* ¥}, ¢*” null, exponentiated by
KC'? and products thereof. The failure of these early trans-
formations to preserve asymptotic flatness has a rational ex-
planation in terms of the HE representation. Eq. (2.25)
shows that (¢ ) will preserve asymptotic flatnessuptoa NUT
parameter whenever it is asymptotic to the right-hand side of
(2.31) as t—0 (not necessarily with all components of a non-
vanishing). Thus asymptotic flatness preservation is not sen-
sitive to the types of singularities of u(f) occurring at points
t #0, showing in a sense that the “majority” of elements of K
actually preserve asymptotic flatness, but singularities at
t = 0 Jexcept for a simple pole in u',(t )] are not allowed.

Matrices u(z ) which have quadratic branch points arise
naturally on account of the determinant condition,
det u(t) = 1. Let v(t ) be a matrix function of ¢ analytic and
possessing an inversein L + L _, real for real ¢, and obeying
either condition (2.19) or (2.19'). Then

ult) = [deto(t)] ~"/?ult) (3.12)

obeys all the conditions for a u(¢ ) matrix and is analytic in
L _, provided the branch cuts joining the zeros of det v{¢ ) can
be contained in L . This can be done if t = « is not alsoa
branch point. This situation can be excluded by requiring
that det v{t }—1 (or any positive real constant) as f— .

Ifv(t ) is a given rational function of 7, then the HHP can
be solved by essentially the same method as for u(¢ ) rational.
The HHP can be rewritten

det v(t)]'V2X _(t) = F'(t w(t)F(z) " (3.13)

The left-hand side is analytic in L _ and at t = <« while the
right-hand side has only poles in L , . The branch point sin-
gularities have been absorbed in X_(¢). Thus either side of
Eq. (3.13) defines a rational function of ¢ and the problem
reduces to the determination of the unknown coefficients in
the numerator. The transformation represented by such a
u(t ) will be seen tobe a product of Harrison’s Backlund trans-
formations® (branch points at ¢ %£0), null HKX transforma-
tions™'2 (poles at ¢ %£0), and null KC transformations®'>*
(either pole or branch point at ¢ = 0, depending on whether
number of accompanying Harrison transformations is even

(3.11)
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or odd, respectively). Further, when two Harrison transfor-
mations with same s parameters are multiplied, the corre-
sponding product u(t } matrix has only a pole at ¢t = s and so
represents a null HKX transformation.'?
The simplest SL(2}-covariant example is
Viglt)= —€'p +t 7 'hg, detvt)=1—1""h%
(3.14)

where £, 1s null and nonsymmetric. The explicit solution of
the HHP is

tthy, + ththYHXY}FCZ(S)
s—1 )hMNFNM(S)
XFCD(t)(eBD—t~1hBD)y (3.15)

wheres = hy* = — h*,. The more general case where &, ;
isnonnull,sothatdet v(t) = 1 — st ' 4 ¢ ~?(det &), is easily
shown to factorize into two of the above transformations.
The proof of Eq. (3.15) involves elegant and pleasing tensor
manipulations, which we leave as an exercise for the reader.
Instead, we shall give the derivation for the closely related,
though non-SL(2)-covariant, Harrison transformation, for
which

“(f)=(l— ;)‘_1/2(_i—1 —c;vt").

The u(t) matrix given by (3.12) and (3.14) can be factorized
into matrices of the forms (3.16), (2.29), and (2.31} in at least
three ways.

The transform of F (¢ ) under the Harrison (H ) transfor-
mation was calculated in Ref. 12 by first deriving the trans-
forms of £t ) under the groups P, L, Q,%7 and Q,%” and then
calculating the products,

H: (L )B(Q)»tts(Q )4s(P )u = (P)u(Q)~4s(Q)4s(L )B’

By (3.17a)
= T o= )

(P)y€eP,{L)g €L, (Q), 4 €Q (commutes with P),
Q) + 4s € Q (commutes with L). The resulting formula [Eqs.
(4.44a) and (4.44b) of Ref. 12] preserves special HE gauge,
and so can be substituted directly into Eq. (2.25) here to give
the representing matrix (3.16). It is, of course, more instruc-
tive to see Eqs. (4.44a) and (4.44b) of Ref. 12 derived from
(3.16) and the HHP. The insights gained will allow us to
construct new Bicklund transformations for electrovac spa-
cetimes in Sec. 5.
The HHP takes the form,
)F (£)~".

(1 - ;)VZX,(t) = F(t )( _ lc-,
(3.18)

The left-hand side is analyticin L + L_ and at ¢ = oo [the
branch cut in (1 —s/¢)"?joins £ = 0to ¢t =sin L_]. The
right-hand side is analytic in L + L , except for a pole at

t = 0. It follows that

F'plt)= [s_lhAc_

(3.16)

(3.17b)

—cst !
1

, —est ! B
F(t)(_c_, . )F(t) i
=cst_,(0 0)+(.1+icsH’” ! )
1 0 icstH'yy + H\,) 1 —icesH,,
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where Egs. (2.9a) and (2.9b) have been used. Hence

Filt)= t ( 1+ iesH' |, ¢! )
Ct—s\est '4iestH', + Hyy) 1 —icsH,,

el )

The pole at ¢ = s is absent if

l+iesH',, = — ¢ 'T, (3.19a)

ics(H'y, + Hpp)= —c— (1 —icesH )T, {3.19b}
where

T____ F22(S) + CFZI(S) . (320)

F\yfs) + cF(s)
Hence the final transformation formula is
t

Fle) w ( —c™'T ¢! )
}—z—s es—ty 7' — (1 —icsEVT 1 —ics®

el )

When F,, and F5, are eliminated using Eq. (2.11), we get Eqs.
(4.44a) and (4.44b) of Ref. 12. [T is a pseudopotential for the
Backlund transformation and is a fractional linear function
of the pseudopotential ¢ used by Harrison,” the ¢ used by
Cosgrove,®'? and the two a’s used by Neugebauer.'* From
Eqg. (2.7), a total Riccati equation can be written for 7]
The decomposition of the Harrison transformation into
factors PQ and LQ {respectively, /| and 7, of Neugebauer'')
isnot unique and Eq. (3.17b) presents only one possible para-
metrization. It has the disadvantage that it breaks down for
the important cases ¢ = « and ¢ = 0, which map Weyl solu-
tions to Weyl solutions. These may be accommodated by
trivial rescalings, /—>(const) X f; and translations, either
w—w + const or Y~y + const. In terms of representing
matrices the products are, suppressing the factor
(1 —s/e)172

e (7 (L)

(3.21)

_ (tgs ~(f)"); (3.22)
=m0 )
_ (_01 1—3"')_ (3.23)

The solutions of the corresponding HHP’s are, respectively,

—sT s 0 1
Fle)=\s—t  or _o|Fl) r—s|,
st —t 4]
r=Lul (34
Fy\ls)
-7 1 0 —1
Flil=\s=t L gwr _uelFO o |
! t—3s
r=5dl 5,5
Fiyls)

The former preserves special HE gauge, as does (3.21). The
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latter preserves modified special HE gauge. The correspond-
ing decompositions into PQ and LQ transformations are,
respectively,

H=(0)_ 4(Q)lP)e, = (P)a (@) _ 4:(D)ass
H=(L)(0)_4(Q)s =(Q)_ 4(Q)aslL s ;

) 0 1
where, in both cases, a, = ( { O)'

The factorization of the null HKX transformation
{3.10) into two H transformations with same s parameters is
expressed by the matrix product

12

(3.26)
(3.27)

11

_ aig atq
(,1 u ) t—s t—s
1 22 12
0 A _ alg 14 alg
t—s t—s
_ ( 1 —Cgst_')( 1 *clst")
Cr—s\—o! 1 - 1 ’
(3.28)
where
c=q¢'""74" = —(g"/¢%1 +ag?),  (329)
A=1+ag? pu= —ag". (3.29b)

the relations between the parameters here is in agreement
with those given in Egs. (6.56)—(6.58) of Ref. 12.

The u(f ) matrix (3.16) for the H transformation has qua-
dratic branch pointsatf = Oand ¢t = s, joined byacutin L .
The product of two such matrices with s = 5, and s = 5, has
branch points at ¢t = 5, and ¢ = s,, but ¢ = 0 is an ordinary
point [cf. right-hand side of Eq. (3.28)]. The branch cut can
be taken from ¢ = s, to t = s, without passing through ¢ = 0.
This shows incidentally that the double Harrison transfor-
mation preserves asymptotic flatness.

4. NONNULL KC TRANSFORMATIONS AND THE B
GROUP

In Refs. 3, 12, and 15, methods are given which solve
the problem of exponentiating particular infinitesimal null
KC transformations.'* None of these methods have been
found to work in the nonnull case {except for the s = oo limit
of the nonnull HKX'?). We wish to study the B group,'®
whose infinitesimal generators are*

BU U=y g k=0,1,2, ., (4.1)
and the nonnull KC group, whose generators are
gL, k=0,1,2, .., (4.2)

g*¥qxy = 2 det g#0. We shall not attempt to exponentiate
any combinations of the infinitesimal generators (the non-
null HKX transformation'? being an example}, but, never-
theless, we shall show how finite transformations can be cal-
culated with Harrison and/or null HKX transformations.
There are enough of these finite transformations that iter-
ation of them until closure occurs will yield the full infinite-
dimensional groups.

First, the u(¢ ) matrix representing an infinitesimal non-
null HKX transformation (& small) is identical to the null
case. From Eq. (3.2), we have

2630 J. Math. Phys., Vol. 22, No. 11, November 1981

gy +0()
t—Ss

[When g, is null, the O (@?) term is identically zero and the
remainder of the equation is exact for finite a.] The u(¢ ) ma-
trix representing the individual infinitesimal ag* ") trans-
formation is obtainable from the coefficient of s* in the Tay-
lor series expansion of the right-hand side of Eq. (4.3). An
arbitrary infinitesimal generator of the nonnull KC group is
expressed by the sum

u'plt)= — €'y +

(4.3)

> g, (4.4)
K=0
a'*' real constants. Define the generating function
alty= § a%ir K, (4.5)
k=0

analytic at and near t = . We may require that a(f ) be ana-
lyticin L + L _. Then the representing u(¢ ) matrix is

ulg(t)= — €'y +alt)g’s + 0(a?).

Finally, a straightforward exponentiation of this matrix
yields

u'y(t)= — [cosh(ga(t))1€*s + g~ '[sinh(ga(t ))1q"s,
(4.7)

where the real or pure-imaginary constant ¢ is defined by

(4.6)

12 11,22

or ¢=1{¢g"Y—gq'"¢? (48)

qXAqXB = — quAB

When «(t ) is a rational function, as in the case of the
nonnull HKX transformation for which a(t) = at /(t — s),
the u(z ) matrix has essential singularities in L , at the poles of
a(t). The methods of this paper are not strong enough to
handle essential singularities in u(s ). However, finite trans-
formations can be written down when tanh(ga(t )} is a ration-
al function of ¢, say

tanh(ga(r)) = R (t) (4.9)
{note that ¢gR {#) is real for real ). Then

wiolt)=[—€5 +97'R(t)g"s [[1 - R*>)] 72
(4.10)

This is of the form (3.12) and so represents a product of a
finite number of Harrison and (L ), transformations. Wheng
is pure-imaginary, the s parameters of the  transformations
form complex conjugate pairs such that the product trans-
formation obeys condition (2.18b) and maps real solutions
(as determined by £, 5) to real solutions.

Consider the simplest case, where

Rit)= at+ b ’
ct+d
a, b, ¢, d real constants. A short calculation reveals the

factorization,

T
X(_;_l _cziztl)(-irl —c,sl“lt"')

(4.12)

c>a>0, (4.11)
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[cf. Egs. (2.29) and (3.16) for the (L )z and H transformations,
respectively], where

By=4 "¢ —a%)'"*d — bg"*/q), (4.13a)
By = —(c* —a)"""%ag'/q, (4.13b)
B, =4 ~'(c* — a*)bg*/q, (4.13¢)
B = —a*)""*c +aq'*/g); (4.13d)
= - dEh o _dohy (4.14
c+a c—a

qll A qll )
=2 =- . (4.15)

“TrTe OT T rad—b1g+q
A =cd —ab + (ad — bc)g'*/q. (4.16)

There is a second factorization with same 8 matrix and
_d=b _d+b,

s, = s, = : (4.14')
¢c—a c+a
11 A 11 ,
=t —, = - g __ (415
9°—q c—ald+b)g —gq

A matrix of the form (4.10) will represent a product of
null HK X transformations alone when 1 — R %(¢)is a perfect

square. This is the case whenever
204\ _ p2
Ripy=m) =" L) (4.17a)
m(t) + n*(t)

or
2m(t )n(t)
m(t) + n’(e)’
where m(t ) and n(t ) are polynomials in ¢.

The same considerations apply to the B group,'® for
which

ult) = ( cos a(t)

— tsin a(t)

R(t)= (4.17b)

t“'sina(t))’ (4.18)

cos alt)
a(t)analyticin L + L _ and at t = . This is the group
which maps flat space to itself in special HE gauge, as can be
seen by putting & = 1 = &’ in Eq. (2.25). Itis closely related
to the nonnull KC group [see Egs. (7.30){7.33b) of Ref.
12*']. Finite transformations in the B group can be con-
structed out of Harrison and (P ), transformations by
putting

tana(t) =R (t), 4.19)
a rational function of £. Then
1 —1
u(t):[1+Rz(t)]_'/2(_tR(t) ! f(’)). (4.20)

In this case, the s parameters form complex conjugate pairs.
Also, with the choice,

2mit n(t
Rie) = _2mhte)
m(t) — n*(t)
where m(t) and n(r ) are polynomials in ¢, the u(f ) matrix is

itself rational and represents a product of null HKX
transformations.

5. BACKLUND TRANSFORMATIONS FOR
ELECTROVAC FIELDS

Hauser and Ernst have extended their complex-vari-
able techniques to the enlarged Geroch group K’ (due to

(4.21)
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Kinnersley ') for electrovac fields.'®*° Their representation
employs 3 X 3 matrices H,,, F,,(t), and u,, (¢ ) which corre-
spond to the 2 X 2 matrices H 5, F,5(f), and u”(t ), respec-
tively, of vacuum. The SL(2) tensor formalism for the poten-
tials has been developed by Kinnersley and Chitre'*"'® and
Jones.*? However, since each 3 X 3 matrix equation conveys
the information of four tensor equations, we shall use the
matrix notation in this section.

With the hindsight gained from the vacuum case, it is
natural to study electrovac transformations represented by
u(t } matrices which have only poles in the complex ¢ plane
and those which have algebraic singularities (cubic branch
points in this case) for which the HHP can be solved by the
methods of Sec. 3. Hauser and Ernst’® have already treated
the case where u(t ) has only poles using their integral equa-
tion and have obtained the electrovac version of the null
HKX transformation and products thereof. The same re-
sults could equally well be obtained from the HHP by fol-
lowing the steps which led to Eq. (3.10) here.

In this section we study u(t ) matrices of the form

u(t) = [det v(t)] ~Pu(t) (5.1)

[cf. Eq. (3.12}], in an attempt to generalize the Harrison
transformation to electrovac spacetimes. We succeed in ob-
taining an electrovac counterpart to the double Harrison
transformation which maps flat space to Kerr—-Newman-—
NUT space and presumably an n-fold iteration of which
maps flat space to the nonlinear superposition of n Kerr-
Newman-NUT particles on the z axis. Nevertheless, in Sec.
6, we present an argument which suggests that this transfor-
mation may not be as large as it could be and attempt to
explain why we were not able to derive the single electrovac
Harrison transformation (presumed to exist) from the HE
formalism.

The electrovac H potential has components

H, = ( H, Pa

2L 21'1(“»“)’ a,b=1,23 AB=12.
(5.2)

The definitions of the potentials on the right-hand side are to
be found in Refs. 13 and 14. The metric is recoverable from
the relation

Jupg =3H g + H*)) + @ 0 *5 — i2€,45, (5.3)

and we again use the parametrization (2.2). To specify an
electrovac solution it is sufficient to know only the compo-
nents (Ernst potentials)

E=H,=fii—pp* +ifd,,, P=¢,=H,, (54)

which satisfy simple field equations given by Ernst** (see also
Ref. 13%4).
The F (t) potential has components

Foult)= (f.""(') D.‘(”), (5.5)
iSalt) 2iQ(r)

where the entries on the right-hand side are generating func-

tions whose definitions and direct methods of calculation are

found in Ref. 32. (When comparing with the 3 X 3 matrix

equations of Hauser and Ernst,'®*2° one should interchange

the first two rows and first two columns as in Ref. 26.) At
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t=0,

F(0) = 16(2), (5.6a)
F{0)=H, {5.6b)
where &(2) is the value at ¢ = 2 of
0 1 0
Ct)y=f -1 0 o | (5.7)
0 0 —ur

The F (t) potential satisfies a differential equation and alge-
braic relations corresponding to Egs. (2.7), (2.10), and (2.11)
which are given in Refs. 18, 19, and 32. We need write down
only the determinant condition

det Fit)= — S~ '(t). (5.8)

The gauge [see Eq. (5.22) below] chosen by Hauser and Ernst
(“HE gauge”) requires that F(¢) be analytic near f = « and
alsothat F,,,tF,,,and F;,a =1, 2, 3, be analyticat f = .
As in vacuum, there are special gauges such that the only
singularities of F (¢ ), in a suitable ( p, z) domain containing an
open interval of the z axis, are quadratic branch points at the
zerost, andt_ of S{t). If, in addition, the additive constants
inw = — f,,/f,, and @, are chosen so that these latter poten-
tials vanish on the z axis, then the special gauge is unique
(““special HE gauge”). The explicit forms of H and F (¢ ) on the
z axis in special HE gauge are given by’

& 2z @
H=|0 0 0}, (5.9a)
0 0 0
t% i tP
1 -2z 12z 1 -2z
Fit)= _ 0 0 (5.9b)
0 0 1

The homogeneous Hilbert problem is to find X, (£ ) ana-
lyticin L + L, (drawn as in Sec. 2) and X _(¢) analytic in
L+ L_andatt= o such that,on L,

X_(t)=X,(t)G(t), (5.10)
where

G(t)=F(t)u(t)F()"", (5.11a)

X 0=1L (5.11b)

The matrix u(t ), depending only on 2, is chosen subject to the
constraints

detu(t)=1, (5.12a)

wl(e)6( Jult) = G ), (5.12b)

u(t)analyticin L + L _, {5.12¢c)
Uy ty, Uy

t "'uy Uyt 'uyy | analyticats= . (5.12d)
Uz, tus, Uiy

[u'(z) is the Hermitian conjugate of u(t *), i.e.,
u'(t) = u*(r)".] When X _(¢) is known, a new electrovac so-
lution can be constructed from

F'(ty=X (t)F(t), (5.13a)
H'=F'(0). (5.13b)
2632 J. Math. Phys., Vol. 22, No. 11, November 1981

Hence an alternative form for the HHP is

X_(t)=F'(t)ut)F() ", (5.14)
where X _(r)and u(t)are analyticin L + L _, F'(t)and F(z)
are analytic in L + L . As before, a composition of several
transformations is represented by the product of corre-
sponding (¢ ) matrices. Notice that X, (¢) and hence F’(¢) is
not sensitive to the replacement u(f }—Gu(t ), where§ isacom-
plex cube root of unity.

A simple application of the HHP is to derive an equa-
tion for all »(¢ ) which transform a given initial solution
(%, @) into a given final solution (£, @) in special HE
gauge.”® Substitute Eq. (5.9b)for F (¢ )and F (¢ )into the right-
hand side of Eq. (5.14). The condition that the pole at
t = (22z)~ ' be absent is

i 0
g i, 1@ ult)| —t%& itd |=0, (5.15)
0 1

where &, @, €', and @' are to be evaluated atp =0,
z=(2t)"".

If u(t) is a rational function of ¢, then the method of
solution of the HHP is exactly the same here as in the vacu-
um case. Similarly, if v{t ) is a rational matrix function of  and
if the unimodular matrix

u(t) = [detv(t)] =" v(t) (5.16)

also satisfies conditions (5.12b)~(5.12d), then the solution of
the HHP proceeds along exactly the same lines as for a finite
product of Harrison transformations in vacuum. Such trans-
formations with det v(¢ ) not a perfect cube will be new as
none of the finite electrovac transformations discussed pre-
viously take the form (5.16).*

Despite these obvious similarities with vacuum, the sin-
gle Harrison transformation with det v(r) = 1 — st ~' does
not automatically generalize to electrovac. The simplest
transformation of the form (5.16) that we find has two s pa-
rameters, complex conjugates of each other, and so more
closely resembles the double Harrison transformation. This
unexpected complication can be traced to condition (5.12b)
being quadratic in (¢ ). [This condition is needed to guaran-
teethealgebraicrelationbetween F (¢ Jand F *(¢ ) givenin Refs.
18, 19, and 32.] Thus, while we want det v(f ) to be not a
perfect cube, the product [det v{t )} [det v*(#)] must be a per-
fect cube. The simplest choices subject to these constraints
take such {essentially equivalent) forms as

— g*

det vft) = - (5.17a)
t—S
or
det ofe) = =51 (5.17b)
s¥(t —)
or
detv{t) = (1 — s/t)H(1 — s*/1), {5.17¢)

s being a complex constant. With det vz ) given by Eq.
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(5.17b), the simplest possible choice for u(t ) is

1 O 0
_ s*(t —s)\13 0 1 0
ur) = (s(t - s*)) 0 st — s*) 18
s*(t —s)

This matrix function of t has abranch cut from? = stot = s*
inside L | and appears to represent a very special case of the
electrovac version of the double Harrison transformation
with no free ¢ parameters. An instructive way to proceed toa
more general transformation with four ¢ parameters is to
solve the HHP for this special u(z) first, and then recognize
that the solution can be generalized in a nontrivial way by
exploiting the gauge freedom in F(z).

The solution of the HHP for the u(z) of Eq. (5.18) is

tis—s*) 1 Fudls™)
Flit)=Ft) + ———— | Fasls*) | (m(t), ma(t), m(t))
s*t—s) A4 *
33(5*)
1 0 0
0 1 0
, 5.19
o o0 =g >
s(t — s*)
where
Fy(s) Fils) Filt)
my(t)= |Fyuls) Fuls) Fyult)], (5.20a)
Fyls)  Fyls) Fy,lt)
4 = m,(s*). (5.20b)

Details of the method of solution of this HHP will be sup-
plied later for a more general u(z ). [Important note: To calcu-
late F*'(¢), replace s, s*, F(t), F(s), and F (s*) by s*, s, F*(t),
F*{s*), and F *(s), respectively, in the right-hand sides of Egs.
(5.19), (5.20a), and (5.20b}. In particular, m*,(¢t) and 4 * are
the complex conjugates of m, (¢ *) and 4, respectively.] The
components of the first row of H' = F'(0) are

o g _ s —s*) w |F1ls)  Fils)
FE e T P R P
(5.21a)
. s —s%) Fyls)  Fils)
Hle=He = TG ol ey Fogl”
(5.21b)
o h g S=St (k) Ful)
Hho=Ha= B 9 Ful
(5.21¢)

If the initial solution is a vacuum solution, for which
Falt)=0=F,(t),a,b=1,2, F;;(t) = 1, then the above
transformation reduces to the identity. On the other hand, if
the solution has a nonvanishing electromagnetic field, then
Egs. (5.21a)—(5.21c) define a nontrivial new transformation.

Four additional parameters can be incorporated into
the above transformation by simply changing the gauge of
the F(¢) potential in the right-hand sides of Egs. (5.21a)-
(5.21c) or by making a similar substitution for F (s) and F (s*),
but not for F{t), in the right-hand side of Eq. (5.19). The
differential equations and algebraic relations'® %32 which
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govern F (¢ ) are also satisfied after a substitution

F(t)—F(t)glt), (5.22)
where g(t ) is a complex-valued function of ¢ only subject to

g0) =1, detglt)=1, g'(t)6(rlglt) =6lr) (5.23)
I denoting the 3 X 3 unit matrix. Since we wish to obtain
formulas preserving special HE gauge, we shall make this
substitution for £(s) and F (s*) in Egs. (5.21a}and (5.21c) and
then deduce the new F'(¢) from the HHP, rather than Eq.
(5.19).

Not all eighteen components of g(s) and g(s*) will appear
in the right-hand sides of Eqgs. (5.21a) and (5.21c¢). The latter
depend on only the four independent ratios 4, /h, and g, /g,
a, b =1, 2, 3, of the components of the following vectors:

h, 0
h=|h,|=gls*]| 0], (5.24a)
3 1
g=1(81 82 &) =1(0,0, 1jgls)~". (5.24b)
The algebraic conditions (5.23) imply
h* = —lisg,, h* =lisg,, h* =g, (5.25)

Since the vectors 4, and g, may be arbitrarily rescaled, there
is no loss of generality in putting, for example, g, = 1 = &,.
Inspection of later formulas suggests, however, that a more
convenient normalization would be to take the quantity

E=g h, + g:h; + (s/5%)g:h,
=8:8%; + Jis*g 8%, — lisgg* = E*
to be unity.
When the substitution (5.22)is made for F (s*)and F (s)in

the right-hand sides of Egs. {5.21a) and (5.21c¢), the trans-
formed Ernst potentials become

(5.26)

&' =H'\,=H, + [i(s — s*)/ss*4 1h,F,,(s*)k,, (5.27a)
@' =H',=H;— [(s —s*)/ss*A 11, F\, (s*)k,, {5.27b)
where k = (k,, k,, k;) is the row vector
k= —S{sigF(s)~", (5.28)
whose components are
| &1 82 &3
ky= |Fyls) Fyls) Fyls)|, (5.29a)
Fy(s)  Fafs)  Fils)
&1 82 4]
ky= — |Fyls) Fpls) Fls)|, (5.29b)
Fy\(s)  Fyfs)  Fils)
41 82 83
ky=|Fy{s) Fpls) Fuls)|, {5.29¢)
Fyls)  Fyls)  Fyls)
and
& 82 83 0
A = KF(s*h = Fifs)  Fpls)  Fls) hoFipls*) ,
Fy(s)  Fofs)  Fasfs)  hyFy,(s*)
Fy(s)  Fals)  Fisls)  hy,Fyls*)
{5.30)
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and the summation convention applies to the repeated index
b.

Equations (5.27a) and {5.27b} as they stand are sufficient
to determine the metric and electromagnetic potential of the
transformed solution, but the transformed generating func-
tion F'{t yand/or representing matrix (¢ ) is also needed if we
wish to iterate these transformations. If we restrict Egs.
{5.27a) and (5.27b) to the z axis, using Eqgs. (5.9a) and (5.9b),
and then substitute into Eq. (5.15), we find that u(¢ ) is unique-
ly determined up to a scalar multiplicative factor. The latter
is then uniquely determined (up to a multiplicative cube root
of unity) by the unit determinant condition (5.12a). The re-
sult of this calculation is

ult) = (s*t — s)/slt — s*)wit), (5.31)
where
s(s — s*) !
w(t)=1+m haot /s* |(81L /s, 82, 83t /),

hy

{5.32)
E given by Eq. (5.26). The earlier «(t ) given by Eq. (3.18) can
be recovered by putting g, =g, = 0= h, = h,. When the
parameters satisfy Eq. (5.25), the second condition (5.12b} is
satisfied automatically and provides a quick method of cal-
culation of the inverse:

h
1 s —s* l -
wi)  =1-— m haot /s* |lg\t /s, 82, 83t /5).
h;

(5.33)

By absorbing the cubic surd in Eq. (5.31)into X _(¢), the
HHP implies that F 't Jw(t }F (¢t )~ ' is analytic everywhere (in-
cluding att = o« ) except for asimple poleat # = s. Hence, we
can write

F'(twit)F(t)"'=A (I + [¢/{t — 5)]1B), (5.34)

where 4 and B are constant matrices to be determined. Con-
dition (5.6a) at ¢ = 0 gives immediately

0
S—5
A=1+ 2|k |ig:0,0) (5.35)
ih,
Solving Eq. (5.34) for F'(t}, we have
F'(r):A(H;’—B)F(t)w(t)-‘. (5.36)
— S

The conditions that the poles at t = s and 7 = s* on the right-
hand side of Eq. (5.36) be absent are, respectively,

hy
BF(s) 41 — st |gt=o, (5.37a)
E
hy
s*
(I — B)F(s*)h =0. {5.37b)
s—s*

Equations (5.37a) and (5.29) show that B is expressible as the
outer product of a column vector and a row vector, the latter
being proportional to k. Then Eq. (5.37b) shows that the

column vector in question is proportional to F (s*)h. Hence
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we find

B = [{s — s*)/s*4 ] F(s*)hk, (5.38)
which completes the solution of the HHP. An alternative
form of the solution {5.36) is

Flt) =4 [F(t) L= 1 e )]w(t -

s*t—s) A
(5.39)

with 4, 4, and w(t) ' given by Egs. (5.35), (5.30), and (5.33),
respectively, and the components of m(t) = (m(t), m,(t),
m;(t)) given by

g & g3 0
Fuls) Fuls) Fuals) Fl)
molt) = Fyuls)  Fals) Fyls)  F(f) (340
Fy(s)  Fyls) Fls)  Fiy(f)
Observe that
m(0) = /kE(2), (5.41a)
m(s) = — g/S(s), (5.41b)
m(s*)-h = 4. (5.41c)

From Egs. (5.6a) and (5.6b), the transformed H poten-
tial is found to be

ok
H' =4 [iH(E(Z) — 275 F(s*)hk|d4 ~'iGQ2)

ss*4
0 ig,h.s/s* 0
. . § .

" s—s* | —igh —‘nghl:;Eg'h ~ ighy
ss*E s
gih 821, E gh 837,
(5.42)

The transformation equations (5.39) and (5.42) preserve spe-
cial HE gauge and the 11 and 13 components of Eq. (5.42)
reduce to Eqs. (5.27a) and (5.27b). The 12 component of the
transformed H potential is

, .5 —s*
H |2=H|2“1thF1b(s*)k1

s 5*)

23S o + H )+ S e
g S 3T 3 E 2M2-
(5.43)
Now, the transformation formula,
, tis —s*) 1 ]
F'(t)=|F(t}) + —————~ — F{s*}hm(r
A R ald
1 O 0
0 1 s*(to_s) , (5.4
o Y2
s{t — s¥)

4 given by Eq. (5.30), m(r ) by Eq. {5.40), is the result of mak-
ing the substitution {5.22) for F (s) and F (s*)but not for F (¢ ) in
the formula (5.19). This F'(¢ ) is also a bona fide F (t )-potential
in HE gauge satisfying all of the defining equations, '®'**?
but is not in special HE gauge. It gives the same Ernst poten-
tials as Egs. (5.27a) and (5.27b), and H ', is given by the first
two terms on the right-hand side of Eq. (5.43). One should
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expect to find a simple relationship between the transforma- glz)

tions (5.44) and (5.39). Besides the gauge transformations of 1 0 0

the form (5.22), we also need the trivial translations, 1 y—icc*t —ct 0 1

w—o + real constant, ¢,—@, + complex constant, which =lo 1 0 N
are outside the gauge group. These are the ¥5) and ¢ trans- 0 2ic* 1 o o St=s)

formations of Ref. 14 (or /% and ¢ according to our own s¥r —3) (5.4

convention®®) and are easily exponentiated to give N
Note that y is real and g(¢ ) satisfies the conditions (5.23).

1 0 O 1 —y—icc*t «t
Fiey=l -y 1 0]F(@)]o 1 0], Generation of Kerr-Newman-NUT space
2c* 0 1 0 — 2ic* 1 Let us calculate the effect of the transformation (5.27a)

(5.45) and (5.27b) on flat space, & = 1, & = 0. The F(¢) potential

1o 16
7 real, ¢ complex. The transformation law (5.39) preserving for flat space is

special HE gauge can be achieved by appplying first the ! i

transformation (5.44), then {5.45) with ¥ and ¢ chosen so that S{r) S{t)

H';, and H';, become constant on the z axis, and finally Fty=| 1—=2tz+S(t) 1—2z—S(t)

(5.22). A direct evaluation of y, ¢, and g(t ) starting from Eq. 2iS(r) 2t5(t)

(5.44) is rather tedious, but it is easy to calculate their values 0 0 1

by working backwards from Eq. (5.39). The results are (5.48)

__ s—s* P s* A It is convenient to use oblate spheroidal coordinates (X, )
r= S*E £ €= ss*E &M defined by
.S, (5.46) p=RE+ 1)1 =1 z=ify+z,  (5.49)
CEYTRg & Zo—iR=(25)"", zy+ik=(25*"", Ims>0.(5.49b)
|

Then

St)= — LY g RE=D) (5.50)
Zy—IK 2y + ik

where the signs have been chosen so that F (s) and F(s*) reduce to the form (5.9b) on the branch y = + 1 of the z axis. A
straightforward substitution into Eqs. (5.27a) and (5.27b) gives

& — g(X + i) +g*h X =)+ Jigig*,(1 +y) — 2ihh* (1 — y) + &:8%:(x — iy)
&iM(X — i) +g* A * (X + i) — Ligig*\(1 — y) + 2ih,h * (1 + ) + g% — iy)

- ig5(g* + 2h,)
gih(X — i) +g*h% (X +i)— 1ig\8* (1 — ) + 2ih A *\(1 + y) + g3g*4(X — iy)

(5.51a)

(5.51b)

where we have used Eqs. (5.25) to eliminate g,, ,, and ;.

The solution (5.51a) and (5.51b) is recognizable as the Kerr-Newman-NUT space with magnetic charge. It can be
generated from the vacuum Kerr solution by means of the SU(2, 1) Kinnersley group.*® The appearance of oblate spheroidal
coordinates indicates that the Kerr solution in question is without horizons, i.e., beyond the extreme (|a| > m in a familiar
parametrization’’). A standard form®®*° for the vacuum Kerr solution!” is

§=px+igy, k=mp, a=mgq, (5.52)

where§ = (1+ &)/(1 - &),” p* + ¢* = 1, and (x, y) are prolate spheroidal coordinates with foci atz =z, + «. This solution
can be obtained from flat space by applying two Harrison transformations with real s parameters.®*° The beyond the extreme
case, |g| > 1, where the s parameters form a complex conjugate pair, can be expressed in oblate spheroidal coordinates (x, y)
defined by Eq. (5.49a) and obtainable from the prolate case by the substitutions, x = i¥,x = — iK,p = — ip, > = ¢* — 1. Thus
the Ernst potentials are

@ — pPxX+igy—1
PX+igp+1’
Now apply the Ehlers transformation, '3
gro EXA o (L+id)0

1+ A% 1+iA%

@ = 0. (5.53)

, (5.54)
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A real, which introduces a NUT parameter, and the charging transformation of Harrison*' and Ernst,*

yo_ & +20*P—bb*
1 —2b*® —bp*% '
o _bE -1+ +bb¥e
1 —2b*D — bb*&

’

b complex, in either order to the Kerr solution (5.53). The result is**

o _ (L= iAbb )G +iqy — 1) + (A — bb*)p % +igy + 1)

(1 —iAbb*)F X +igy + 1)+ (A —bb "G X +igy — 1)

o 2b(1 +id)

It is easy now to identify the solution (5.51a) and (5.51b) with
{5.56a) and (5.56b) although the relations connecting the pa-
rameters are rather messy. Also, having obtained the solu-
tion (5.51a) and (5.51b) in oblate spheroidal coordinates

(gl > 1), it is a trivial matter to analtyically continue to the
prolate case (|¢] < 1). The six parameters, z,, « {or &), ¢, 4,
Re b, Im b, determine, respectively, the following physical
characteristics: position on z axis, mass, angular momen-
tum, NUT parameter, electric charge, and magnetic charge.

It is to be expected that n successive applications of the
new transformation of this section to flat space would give
the nonlinear superposition of n Kerr—-Newman-NUT parti-
cles on the z axis. This would generalize the known results
for vacuum Kerr—-NUT particles (Kramer and Neuge-
bauer*’) and electrically poised Kerr-Newman-NUT parti-
cles (Kobiske and Parker*¢). From Kramer and Neuge-
bauer’s work, it is clear that it is not necessary that Coulomb
repulsion balance gravitational attraction for the conical
stresses to be absent between the particles (assuming NUT
singularities have already been removed) as a spin-induced
“magnetic-type” gravitational force is also present and is
able to balance the more familiar “electric-type” gravity
even in the case of uncharged Kerr particles.

At present, the only known examples of two or more
black holes, for which all spacetime singularities are en-
closed by nonsingular even horizons, in equilibrium under
mutual gravitational and electromagnetic interactions is the
superposition of n static extreme Reissner-Nordstrom
holes.*® The two cases mentioned in the preceding para-
graph are beyond the extreme (no horizons) when axial
stresses are absent (except for the static limit of the Kobiske—
Parker solution which consists of Reissner—Nordstrom
holes). Preliminary calculations, however, suggest that it
may be possible to balance two nonextreme Kerr-Newman
black holes for certain range of the charges, masses, angular
momenta, and spatial separation. Further work need to be
done to clarify this interesting problem.

6. CONCLUSION

In Secs. 3 and 4 of this paper, we have explored the
infinite-dimensional Geroch group K of transformations for
vacuum spacetimes in the representation of Hauser and
Ernst.'*2° The main result of those sections is that Harri-
son’s Bicklund transformation® is in K (though not a sub-
group) and that elements of K represented by (¢ ) matrices of
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(1 —iAbbMFE+igy + 1)+ (A —bbMFE+igy —1)

(5.55)
(5.56a)
(5.56b)
the form
u(t) = [det v(e)] ~2(t), (6.1)

v(t ) being a rational matrix function of ¢, are in fact products
of a finite number of Harrison transformations. Each qua-
dratic branch point of u(¢) of index 4+ {in L not at the
origin corresponds to an individual Harrison transformation
(t = Ois also a branch point when there are an odd number of
the latter). This result in a sense generalizes the earlier result
of Hauser and Ernst'® that simple poles of u(¢ ) correspond to
null HKX transformations.’* The coalescence of two qua-
dratic branch points to form a simple pole at ¢ = s provides
an easy proof of the theorem'? that the null HKX transfor-
mation factorizes into two Harrison transformations with
same s parameters.

We have chosen the Hauser—Ernst (HE) representation
for K instead of the earlier representations of Geroch? and
Kinnersley and Chitre'*~'® because we needed the transfor-
mations to be already exponentiated. Since the Harrison
transformations are not subgroups of K, it would be rather
difficult to give an adequate description of them in terms of
infinitesimal generators of K. Furthermore, we have found
the complex-variable techniques of Hauser and Ernst rela-
tively easy to handle and often lead to significantly simpler
computations. In Sec. 4, we exploited the already exponen-
tiated property to exhibit finite transformations in the B
group and nonnull groups of Kinnersley and Chitre in terms
of products of Harrison and/or HKX transformations.

The reader interested in stationary axisymmetric gravi-
tational fields is now confronted with a considerable variety
of solution-generating techniques. One impression that the
author hopes has been gained from Refs. 6 and 12 is that it is
advantageous to be familiar with all of the available methods
and their interrelationships as there are situations in which
each is best suited. With regard to the HE formalism, for
example, one can think of situations where the formalism is:
(i) the obvious or only one to consider (e.g., applications in
the present paper and Ref. 20); (ii) is more manageable than
its competitors (e.g., most applications in Refs. 18 and 19;
composition of several transformations in KJ; (iii) is less man-
ageable than its competitors (e.g., SL(2)-covariant manipula-
tions of Belinsky—Zakharov transformations® as in Secs. 5
and 6 of Ref. 12); or (iv} is not an applicable method (e.g.,
applications of the Q and Q groups®~'? or, equivalently,
Neugebauer’s Backlund transformations,''**** which are
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not in K).

Although the HE formalism does not pretend to repre-
sent transformations outside K, it can nevertheless be used to
provide more satisfying proofs that such transformations are
indeed outside K. For example, the Q group preserves as-
ymptotic flatness and the transform of the F (¢ ) potential giv-
en by Egs. (2.30a)—{(2.31b) of Ref. 12 is easily shown to pre-
serve special HE gauge.*® It follows that there is an infinity of
elements of K which transform a given solution & p, z) to
E'(p,2)=(Q) & p, 2), (Q)4 € Q. Restricting Egs.
(2.30a)-(2.31b) and (2.2a) and (2.2b) of Ref. 12 to the symme-
try axis (p = 0 =p’), we find

£'0,2) = £(0,2), 7 =z/(1 — 2s2). (6.2)
Similarly for (Q),, € Q, we find'?
£10,2) = (1 — 252)"'%(0, 2), 2z =z/(1—252). (6.3)

When these values are substituted into Eq. (2.25) here, it is
clearly impossible to choose a matrix #(t ) which is not explic-
itly dependent on the initial solution. Thus neither (@ ),, nor
(@), can be identified with any of the elements of K which
map & to (Q )., & orto(Q),, &, respectively. The same com-
ments apply to other subgroups of Q and Q, in particular,
the trivial rescaling ( p, z)—{kp, kz) and translation

(p, 2)—( p, z — z,). One corollary of the result that the Harri-
son transformation is in K and factorizes into Q and Q trans-
formations'? is that any product of elements of Q, 6, and K
is contained in K if and only if the combined transformation
leaves { p, z) fixed.

A reasonable question to ask is whether all known
transformations which leave ( p, z) fixed are members of K.
The trivial reflection & — & *, which reverses the sense of
rotation, is easily shown to be not in K by the same argument
as in the previous paragraph. The Kramer-Neugebauer
mapping”’ [see Ref. 12, Sec. 3, for the transform of F(¢)] and
the Belinsky-Zakharov single-soliton transformation®'?
create curvature singularities along the whole z axis and gen-
erate complex-valued metrics from real-valued and so are
necessarily outside the framework of all existing representa-
tions of K. However, preliminary calculations suggest that
these transformations may be obtainable as limits of se-
quences of bona fide elements of K and should therefore be
accepted as being in K themselves. These results will be in-
cluded in a separate paper when details are finalized. A
simpler example of such a limiting class of group elements is
the s = oo limit of the HKX transformation.’?

In Sec. 5, we attempted to generalize Harrison’s Bick-
lund transformation to electrovac spacetimes by studying
elements of K’ for which

u(t) = {detv(e)] ~"v(t) (6.4)

in the HE representation, where v(z ) is a 3 X 3 matrix whose
entries are rational functions of z. On comparison with Eq.
(1.1} for the vacuum Harrison transformation, it is natural to
expect that a choice of v(z) such that «(z ) has cubic branch
pointsat f = 0 and one other point, say f = s, in L , joined by
a cut is a reasonable candidate for the electrovac Harrison
transformation. Unfortunately, no such choice is compatible
with condition (5.12b) which is quadratic in (¢ ). The sim-
plest choices for v(t ) compatible with conditions (5.12a)-
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(5.12d) have determinants of the forms (5.17a)}{5.17¢) or
similar forms with the result that u(# ) has cubic branch points
in L, att=sandt = s* s complex, joined by a cut. The
Bicklund transformation deduced therefrom [see Eq. (5.39)]
is obviously an electrovac enlargement of the double Harri-
son transformation with complex conjugate s parameters.
(When g, = 0 = h,, the transformation {5.39) maps vacuum
to vacuum and is precisely the double Harrison transforma-
tion.) We proved that this transformation maps flat space to
the full family of Kerr—-Newman~-NUT spacetimes with six
parameters: mass, angular momentum, NUT parameter,
electric charge, magnetic charge, and position on z axis.

The s parameters being complex conjugates in Eq. (5.39)
gave us the Kerr-Newman-NUT solution in oblate spheroi-
dal coordinates, i.e., beyond the extreme (a* + e*>m?>’
lg| > 1%°). The prolate case (a* + ¢*> < m?, |g| < 1), which has
horizons at x = 4+ 1, can be obtained by a trivial analytic
continuation of the parameters. One is tempted to consider
an analytic continuation of the parameters in Eq. (5.39) in
order to define a corresponding transformation with two real
s parameters (e.g., by formally introducing a second imagi-
nary unit, j say, subject to i =j> = — 1,* = — i, j* =),
but it is not obvious how this may be achieved.

Of course, every vacuum-to-vacuum transformation in
K is the restriction to vacuum of an infinite number of ele-
ments of K'. Suppose F,,.{t }is a given vacuum F {t ) potential
and u,,.(¢) a given 2 X 2 matrix obeying conditions (2.18a),
(2.18b), and (2.19). Then the 3 X3 F(t) potential and corre-
sponding elements of K’ are given by

Fit)= (F welf) 0) : (6.53)
0 1
ult) = (e O lt) 0 ) (6.5b)
0 e2i9(t) ’ *

where 8 (t) = 6 *(t )isanarbitrary function of ¢, analyticon L,
throughout L _, and at t = . If 1, (¢) is chosen as the
representing matrix of the single Harrison transformation
[Eq. (1.1)], then it is still not possible to choose 6 (¢ ) such that
Eq. (6.5b) takes the form (6.1) with algebraic branch points
only at t = 0 and ¢ = 5. On the other hand, if we simply put
8(t) = 0, say, the HHP cannot be solved by the methods of
this paper when the given electrovac solution has a nontri-
vial electromagnetic field.

Perhaps the most positive evidence for the existence of
an electrovac counterpart to the single Harrison transforma-
tion can be gleaned from recent work of Kinnersley and
Lemley* on the electrovac counterparts of the Q and Q
groups>~"'? (or equivalently, [, and I, Bicklund transforma-
tions,'' respectively). The arguments which follow are of a
speculative nature and are based on analogy with known
results in vacuum: the quantitative details should be filled in
in the near future. First, note that in Refs. 6 and 12, the
vacuum Harrison (H ) transformation has been factorized
into the forms

H=ILI = (L)g(0) _ 4,(P)a(Q)ec (6.6a)
H=I11I=P)g(Q)_4L)50); (6.6b)
(P)o €P,(L)y eL(see Sec. 2);(Q), 4 €Q, (0), . €Q*
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@,B,8€SLZ R); 1, = (P)o(Q)s = (Q)s(P)as

I, =(L)g(Q)s = (Q)s(L ). The four groups, P, L, Q, and
Q, each locally isomorphic to SL(2, R ), each contain one
nontrivial parameter and two gauge parameters. This fact,
together with the algebraic relations between a and B and
between @ and f3,'? limits the vacuum H transformation to
two nontrivial parameters.

Let us now try to interpret Eqgs. (6.6a) and (6.6b) in the
electrovac context. The electrovac counterpart of the P
group is the well-known SU(2, 1) Kinnersley group'*® (de-
noted H' in Ref. 13) with eight real parameters. Thus a
would now be a 3 X 3 pseudounitary matrix with unit deter-
minant. This group contains three nontrivial parameters
[Ehlers transformation (5.54) and Ernst-Harrison charging
transformation (5.55)] and five gauge parameters. [If applied
to a vacuum solution, the SU(2, 1) group P only provides two
nontrivial parameters as the phase of b in Eq. (5.55) gives rise
to an electromagnetic duality rotation, which is already one
of the gauge transformations in P.] The full eight-parameter
electrovac counterpart of the L group is not so well known as
it appears that no eight generators in K’, three being the %,
which generate a unimodular linear transformation of the
Killing vectors,'* will close to form a representation of the
Lie algebra of SU(2, 1). Recently, Kinnersley (private com-
munication) has found an SU(2, 1) group by dropping the
requirement that the generators preserve the reality of the
metric £, and the electromagnetic potential
A, = Y@, + @ *4), and other real potentials. So the L group
is available if we allow such a complex extension. Next, the
electrovac counterparts of Q and Q, presumed to exist,
should be locally isomorphic to SL(2, R ) as they would neces-
sarily transform the coordinates ( p, z) exactly according to
Egs. (2.2a) and (2.2b) of Ref. 12 [transformations which leave
{ p, z)invariant are not considered to belong to Q or Q unless,
for convenience, we use the latter symbols for the larger
groups, I, = PQ, I, = LQ, respectively]. Since Q is pre-
sumed to commute with L, it would not be surprising if Q did
not preserve the reality of £, 5, 4 ,, and other real potentials.

The above comments imply that there should exist for
electrovac spacetimes two eleven-dimensional groups,

I, = PQ and I, = LQ, each containing four nontrivial pa-
rameters and seven gauge parameters. (When applied to a
vacuum solution, there would only be three nontrivial pa-
rameters, the magnetic charge not being counted.) Accord-
ing to a further analogy with vacuum, the expected algebraic
relation between the SU(2, 1) matrices a and 3, or between &
and B, in Egs. (6.6a) and (6.6b) would restrict the H transfor-
mation to at most four parameters (possibly only three). It is
certain that this electrovac A transformation, if it exists,
would generate complex-valued solutions from real-valued.
Thus, it would be necessary to extend the complex-variable
formalism of Hauser and Ernst to two complex dimensions
(C?) in order to incorporate the H transformation into their
representation for K'. Such an analytic continuation to C * is
straightforward in the Kinnersley—Chitre representa-
tion'*'® (e.g., introduce an imaginary unit j and let the real
and imaginary parts of the i-complex potentials be j-com-
plex, j* = j) but will probably require more serious thought
for the HE formalism.

2638 J. Math. Phys., Vol. 22, No. 11, November 1981

If the electrovac version of the single Harrison transfor-
mation contains the maximum four parameters then the
double transformation must contain eight (seven if applied to
a vacuum solution), two more than in our formula (5.39). In
that case, it is difficult to imagine what the full transform of
flat space would be. The only known solution containing
Kerr-Newman—NUT space is the stationary charged C met-
ric*? with one extra parameter (acceleration), a cosmological
constant being inadmissable here. However, this solution
must be ruled out because the stationary uncharged C metric
is the transform of flat space under three Harrison transfor-
mations, as can be seen by direct substitution into Eq. (2.25).
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