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Small spatial perturbations grow into fingers along the unstable interface of a fluid
displacing a more viscous fluid in a porous medium or a Hele-Shaw cell. Mitigating
this Saffman-Taylor instability increases the efficiency of fluid displacement applications
(e.g., oil recovery), whereas amplifying these perturbations is desirable in, e.g., mixing
applications. In this work, we investigate the Saffman-Taylor instability through analysis
and experiments in which air injected with an oscillatory flow rate outwardly displaces
silicone oil in a radial Hele-Shaw cell. A solution for linear instability growth that shows
the competing effects of radial growth and surface tension, including wetting effects, is
defined given an arbitrary reference condition. We use this solution to define a condition
for stability relative to the constant flow rate case and make initial numerical predictions
of instability growth by wave number for a variety of oscillations. These solutions are then
modified by incorporating reference conditions from experimental data. The morphological
evolution of the interface is tracked as the air bubble expands and displaces oil between
the plates. Using the resulting images, we analyze and compare the linear growth of
perturbations about the mean interfacial radius for constant injection rates with and without
superimposed oscillations. Three distinct types of flow rate oscillations are found to modu-
late experimental linear growth over a constant phase-averaged rate of fluid displacement.
In particular, instability growth at the interface is mildly mitigated by adding to the base
flow rate provided by a peristaltic pump a second flow with low-frequency oscillations of
small magnitude and, to a lesser extent, high-frequency oscillations of large amplitude. In
both cases, the increased stability results from the selective suppression of the growth of
large wave numbers in the linear regime. Contrarily, intermediate oscillations consistently
destabilize the interface and significantly amplify the growth of the most unstable wave
numbers of the constant flow rate case. Numerical predictions of low-frequency oscilla-
tions of opposite sign (initially decreasing) show promise of even greater mitigation of
linear instability growth than that observed in this investigation. Looking forward, proper
characterization of the unsteady, wetting, and nonlinear dynamics of instability growth will
give further insight into the efficacy of oscillatory injection rates.

DOI: 10.1103/PhysRevFluids.5.123902

I. INTRODUCTION

When one fluid displaces another of larger viscosity in a porous medium, small wavelike
perturbations at the fluid-fluid interface grow and resemble “fingers” in a process known as viscous
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FIG. 1. Experimentally obtained, background-subtracted photograph (left) showing the Saffman-Taylor
instability along the interface between air outwardly displacing silicone oil. The interface represented as a
discretized boundary (right) that is uniformly partitioned by angle, as produced by the methods discussed in
Sec. III.

fingering, or the Saffman-Taylor instability. The ability to prescribe flow conditions that amplify or
attenuate this instability is desirable in a variety of engineering applications, such as petroleum
engineering. For example, when water jets displace oil reservoirs in porous rocks, widespread
fingering reduces secondary oil-recovery yield, which often hinders the extraction of the majority
of oil in the reservoir [1]. Further, numerical simulations suggest that cyclically water-flooding oil
reservoirs can significantly improve the overall yield [2]. Another study showed that withholding
injection for a significant duration can retract fingers after an initial injection period [3]. As such,
unobtrusively mitigating viscous fingering directly benefits many fluid applications and, further,
time-varying control schemes show promise in achieving this goal. However, numerous benefits
derive from instability amplification as well. For example, amplifying instabilities can increase
mixing efficiency in microfluidic applications [4]. Additionally, a recent model suggests that the
structural integrity of hydraulic fractures can be improved when displacing the slurry used to hold
the fracture open by allowing viscous fingering to dominate over density-based gravitational effects
[5]. Further, viscous fingering affects the efficiency of CO2 sequestration in terms of the pore-space
utilized for long-term CO2 storage in, e.g., saline aquifers [6]. Improving the efficiency of these and
other engineering processes motivates the present investigation, in which we aim to theoretically
and experimentally control (i.e., amplify or attenuate) the Saffman-Taylor instability.

When the flow is governed by Darcy’s law (e.g., in a porous medium), the interface between two
immiscible fluids becomes unstable if the displaced fluid has a higher viscosity than the displacing
fluid [7]. Flow between two closely spaced parallel plates (i.e., in a Hele-Shaw cell) is analogous to
flow in a porous medium since it is also governed by Darcy’s law. An example of the Saffman-Taylor
instability during outward flow in the radial Hele-Shaw cell configuration is shown in Fig. 1.

The continuous interface is defined in terms of its radius r(θ, t ) from the point of injection for all
angular coordinates θ at any time t during injection, assuming r(θ, t ) is not multivalued. A small,
spatial perturbation of the interface about its mean, R(t ), is defined as a(θ, t ) = r(θ, t ) − R(t ). Since
the Fourier modes form a complete basis of the angular domain, the perturbation can be decomposed
into an infinite sum of wavelike functions as

a(θ, t ) =
∞∑

n=1

An fn(t )einθ , (1)

where n = 1, 2, 3, . . . and the n = 0 term can be excluded by assuming a zero-mean perturbation.
The behavior of fn(t ) governs the instability dynamics in the linear regime. The spatial parameter
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An scales instability growth for each wave number, and can be expressed independently of wave
number by imposing appropriate reference conditions on fn(t ).

The analysis of [8] considered specifically the case of incompressible flow, driven by a constant
flow rate (CFR), in a radial Hele-Shaw cell with constant spacing b between the parallel plates. In
this case, the area flow rate Q is defined as the time rate of change of the area enclosed by the bubble
from the viewpoint of Fig. 1. Consequently, the mean interfacial radius is given by

R(t ) =
[
R(0)2 + Qt

π

] 1
2

, (2)

where Q is the area flow rate, i.e., Qb is the volume flow rate, and the initial bubble radius R(0)
is given at t = 0. Neglecting wetting effects, the linear instability growth rate for the CFR case is
defined as

f ′
n(t )

fn(t )
= n − 1

R(t )2

(
Q

2π
− n(n + 1)σM2

R(t )

)
, (3)

where σ is the surface tension and μ2 and M2 = b2

12μ2
are the viscosity and mobility of the

displaced fluid, respectively. As in [8], the critical (largest) wave number nc predicted to grow and
the maximally growing wave number nm are determined by solving f ′

n(t ) = 0 and ∂
∂n [ f ′

n(t )] = 0,
respectively. The expressions for the time evolution of these wave numbers are given by

nc(t ) =
(

QR(t )

2πσM2
+ 1

4

) 1
2

− 1

2
, (4a)

nm(t ) =
[

1

3

(
QR(t )

2πσM2
+1

)] 1
2

. (4b)

Half a century after Saffman and Taylor’s namesake analysis [7], modern investigations have
yielded a variety of methods for controlling finger growth in a Hele-Shaw cell. The mathematical
framework describing viscous fingering was initially developed for a CFR. However, recent control
methods, which have introduced time-varying flow parameters, inspire the methods underlying the
present investigation. The investigations of [9] produced highly symmetric bubble morphologies by
varying the injection pressure to produce a flow rate that decays as a power law with time. The
number of symmetric petals formed during injection was controlled by varying a “flux constant.”
This parameter was later defined for time varying Q(t ) by [10] as

J (t ) = Q(t )R(t )

2πM2σ
= 3nm(t )2 − 1, (5)

and used to control viscous fingering subject to restricted flow conditions. Setting flow conditions
such that the value of J is time independent, the resulting bubble morphologies are predictable and
highly symmetric. The definition in (5) reveals that instability growth is related to a time-varying
capillary number based on the characteristic velocity Q(t )R(t )/2πb2 = R′(t )(R(t )/b)2. Further, J (t )
is the time-varying analog of the global capillary number [11,12], which is given by 2πJ (0) and
defined in terms of the radius, R(0) > 0, of an initially unperturbed interface.

A recent, comprehensive study [13] of nonstandard Hele-Shaw setups introduced two geometric
parameters (the isoperimetric and circularity ratios) which have the potential to be integrated with
experimental data. The investigators used numerical simulations to characterize the stability of
Hele-Shaw cell configurations with tapered plates, rotating plates, and time-varying injection rates.
Their results suggest that viscous fingering in a Hele-Shaw cell can be suppressed by introducing,
either in isolation or together, a tapered gap and time-dependent injection rates.

The effect of an oscillatory flow rate on instability growth has been the subject of previous
numerical investigations [1,14]. One investigation found a reduction in fingering extent, which
they attributed to a nonlinear finger competition mechanism that leads to bubble detachment at

123902-3



RAHUL ARUN et al.

the interface. For oscillations, 20% of the mean flow rate, the optimal oscillation frequency for
instability mitigation by this nonlinear mechanism was reported as f = 3/t f , where t f is the final
time. Another recent investigation [14] found that resonant morphological structures formed (in the
nonlinear regime of growth) for certain periods of sinusoidal injection. The authors proposed this
phenomenon as a viable method to determine fluid viscosity experimentally.

With the significant progress of these previous efforts to control viscous fingering, we anticipate
that investigating time-varying injection schemes will draw further benefits. The power-law flow rate
investigated by [9] provides a means to suppress instability growth by wave number and produce
symmetric interfacial patterns. However, the control scheme employs a monotonically decreasing
flow rate, which could limit some large-scale displacement applications. The investigations of [1]
into the stability induced by flow rate oscillations were based on numerical simulations, thus, a
logical addition to the collection of recent literature [1,14] regarding injection rate oscillations
is an experimental, broader-scale parameter study. As such, the present investigation aims to
explore a variety of flow rate oscillations and determine which cases are optimal for stabilizing or
destabilizing the interface using a joint experimental and analytical approach. In what follows, the
methodology, results, and implications of the experiments, in which air is injected at an oscillatory
rate into a radial Hele-Shaw cell filled with a more viscous silicone oil, are outlined. Particularly,
in Sec. II, we consider a time-varying flow rate and develop analogous equations to (2)–(5), and
conditions for linear stability relative to the CFR case, again neglecting wetting effects. In Sec. III,
we present the experimental design we use to inject air at an oscillatory rate into silicone oil in a
radial Hele-Shaw cell. We then present and compare the theoretical and experimentally obtained
growth in Sec. IV. In Sec. V, we briefly discuss the implications of our stabilizing and destabilizing
control schemes, and the limitations of our analysis and experiments. Finally, we summarize our
findings and recommendations for future work in Sec. VI.

II. ANALYSIS

Here, we present an analysis based on the results of (2)–(5) modified to account for a time-
varying injection rate Q(t ). In this case, (2) is rewritten as

R(t ) =
(

R(0)2 + 1

π

∫ t

0
Q(s)ds

) 1
2

. (6)

Despite the introduction of a time-dependent flow rate, the radial velocity of the interface retains a
simple form

R′(t ) = Q(t )

2πR(t )
. (7)

Following the analysis in [8] using a variable flow rate yields an analogous linear instability growth
rate to that in (3), given by

f ′
n(t )

fn(t )
= n − 1

R(t )2

(
Q(t )

2π
− n(n + 1)σM2

R(t )

)
, (8)

that is consistent with the analysis of [15]. The corresponding wave numbers representing critical
and maximal instability growth are similarly modified to account for time-varying flow rates as

nc(t ) =
(

Q(t )R(t )

2πσM2
+ 1

4

) 1
2

− 1

2
, (9a)

nm(t ) =
[

1

3

(
Q(t )R(t )

2πσM2
+1

)] 1
2

. (9b)
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We note that these results also immediately follow from the CFR result (3) since the flow
dynamics prescribed by the steady, incompressible form of Darcy’s law imply that the only time
dependence comes from the kinematic condition at the interface. In particular, we emphasize that
we continue to assume that any inertial terms (including those arising from the time-varying flow
rate) can be neglected. The analysis performed here also implicitly assumes a separation between
the timescale governed by the flow rate Q(t ) and the timescale representing the rate of growth of
perturbations (i.e., the mean behavior is slow compared to the growth or decay of perturbations).
This assumption does not hold where the growth of perturbation amplitude occurs more slowly than
the mean flow timescale (such as when we are close to neutral stability), so it is reasonable to expect
a reduction in quantitative accuracy of the theoretical predictions in these regimes. However, from
an averaging (bracketing) argument, we expect that the analysis should still give useful qualitative
predictions in such regimes, albeit with larger quantitative uncertainty.

The linear analysis is valid for times t such that 0 � t � tmax where nonlinear effects, such as
harmonic mixing, tip splitting, and finger competition, become important after tmax. A strict criterion
for linear stability of the interface relative to its initial condition at t = 0 can be derived by analyzing
the terms of (8). By considering outward radial flow starting at t = 0 and requiring that f ′

n(t ) � 0,
we integrate the corresponding non-negative inequality R′(t )R(t )2 � n(n + 1)σM2 to determine a
bound on R(t ), given by

R(t ) �
[
R(0)3 + 3n∗(n∗ + 1)σM2t

] 1
3 , (10a)

Q(t ) � 2πn∗(n∗ + 1)σM2[
R(0)3 + 3n∗(n∗ + 1)σM2t

] 1
3

, (10b)

where n∗ is the smallest (strictly) stable wave number and we have used (6) to determine the
Q(t ) criterion. The bounds in (10) imply the linear stability of perturbations of wave number
n = n∗, n∗ + 1, . . . for times t ∈ [0, tmax]. However, strictly requiring f ′

n(t ) � 0 at all times may not
be necessary to produce an effectively stable interface in the linear regime. The solutions fn(t ) to
the instability growth function f ′

n(t ) with fn(t1) = 1 are defined for a truncated set of wave numbers
n = 1, 2, . . . , nmax as

fn(t ) =
[

R(t )

R(t1)

]n−1

exp

[
−(n − 1)n(n + 1)σM2

∫ t

t1

R(s)−3ds

]
. (11)

The form of the solution expressed in (11) shows that instability growth induced by outward flow is
in competition with decay induced by the effects of surface tension. Most of the numerical analysis
we employ involves solving (11), subject to the flow rate oscillations analogous to those detailed in
Sec. III. However, the underlying techniques are applicable to non-negative, time-varying flow rates
that satisfy the steady, incompressible form of Darcy’s law.

The reference condition time t1 is not explicitly defined, and thus can be tailored differently
to our theoretical and experimental approaches. In the following analysis [i.e., (12)–(15)], we
present simplifications in the instability conditions that arise by specifically defining t1 = t1(n) as
the smallest time satisfying nc(t1) = n. This definition implies that a particular mode only begins
to grow once it becomes critical. When considering a CFR driven by an area flow rate Q0, (3)
integrates to an analytic solution [16]. We recast this solution in terms of J0(t ) by noting that
J (t1) = J0(t0

1 ) = n(n + 1), such that it is expressed as

f 0
n (t ) =

[
J0(t )

n(n + 1)

]n−1

exp

[
(n − 1)

(
n(n + 1)

J0(t )
− 1

)]
, (12)

where subscripts and superscripts of 0 indicate the CFR case, unless otherwise specified. Using
the results of (11) and (12), we derive a criterion for stabilization relative to the CFR case when
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R(t ) = R0(t ), which is given by

ln

�1+ξ︷ ︸︸ ︷[
Q(t1)

Q0

]
+1

n(n + 1)
− σM2

∫ t

t1

R(s)−3ds <
1

J0(t )
, (13)

where we have assumed that the injection rate is constrained by

Q(s)

Q0
� 0 ∀ s ∈ [t1, t],

Q(t1)

Q0
� 1 + ξ, (14)

where ξ > −1. The stabilization criterion in (13) is valid for n > 1, but this restriction is insignifi-
cant since the solution to the linear growth rate equation is trivial for n = 1. For the case of outward
flow driven by an oscillatory injection rate ξ < 1 such that 1 − ξ � Q(s)/Q0 � 1 + ξ ∀ s ∈ [t1, t].
While not exploited in our investigations, the integration-by-parts relationship

σM2

∫ t

t1

R(s)−3ds = −1

2

[
1

J (t )
− 1

n(n + 1)
+ 4π2σM2

∫ t

t1

R′′(s)

Q(s)2
ds

]
(15)

may garner further insight into the relationship between the acceleration of the interface, capillary
effects, and linear instability growth assuming the steady form of Darcy’s law. For example, consider
the optimal injection scheme derived by [17] via a Euler-Lagrange equation, which assumes that
J (t ) � 1. With fixed initial and final conditions, the optimality condition is given by R′′ = 0, thus
producing a linearly increasing flow rate and simplifying the stabilization term. We emphasize that
the solution does not incorporate wetting and viscous stress effects, for which analogous growth
rate expressions have been developed for a CFR [18]. In Appendix A, we include these effects in
the CFR growth rate equation to derive a modified equation governing nm and an instability growth
solution including wetting (but not viscous stress) effects.

III. EXPERIMENTAL METHODS

The analytical predictions developed in Sec. II are experimentally tested using a radial Hele-
Shaw cell apparatus outlined here. Two 19-mm-thick glass plates (381 mm × 381 mm), flat to
less than 1 λ at 633 nm, with a uniform spacing enforced at each corner using shim supports
(b = 1 ± 0.05 mm) are supported in a tub filled with silicone oil (ClearCo 50 cSt silicone fluid:
density ρ2 = 960 kg/m3, viscosity μ2 = 0.048 Pa s, surface tension σ = 0.022 N/m) so that the
free surface lies at the bottom of the top plate and leveled to within 0.2◦ such that gravity acts
uniformly on the cell (Fig. 2). Air is injected through a centrally drilled hole on the top plate.
An analog, peristaltic pump (Masterflex L/S Economy Drive, Model 77200-60), operating at
5 Hz provides a nominally constant mean flow rate (see Appendix B for a characterization of the
peristaltic flow rate), while the superimposed oscillations are produced by a zero mean flow rate
oscillatory pump (Fluid Metering Inc, STQP Adjustable High Flow Stepper Pump) with a custom
frequency control board (Fluid Metering Inc, SCST-01), providing a constant stroke volume Vh.
For the oscillations, three different frequency regimes are considered based on increasing (nominal)
pulse frequency fpn: LF (low frequency, fpn = 0.17 Hz), IF (intermediate frequency, fpn = 2.7 Hz),
and HF (high frequency, fpn = 10.7 Hz). Platinum-cured silicone tubing (Masterflex L/S Precision
Pump Tubing, Model 96410-16) is used for all connections. A square area (20.4 cm × 20.4 cm)
in the free surface plane, containing the air-silicone interface, is imaged at 60 Hz using a SA4
Photron camera with a 1024 pixel × 1024 pixel CMOS sensor, fitted with a 50-mm macro lens and
a resulting resolution of 5 pixels/mm.

The resulting air-silicone oil interface is represented by the area it encloses, A(t ) =
π

nint

∑nint
m=1 r(θ (m), t )2, where r is the distance of each interface point from the center of the frame

(and origin of the coordinate system). The average interfacial radius is taken as R(t ) = (A(t )/π )1/2.
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FIG. 2. Experimental apparatus: air is pumped into a radial Hele-Shaw cell with silicone oil as the working
fluid. The air-silicone oil interface growth is imaged with a high-speed camera.

The interface contour is detected on each of the acquired images and subsequently discretized. Im-
age preprocessing includes background subtraction, contrast enhancement, and Gaussian filtering.
A Sobel edge is used for interface detection. Prior to discretization, the interface is dilated to allow
for missing point replacements and subsequently eroded to one pixel, thus accurate to the originally
detected outline within a pixel. To maintain roughly consistent spacing between points as the radius

grows, the number of discretization points nint increases according to nint = n0(1 + b2

R(0)2
t
t∗ )

1/2
,

where t∗ = πb2

Q0
, while R(0) and n0 are the average interfacial radius (see Appendix B) and number

of discretization points at t = 0, respectively. Finally, postprocessing of the discretized interface
includes filtering (and linear interpolation to maintain uniforming spacing) when noise higher than
five median absolute deviations from the median radius is present. The parameter n0(= 50) is
chosen such that spatial resolution is balanced with noise amplification when computing geometrical
parameters at small radii.

The reference timescale t∗(= 1.91 ms) equating the area enclosed by the interface to that
enclosed by a circle with a radius of one gap width b is taken as constant and computed using
the mean Q0 produced by the CFR experiments (discussed below). This timescale is derived from a
purely geometric basis, and was previously employed in [19]. The oscillatory parameters ξ and fp

are not considered in formulating t∗ to simplify the geometric comparisons of instability growth in
the following sections. More generally, the timescale t∗

g = πR(t )2/Q(t ) is associated with the first
term of (8) and relevant on the oscillation timescales, but we do not use it for normalization since
it varies in time. Instead, we discuss its relevance to the experimental results in Sec. V. Alternate
timescales can be derived by considering each term in the growth rate equation (3) for the CFR
case and taking R0(0) = 0. Neglecting wave-number dependencies, the terms scale as (2t )−1 and
(t3/τ ∗∗)−1/2, respectively, where τ ∗∗ = π3σ 2M2

2/Q3
0.

Regarding the time interval considered t ∈ [0, tmax], where t = 0 is the first frame where an
interface contour can be identified and tmax(= 5230t∗) is chosen as the limit after which nonlinear
growth becomes prominent and affects the interface detection: the choice is based on visual inspec-
tion (see also Fig. 7 and Supplemental Material [20]), field of view constraints, and discretization
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TABLE I. The pulse frequencies ( f̄ pt∗), stop-band frequencies ( fstopt∗), and time interval [τ1, τ2] used to
fit the flow rates of each experimentally investigated case. Here, f̄ p is the mean frequency estimate (as in
Appendix B). For the LF and IF cases, fstop is taken as the peristaltic pump frequency; however, for the HF
case, fstop is increased since f̄ pt∗ > 9.55 × 10−3.

Case f̄ pt∗ fstopt∗ τ1/t∗ τ2/t∗

LF 3.11 × 10−4 9.55 × 10−3 0 tmax

IF 5.15 × 10−3 9.55 × 10−3 524 τ1/t∗ + 10( fpnt∗−1)
HF 2.06 × 10−2 2.75 × 10−2 524 τ1/t∗ + 10( fpnt∗−1)

requirements (the interface radius is single valued for every angular coordinate, i.e., the interface
contour does not fold onto itself). The cutoff time associated with accurate interfacial detection is
slightly earlier in our HF.b case (described in Table II, Appendix B), and as such we reduce the
maximum time for the plots in Fig. 4 to tmax = 4700t∗.

Once the interface contour has been discretized, A(t ) is used to determine the representative flow
rate parameters. Specifically, in the case of the CFR experiments, where the interface area grows
almost linearly over time, the mean flow rate Q0 is estimated as the slope of a least-squares fit of
A(t ). For the oscillatory cases, a least-squares finite impulse response (FIR) differentiation filter
(50th order) is applied to A(t ) to create an experimental Q(t ) signal. The pass-band and stop-band
frequencies are denoted as fpass and fstop = 1.2 fpass, respectively. A nonlinear least-squares fit of
Q(t ) is then used to estimate the oscillatory flow rate parameters: Q0, ξ = Qh/Q0, fp, and t0
(assuming a sinusoidal harmonic oscillation of magnitude Qh = 2π fpVh/b superimposed on a mean
flow rate Q0, with a time phase shift t0). The validity of this assumption is discussed in Appendix B
(Fig. 8). The phase shift t0 is attributed to slight variations in the startup process of the oscillatory
pump and in the minimum detectable interface in each run. A note should also be made regarding
the time interval [τ1, τ2] used for the nonlinear fit in the oscillatory cases (see Table I). For the LF
case τ1 = 0 and τ2 = tmax, covering approximately two cycles. For the IF and HF cases, the first 60
frames (τ1/t∗ = 524) are omitted to remove any influence of the peristaltic pump’s startup (which
can be significant on the timescales ( fpt∗)−1), and τ2 is chosen such that the interval covers ten full
cycles while eliminating early onset of nonlinear growth that could contaminate the parameter fit
(see, e.g., Fig. 7). The resulting mean pulse frequencies f̄ p are within 1% (IF, HF) and 2% (LF) of
their nominal values fpn, supporting the above assumptions on the flow behavior and thresholds
used. All the estimated parameters for both oscillatory and nonoscillatory (CFR) experiments,
together with appropriate estimation errors, can be found in Appendix B.

Based on our theoretical and experimental methods, a stability analysis follows in the next
section. To quantify global interfacial instability, we adopt the geometric parameters defined in
[13]. The isoperimetric ratio I (t ) is an indicator of the overall deformation (i.e., stretching) of
the interface from its most stable (circular) configuration. The circularity ratio C(t ) quantifies the
maximum extent of the deviations from a circular interface. These ratios are defined as

I (t ) = L(t )2

4πA(t )
, C(t ) = max{r(θ, t )}

min{r(θ, t )} , (16)

where L(t ) is the interface perimeter. Both ratios consider a two-dimensional interface (as in Fig. 2)
and are normalized such that the minimum value is unity for a circular interface. Isolated spikes
in the records of I (t ) and C(t ) that remain are removed from I (t ) and C(t ), and the resulting gap
is filled by linear interpolation, if they lie more than three median absolute deviations away from
the local moving median over 25 frames (= 220t∗). We also decompose the perturbations of the
interface about the mean radius using the discrete Fourier transform. As the interface expands, its
stability is characterized by the development of perturbations of different wave numbers.
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IV. RESULTS

A. Theoretical predictions

The selections for the parameters of oscillation R(0), fp, and ξ (for fixed Q0) influence both the
value of nmax over a fixed time interval and the growth of instabilities over n = 1, 2, . . . , nmax. Two
types of oscillations starting at t = 0, those with ξ > 0 and those with ξ < 0, are considered from
a numerical standpoint. Consistent with (12)–(15), here an instability of wave number n is only
predicted to grow once it becomes critical, as defined by (9a). Hence, an initial instability amplitude
is defined as fn(tn) = 1 at the earliest time t1(n) at which each wave number becomes critical.
Employing this constraint and neglecting wave-number-dependent variations in An, as defined in (1),
allows for consistent growth comparisons for different wave numbers. Numerical simulations may
eliminate this simplification by determining the actual distribution of An, which is likely sensitive
to experimental conditions. Using these definitions, nmax is set as the maximum value of nc(t ) over
t ∈ [t1(n), t f ]. For a truly CFR case (but not necessarily the oscillatory cases), nmax = nc(t f ) since
Q(t ) = Q0 never decreases.

One measure of the stabilization of the interface relative to the CFR case during injection
over a time interval is the ratio of instability growth at the end of the interval. Under the present
assumptions, this parameter is given by

ε = fn(t f )

f 0
n (t f )

, (17)

where t f is the (final) time, and fn(t f ) and f 0
n (t f ) are the predicted instability growth values at

this time for flow driven by Q(t ) and Q0, respectively. The frequencies considered numerically are
chosen as the relevant mean frequencies (over five experiments) for the optimal LF ( f̄ pt∗ = 3.24 ×
10−4), IF ( f̄ pt∗ = 5.15 × 10−3), and HF ( f̄ pt∗ = 2.05 × 10−2) oscillation experiments shown in
Sec. IV B. In each of these cases, the variation in ε over n = 1, 2, . . . , nmax and ξ ∈ [−1, 1], as
predicted by (11), is shown in Fig. 3. To ensure that Q0 is the mean flow rate over the interval
(within a relative error of 0.5%) and R(t f )/R0(t f ) = 1 (within 0.16%) for the frequencies selected
for experiments, the final time is set to t f /t∗ = (3.24 × 10−4)−1.

The range of unstable wave numbers differs significantly for LF oscillations of magnitude ξ

depending on whether the oscillation amplitude increases (ξ > 0) or decreases (ξ < 0) initially,
as seen in Fig. 3. While the stabilized wave numbers tend to be near nmax for ξ > 0, they occupy
significant ranges below n = 15 for small oscillations and below n = 10 for large oscillations when
ξ < 0. At higher frequencies, the most attenuated wave numbers at a given ξ are centered around
nmax as computed for the CFR case, and their spread in n increases with both |ξ | and fp. Further, as
seen in Fig. 9 in Appendix C, somewhat similar qualitative behavior is obtained when considering
(for all cases) an additional (sinusoidal) peristaltic waveform with amplitude of 48.6% the mean
CFR. The depicted variations in ε essentially reflect the degree to which the condition in (13) is (not)
met, with the equality case separating stable and unstable wave numbers. If we instead replaced
Q(t1)/Q0 with 1 + |ξ |, ε would be overpredicted, and thus the stable regions in (ξ, n) would be
smaller.

Step increases in nmax occur when |ξ | is increased sufficiently such that a perturbation of a
larger integer wave number is predicted to grow when nc(t ) = nmax. The times associated with
these jumps are determined by the behavior of J (t ). As fp increases, (de)stabilization relative to
the CFR case converges in both locations in (ξ, n) space and in magnitude of instability attenuation
(amplification). While our predictions are based on idealized theory that neglects wetting, nonlinear,
and unsteady effects and assume perturbation growth starts once a mode becomes critical, we
test their compatibility with analogous experiments in the following section. We only consider
experiments with positive oscillations since the consideration of negative oscillations would require
additional modifications to ensure that a sufficiently developed mean flow is available for the
oscillatory pump to draw from during startup at the beginning of the interval.
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FIG. 3. Log-scale color mapping of ε over the range of pertinent wave numbers and all values of ξ for
strictly outward flow driven by Q(t ), with ξ < 0 (left) and ξ > 0 (right) oscillations starting at t = 0. Since ε

is a measure of instability relative to flow driven by the CFR Q0, blue (red) coloring corresponds to regions of
relative stability (instability) of the interface produced by Q(t ). For each (ξ, n), the maximum value of nc(t )
over t ∈ [t1(n), t f ] is plotted for the oscillatory flow rate (solid) and CFR (dashed) case. The vertical dotted
lines correspond to the optimal experimental parameter combinations detailed in Sec. IV B. Identical plots to
these that incorporate additional peristaltic variations into the instability predictions are shown in Fig. 9 in
Appendix C.

B. Experimental results

The development of the isoperimetric and circularity ratios provides insight into the influence
of the combined growth of (and relative phases between) all modes on the interfacial morphology
during bubble expansion. Larger values of I (t ) and C(t ) are indicative of a more unstable interface.
A comparison of the development of both ratios during injection for different oscillation frequencies
and the corresponding amplitudes ξ is shown in Fig. 4. Provided ξ is positive for the experiments
conducted, the interface strictly expands in the radial direction for ξ < 1, whereas it periodically
grows and shrinks for ξ > 1. For all cases, similar trends in interfacial stability are observed for the
isoperimetric and circularity ratios.

The stability of the air-oil interface is tracked for all oscillations considered in Figs. 4(a) and
4(b). Comparisons of the optimally stabilizing cases ( f̄ pt∗ = 3.24 × 10−4 and f̄ pt∗ = 2.05 × 10−2)
and the optimally destabilizing case ( f̄ pt∗ = 5.15 × 10−3) are shown in Figs. 4(c) and 4(d). Overall
instability growth relative to the CFR case is reduced (increased) when one or both of the I (t )
and C(t ) curves track below (above) the plane (or curve) representing the CFR case. The LF, low-
magnitude (ξ = 0.03) oscillations result in a reduction in instability with regards to both ratios
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FIG. 4. The time evolution of the mean isoperimetric (a) and circularity (b) ratios for each set of five
experiments: LF (blue), IF (red), and HF (green) oscillations are compared to those produced by the CFR
(gray surface). The shading of each line in (a) and (b) corresponds to the stroke volume for a given frequency
setting (darker for larger stroke volumes). The magnitude of oscillation scales with its frequency because the
oscillatory pump operates with a constant stroke volume. The range of values (vertical line) and maximum
value (circle) for each curve are projected onto the plane at t = 0. The means (thick lines) and ranges (shaded
regions) of the isoperimetric (c) and circularity (d) ratios are plotted for the most stabilizing LF and HF
oscillations, the most destabilizing IF oscillations, and the CFR case (black line, gray shading). The optimal
IF experiments are more unstable than the CFR experiments in the linear regime, whereas the optimal LF
experiments are more stable than the CFR experiments. While the optimal HF oscillations stabilize the interface
on average, they do not outperform the LF oscillations and have large variation across the five experiments.

during the interval. A similar effect is seen to a lesser extent when HF oscillations with larger flow
rate oscillations (ξ = 0.98) are present. The most unstable cases occur in the IF experiments, which
most significantly destabilize the interface when ξ = 0.88.

While the isoperimetric and circularity ratios are informative measures of instability, they do
not provide a complete view into the mechanisms by which flow rate oscillations stabilize or
destabilize the interface. We next consider individual Fourier modes of a(θ, t ) in θ for positive
integer wave numbers. In the linear regime, the magnitudes of the perturbations are small and the
growth of each mode is assumed to be independent of all other modes. The magnitude of each
mode can be normalized by R(t ) to represent the growth of instabilities relative to the growth of the
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FIG. 5. Characteristics of perturbation growth by wave number based on the data collected over five
repeated experiments using LF (blue), IF (red), and HF (green) oscillations and the CFR only (black). (a) The
growth of each mode relative to the mean interfacial radius An fn(t )/R(t ) of the first 15 Fourier modes n of the
zero-mean wavelike perturbation of the interface at R(t )/b = 55. (b) Moving averages (window size: 524t∗)
of the mean (solid lines) and range (error bars at end points and selected interior points with 1 s spacing) of
the maximally growing wave number at each time step. For each experiment, 25 frames (= 220t∗) from each
end of the time series are removed upon differentiation of the growth data. The smooth curves represent the
theoretical nm for a CFR Q0 = 16.45 cm2/s using Eqs. (4b) (black dashed), (A4) with (γ , δ) = (0, 0) (gray
dashed), (A4) with (γ , δ) = ( 2

3 , 0) (gray solid), and (A4) with (γ , δ) = ( 2
3 , 1) (magenta dotted). Note that the

difference between black dashed and gray dashed lines is attributable to the static capillary factor.

mean interfacial radius. Here, instead of neglecting the spatial parameter An, as in the analysis of
Sec. IV A, it is now built into our spatial representation of each mode, given by An fn.

The average relative growth of each mode when the mean interfacial radius is R(t )/b = 55 is
compared for the optimally stabilizing and destabilizing cases and the CFR case in Fig. 5(a). While
the IF oscillations reliably increase the mean growth of nearly all wave numbers, the LF and HF
oscillations selectively mitigate the growth of larger wave numbers (n > 5) in the linear regime.
Here, the most unstable wave numbers in the CFR case range from n = 5 to 10. As compared to the
CFR case, the HF oscillations result in increased growth of wave numbers n < 5. Further, there is
significant variation in the growth of each mode across five trials for nearly all wave numbers.

In an experimental setting, n∗
m(t ) is more easily estimated from experimental data than the n∗

c (t )
since An fn is typically smaller than both the experimental resolution and the error tolerances when n
is critical, and nm > nc for outward flow. By differentiating the growth of each wave number (using
a 50th-order FIR differentiator) the experimental growth rate of each wave number is determined.
Moving averages of the experimental estimates of the (integer) maximally growing wave numbers
(n∗

m) for the optimal cases are shown in Fig. 5(b). The stabilizing oscillations (LF and HF) are
associated with reductions in the typical n∗

m relative to the CFR case, whereas n∗
m is marginally

larger in the destabilizing (IF) case. However, for all cases, n∗
m is smaller than that predicted by the

linear theory for a CFR. A similar discrepancy was also observed in the estimated nc in experiments
subject to pressure oscillations [21]. Similarly, the CFR experiments of [8] found that the wave
number of perturbations is typically nm at inception, but decreases as the instability develops.

To capture the behavior of n∗
m, we reconsider the surface tension σ , which relates the pressure

drop across the interface to curvature related to the growth of wavelike perturbations through the
Young-Laplace equation. The analysis of [21] accounted for variations in the pressure drop across
the interface by introducing an effective surface tension σ ∗ as a function of the critical wave number
estimated from experiments. We modify this approach by expressing the effective surface tension
as a function of the (time varying) n∗

m(t ):
σ ∗(t )

σ
= J (t )

3n∗
m(t )2 − 1

. (18)
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FIG. 6. Predictions (standard: solid line, modified with σ ∗(t ): dashed line) and mean experimental values
(open circles) of the relative growth An fn(t )/R(t ) of each wave number when R(t )/b = 55 are shown for the
CFR case (a) and the optimal LF (b), IF (c), and HF (d) cases. We define a reference time t1 as in (11) such that
An fn(t1)/b = 0.3, and fn(t ) goes to zero if this threshold is not met, or if the solutions are predicted to decay
until t = t1. In (a), the dotted black line corresponds to the solution (A6) with (γ , δ) = ( 2

3 , 0), i.e., including
the effects of wetting.

The accuracy of the linear predictions of (18) is improved by setting t1 such that An fn(t1)/b = 0.3 to
distinguish the excitation of a particular mode from experimental noise, which is typically below this
threshold. However, with this modified definition, each mode is no longer critical at t1. Therefore,
these experimental reference times differ in nature from those considered theoretically (see Secs. II
and IV A).

A prediction similar to that in (11) can be made by incorporating information about n∗
m(t )

by replacing σ with σ ∗(t ). In effect, this modification introduces a (maximally growing) wave-
number dependence into a linear growth equation, thus relaxing the assumption that the growth of
perturbations of each wave number is independent. Since An fn(t1)/b = 0.3 is fixed, (11) can be
used to directly predict instability growth when R(t )/b = 55. Comparisons of the standard linear
prediction, the modified prediction incorporating σ ∗(t ), and the experimentally estimated growth at
R(t )/b = 55 are shown for each case in Figs. 6(a)–6(d). These predictions are relatively accurate
for the CFR and LF ( f̄ pt∗ = 3.24 × 10−4) oscillation cases. For the IF ( f̄ pt∗ = 5.15 × 10−3) and, to
a lesser extent, the HF ( f̄ pt∗ = 2.05 × 10−2) oscillations tend to overpredict the growth of the most
unstable wave numbers. Similar results can be produced by replacing σ ∗(t ) with its mean over the
whole interval shown in Fig. 5(b), but would not reflect the observed variations in n∗

m(t ) for HF (and
IF) oscillations. Introducing σ ∗ can account for the unmodeled static capillary factor of π/4 in the
second term of (11) and the influence of, e.g., wetting or viscous stresses on the observed n∗

m. For
example, neglecting viscous stresses (δ = 0) in the CFR case, it can be expected that σ ∗

σ
> π

4 since
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dynamic wetting effects act to reduce nm in the linear regime when the π/4 factor excluded in (8) is
included [22], as shown in Fig. 5(b). However, the form of the instability growth equation corrected
for wetting and viscous stress effects [see (A1) in Appendix A] reveals that σ ∗ alone cannot fully
capture the influence of these physical effects, which modulate other terms as well. In future work,
these predictions may be useful in theoretically or numerically determining the optimal type of
oscillations for a given application using some initial instability information.

In addition to quantitative comparisons, we present a qualitative comparison of the interfacial
morphology at R(t )/b = 55 for representative trials of the optimally stabilizing and destabilizing
cases and the CFR case in Fig. 7. The depicted interfaces indicate that the stabilizing and destabi-
lizing trends observed in the isoperimetric ratio, circularity ratio, and relative growth of each wave
number are qualitatively realized during experiments.

V. DISCUSSION

The numerical results shown in Sec. IV A provide a mapping of the (de)stabilization of the
interface driven by Q(t ) relative to one driven by Q0 alone, based on the predictions of (11).
While experimentally untested in this investigation, the numerically predicted properties of negative
oscillations are promising, in that stabilization is centered around lower wave numbers which
become critical early during the injection interval. This scheme is also desirable in considering that,
consistent with the results of other studies [21,22], the experimental data suggest that the maximally
growing wave number is lower than that predicted by the linear theory (neglecting wetting) in most
experiments. Further, this Q(t ) has qualitative similarities to the optimal injection scheme derived by
[17], in which the flow rate varies linearly with time during injection. The corresponding assumption
that J (t ) � 1 is valid for our CFR case (i.e., J0 � 1), but not necessarily for oscillations with large
amplitude.

Experimentally, we consider the stabilizing and destabilizing effects of three distinct regimes
of injection rate oscillations. The first regime is characterized by LF oscillations of small am-
plitude (ξ < 1). These oscillations require the lowest power input into the stepper motor driving
the oscillatory pump, yet produce the most stabilized interface of all oscillations considered.
Nevertheless, considering the low magnitude of the LF.a oscillations (Table II, Appendix B), we
emphasize this case also reflects adding a second, zero-mean flow rate pumping system, which
may have an uncharacterized effect on the stability. A low-power-input stabilizing mechanism
can be used to prolong the linear stability of the interface without significantly modifying the
mean interfacial displacement. Similarly, the large HF injection rate fluctuations may serve as an
alternative mechanism for interfacial stabilization, as the instability growth profiles (e.g., at n = 2)
and the I (t ) and C(t ) traces are markedly different than the LF cases.

The IF oscillations of magnitudes close to the mean flow rate (ξ ∼ 1) most effectively destabilize
the interface as compared to the CFR case by exciting a broad range of unstable wave numbers. The
increases in I (t ), C(t ), and An fn/R for this case are the most drastic changes observed relative to the
CFR case out of all cases tested. The ability to amplify the growth of the instabilities may improve
the efficiency of mixing at low Reynolds numbers (e.g., in a microfluidic channel, see [4]).

Since the number of frames sampled per oscillation decreases as the oscillation frequency
increases, the uncertainty of the nonlinear least-squares flow rate fit increases with frequency, as
seen in Appendix B. This effect can be amplified for HF oscillations by the peristaltic variations of
the nominally constant mean flow rate, which act on similar timescales to ( fpt∗)−1.

Consistent with other studies that neglect wetting effects [8,16], we omit the static capillary
prefactor of π/4 on the in-plane curvature term of the Young-Laplace equation based on the matched
asymptotics of [23] (and included by, e.g., [11,12,22]). The dynamic wetting term, also derived in
[23], scales as Ca2/3

l , where

Cal (t ) = μ2

σ

Q(t )

2πR(t )
(19)
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FIG. 7. Comparisons at increasing radii of the interfaces from typical experiments with the optimal oscilla-
tory flow rates and the CFR. The mean radii (red) shown are computed from the uniformly spaced boundaries
(black) representing the interfaces. The experiments with LF [far left, R(0)/b = 15.5] and HF [middle left,
R(0)/b = 17.5] oscillations visually mitigate the growth of instabilities at the interface as compared to the
CFR case [middle right, R(0)/b = 14.6]. The IF oscillations [far right, R(0)/b = 14.7] amplify the growth of
perturbations at the interface. The times shown give a rough comparison of the mean flow rates for the four
experiments across each row, but neglect the differences in the flow rates prior to the interfaces reaching R(0)
for each experiment. The scale bars are 2 cm (or 20 gap widths) long segments centered at the point of injection
(black dot).

is the local capillary number. As noted by [22], for the CFR case the static and dynamic wetting
effects act to stabilize the interface and reduce the maximally growing wave number, but do
not shift the range of unstable wave numbers. This behavior is consistent with the fact that
the dynamic wetting correction factor (2/b)C0Ca2/3

l (where C0 ≈ 3.80 [23]) remains above 10%
of the out-of-plane term (i.e., 2/b) in the Young-Laplace equation when Cal ≈ 0.00427, which
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corresponds to R0(t )/b ≈ 134 for the CFR case. The unstable behavior for the IF case may be
influenced by dynamic wetting effects in the vicinity of the interface. As seen in the Supplemental
Material [20], the optimal IF case sustains visual variations in the film wetting thickness longer
than the other cases. This behavior is consistent with the fact that the IF oscillations (ξ ∼ 1) and
their timescale 1/ f̄ p = 0.371 s are of similar magnitudes, respectively, to the mean CFR and its
(time-varying) timescale t∗

g,0 = πR0(t )2/Q0, particularly when R0(t )/b ∼ 13.9. Another potentially

relevant “characteristic” timescale, tch,0 = t∗
g,0(0)

2πJ0(0) , is defined in terms of the CFR and an initially

unperturbed radius, and its time-varying analog can be expressed as tch = t∗
g (t )

2πJ (t ) . The timescale
tch,0 is related to a resonant flow oscillation period Tres(M1/M2, tch,0), that has been shown to
amplify instability growth, causing fingers to emerge earlier [14]. However, the present investigation
considers a mobility ratio M1/M2 ∼ O(103), whereas [14] considered M1/M2 ∼ O(102). We do not
speculate further into these amplified mechanisms observed in the IF cases since they are beyond
the scope of our investigations. While the steady form of Darcy’s law, which we employ, has
been widely used to model steady flows in porous media, an unsteady form is often employed
to capture unsteady effects. In oscillatory channel flow, the timescale associated with the unsteady
term decreases to 5

6 of its LF limit value in the HF limit since the viscous layer depth decreases
(i.e., the wall-normal velocity profile becomes more uniform) at sufficiently high frequencies [24].
The unsteady timescale ρM is related to the angular oscillation frequency ω = 2π fp through the
Womersley number α = √

3ρMω. For the present experiments, ρM ≈ 5.64 ms (air) and 1.67 ms
(silicone oil) produces α � 1 for both fluids and all frequencies considered. It would be interesting
to investigate instability growth for flow governed by the unsteady form of Darcy’s law, where
the choice of timescale is particularly important. Additionally, the significant variations in the
excitation of different modes across experiments imply that a receptivity-like investigation of
the development of local excitations resulting from experimental inhomogeneities would improve
predictive capabilities for time-varying injection processes. These variations appear to increase in
magnitude as the oscillation frequency increases, holding Vh constant. This increase is attributed to
large, rapid variations in nc(t ) and nm(t ).

Tailoring injection rate oscillations to either amplify or attenuate the growth of relevant modes
in the experimental regime (determined, in part, by the mean flow rate) is a versatile method
for influencing instability growth. While the growth of different wave numbers relative to each
other during experiments can be reasonably captured by the theoretical predictions for IF and
HF oscillations, there is notable discrepancy in the case of LF oscillations. This difference is
driven, in part, by the difference between the predicted and observed maximally growing wave
numbers during the injection period. One possible explanation is that wetting effects, which are
more significant at smaller radii, damp the instability more significantly during the positive stroke
of the LF oscillation. The variations in n∗

m(t ) are accounted for by utilizing the notion of an effective
surface tension, modified from [21] to consider n∗

m(t ), since it is more easily tracked than n∗
c (t )

in an experimental setting and contains information of the most unstable wave numbers. Further,
our definition is consistent with the fact that wetting effects reduce the predicted n∗

m(t ) < nm(t ),
but are not predicted to modify n∗

c (t ) in the linear regime for the CFR case [22]. Moving forward,
predictions of instability growth by wave number in a radial Hele-Shaw cell, as in (11), are likely
to be improved by accurately modeling the dynamics, i.e., by including wetting, nonlinear, and
possibly unsteady effects, governing the emergence and growth of perturbations.

VI. CONCLUSION

The growth of the Saffman-Taylor instability in a radial Hele-Shaw cell, subject to an oscillatory
injection rate with nonzero mean, is investigated in both numerical and experimental contexts.
From a numerical standpoint, predictions of the growth of wavelike perturbations of relevant wave
numbers are made using the linear growth formulation neglecting wetting effects, as derived in
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Sec. II. It is shown that, for n < nmax, LF oscillations with ξ > 0 (ξ < 0) are predicted to be more
unstable (stable) for smaller wave numbers and more stable (unstable) for larger wave numbers.
However, as the frequency is increased, the predicted effects of both ξ > 0 and ξ < 0 oscillations
converge to similar results for |ξ | < 1. Similar trends were observed for modified analyses taking
into account a simple representation of the peristaltic fluctuations of the base flow introduced in the
experiment.

Three regimes of injection rate oscillations produced by a constant stroke volume oscillatory
pump are considered. Control schemes for mitigating the Saffman-Taylor instability typically rely
on monotonically decreasing the injection rate [9,10] or introducing large variations from the mean
flow rate [13]. By contrast, the schemes we present are desirable since they preserve a constant
phase-averaged flow rate and require minimal flow rate modulation. The LF, low-magnitude (ξ =
0.03) oscillations most consistently stabilize the interface to the largest extent (on average) out of
all oscillations considered, but may also reflect the influence of the peristaltic oscillations in the
experimental pumping mechanism. The stability induced by this oscillatory scheme would improve
the yield and effectiveness of displacement processes in applications, such as secondary oil recovery,
which aim to minimize the growth of fingers. It would be worthwhile to see whether the peristaltic
variations influence the observed stability, i.e., if similar stabilization can be achieved with a truly
constant mean injection rate.

The optimally destabilizing IF oscillations (ξ = 0.88) reliably and significantly amplify the
growth of the most unstable wave numbers in the linear regime and result in a more rapid transition
to nonlinear growth. These effects are beneficial in applications such as microfluidic mixing due
to the increased interfacial surface area. In addition, our Supplemental Material [20] suggests that
dynamic wetting variations near the interface may persist throughout the nominally linear regime
for the destabilizing IF cases.

In contrast to the IF oscillations, the optimal HF oscillations (ξ = 0.98) have a stabilizing effect
on the interface; however, due to the early amplification of low wave numbers, this stabilizing effect
is weaker than that of the LF oscillations. The most significant (de)stabilization is seen for n > 5
when subject to (IF) LF and HF injection rate oscillations. Similar to the LF case, the peristaltic
pump is an experimental limitation in the HF case since its nominal frequency is slower than the HF
oscillations. Employing digitally controlled pumps to produce the CFR may help more accurately
address the influence of injection rate oscillations, particularly in the LF and HF cases considered.

The observed stabilizations for LF (and HF) oscillations with ξ > 0 are associated with reduc-
tions in n∗

m as compared to the CFR case. Consequently, the stabilizing effect cannot be predicted
by linear theory alone; however, as shown in Sec. IV B, the accuracy of the predictions can be
improved by incorporating minimal experimental data to set the reference condition associated with
(11) at a point where the large influences of early wetting (and startup) effects are at least partially
captured. Notably, consistent with the results of [22] for a CFR, the experimental growth of n∗

m(t ) is
generally overpredicted by the linear theory without the wetting correction factor or consideration
of the experimental peristaltic base flow fluctuations for nearly all flow rates considered.

While the present experiments are limited to the consideration of oscillations with ξ > 0, the
linear predictions for ξ < 0 show considerable mitigation of the wave numbers (n < 15) observed
to dominate the experimental regimes considered. These predictions warrant future investigations
considering LF oscillations with ξ < 0 since they show the potential to more effectively mitigate
instability growth compared to the ξ > 0 case, and do so in a manner better predicted by linear
theory.

The instability growth solution (11) becomes truly analytic in cases where the imposed control
law produces R(t ) such that R(t )−3 is integrable and t1 is known. Relatively permissible ranges
of flow rate parameters can be determined by the conditions in (10) based on the range(s) of
wave numbers predicted to be most unstable. Since this study only considers the linear growth
of perturbations of the interface, investigations of interfacial stability in the nonlinear regime of
finger growth would be beneficial for applications which require large flow rates (and consequently
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enter the nonlinear regime earlier). For time-varying flow rates, we also anticipate that further
characterizing the wetting and unsteady effects associated with flow rate oscillations will help
elucidate mechanisms underlying the (in)stability of the interface. Depending on the flow regime,
potentially important considerations include capturing all timescales relevant to the flow as well as
global and local capillary effects.

More broadly, the radial Hele-Shaw cell is desirable in a laboratory setting since the interface
is continuously defined with no in-plane solid boundaries and the plates provide a homogeneous
setting during displacement. As such, an analogous study considering the effect of flow rate
oscillations in a linear Hele-Shaw cell, where the boundary conditions at the interface must be
accounted for, would be beneficial. Further, one notable difference between Hele-Shaw cells and
porous media is the irregularity associated with the latter. Therefore, investigating finger growth
subject to flow rate oscillations in an inhomogeneous porous medium would help determine the
feasibility of the present oscillatory schemes in practical settings.
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APPENDIX A: WETTING AND VISCOUS STRESS EFFECTS FOR A CONSTANT FLOW RATE

The generalized linear growth rate accounting for wetting effects and viscous normal stresses for
the CFR case [18] is given by

1

f

df

dt
= 1

1 + sn(t ) + wn(t )

[
(n − 1)

R(t )2

(
Q

2π
− π

4

n(n + 1)σM2

R(t )

)
+ Qsn(t )

2πR(t )2

(
n + 3

n + 1

)]
, (A1)

where, consistent with other studies that consider wetting effects [11,12,22,23], we retain the static
capillary factor π/4. The wetting term is

wn(t ) = n
G0

R(t )γ
= γ n

C0

6

b

R(t )
Cal (t )γ−1, G0 = γC0

b

6

[
2π

Q

σ

μ2

]1−γ

, (A2)

where Cal (t ) is the local capillary number, C0 = 3.80, and γ = 2
3 (or 0) when wetting effects are

(not) considered. The viscous normal stress term is

sn(t ) = δ
n(n + 1)

6

[
b

R(t )

]2

= 2δ
n(n + 1)M2μ2

R(t )2
= G1

n(n + 1)

R(t )2
, (A3)

where G1 = 2δkD, kD = b2/12 is the Darcian permeability, and δ = 1 (or 0) when viscous stress
effects are (not) considered.

The maximally growing wave number is given by the solution to the following quartic (cubic,
quadratic) polynomial for the case where δ = 1 and γ = 2

3 (δ = 0 and γ = 2
3 , δ = 0 and γ = 0):

R(t )3+γ
[
2QR(t ) − π2σM2(3n2 − 1)

] + 2R(t )3
[
QR(t ) − π2σM2n3

]
G0

− R(t )1+γ
(
2QR(t )[n(n − 4) − 4] + π2σM2

(
n2 + n

)2)
G1

− 4n2QR(t )γ G2
1 + 2QR(t )2n2G1G0 = 0. (A4)

Assuming that the mode becomes critical when t = t1(n) and retaining the π/4 factor in (A1), the
radius at the critical time is

R(t1) = π

4

2π

Q
M2σn(n + 1). (A5)
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In cases where viscous stresses can be neglected (δ = 0), (A1) can be integrated to obtain a
solution for linear instability growth including wetting effects for a CFR. By noting the definitions
of wn(t ) and R(t1) in (A2) and (A5), respectively, we express this solution as

fn(t ) =
[

R(t )

R(t1)

(
1 + wn(t )

1 + wn(t1)

) 1
γ

]n−1

exp

[(
n − 1

1 − γ

)(
R(t1)

R(t )

2F1
(
1, 1 − 1

γ
, 2 − 1

γ
,− 1

wn(t )

)
wn(t )

− 2F1
(
1, 1 − 1

γ
, 2 − 1

γ
,− 1

wn(t1 )

)
wn(t1)

)]
, (A6)

where 2F1 is the Gauss hypergeometric function.

APPENDIX B: FLOW RATE ESTIMATES AND ERRORS

For each injection rate considered, the parameters of oscillation and mean flow rates, as defined
in Sec. III, are shown in Table II. Outliers more than three standard deviations from the original fit
are excluded in the final fit. Only the mean flow rate Q0 is estimated for the constant flow rate (CFR)
experiments. The value of σ̂ represents the standard deviation of the estimated parameter over five

trials. The value of σ̂p = [ 1
Ntot −5

∑5
k=1(Nk − 1)s2

k]
1/2

represents the pooled standard deviation of
each parameter estimate, where sk and Nk are the standard error of the parameter estimate and the
number of frames used for the kth experiment, such that Ntot = ∑5

j=1 Nj . Since we consider the
same group size for identical experiments, the assumption of homogeneity of variance is justified.
The delayed startup of the oscillatory pump corresponds to a negative value of μ̂ for t0. This delay
is resolved only for the low-frequency (LF) cases since, for the intermediate- (IF) and high- (HF)
frequency cases, 1/ fp is on a similar scale to t0 and we exclude the first 60 frames. Thus, for

TABLE II. The estimated flow rate parameters (μ̂) and error estimates (σ̂ and σ̂p) over five trials of each
experimental setting are rounded to two decimals (for Q0 and all values less than 1) and three digits (otherwise).
Low- (LF), intermediate- (IF), and high- (HF) frequency oscillation schemes are imposed using five different
volume stroke settings, each denoted by a letter a–e.

Parameter Q0 (cm2/s) fpt∗(10−4) ξ t0/t∗

Value μ̂ σ̂ σ̂p μ̂ σ̂ σ̂p μ̂ σ̂ σ̂p μ̂ σ̂ σ̂p

CFR 16.45 0.04 0.01
LF.a 16.52 0.02 0.04 3.24 0.10 0.14 0.03 0 0 −185 25.0 125
LF.b 16.48 0.02 0.04 3.03 0.07 0.08 0.05 0 0 −234 26.3 68.5
LF.c 16.41 0.10 0.04 3.09 0.06 0.06 0.07 0 0 −288 21.2 48.3
LF.d 16.27 0.02 0.04 3.08 0.03 0.04 0.09 0 0 −335 36.0 31.7
LF.e 16.18 0.03 0.04 3.15 0.02 0.03 0.12 0 0 −313 33.5 25.2
IF.a 16.48 0.04 0.05 51.5 0.04 0.04 0.3 0.01 0 36.1 31.5 1.45
IF.b 16.60 0.08 0.05 51.6 0.08 0.02 0.59 0.01 0.01 22.3 19.3 0.78
IF.c 16.58 0.02 0.06 51.5 0.04 0.02 0.88 0.01 0.01 10.9 24.5 0.55
IF.d 16.73 0.07 0.05 51.5 0.01 0.01 1.19 0.03 0.01 22.4 18.2 0.36
IF.e 16.69 0.17 0.06 51.5 0.02 0.01 1.49 0.02 0.01 74.9 104 0.37
HF.a 16.27 0.26 0.95 205 1.12 0.95 0.98 0.05 0.10 −11.6 16.0 4.50
HF.b 16.32 0.28 0.93 206 0.66 0.45 2.01 0.05 0.14 −10.2 15.5 2.13
HF.c 16.68 0.27 0.96 206 0.53 0.31 2.9 0.13 0.19 −18.5 15.0 1.47
HF.d 16.64 0.28 0.97 206 0.29 0.22 4.02 0.18 0.25 −30.6 2.74 1.03
HF.e 16.75 0.36 0.99 206 0.22 0.19 4.86 0.29 0.3 −18.5 17.9 0.90
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FIG. 8. (a) The image-processed time evolution (black circles) and linear fit (red) of the area enclosed by
the interface for the CFR case shown in Fig. 7 and (inset) a closeup of the peristaltic variations over 30 frames
[i.e., 3.86 nominal peristaltic oscillation periods; here, the peristaltic pump nominally operates at the frequency
of its largest harmonic at ( fpert∗ = 0.0148)]. (b) Fourier spectrum (inset: closeup in the LF regime) of the time
differences dA

dt = �A
�t of the experiments shown in Fig. 7, where 3 padding zeros have been added (to the 600

frame signal) for the HF.a case. The large dots represent the mean frequencies reported in Table II for the LF.a,
IF.c, and HF.a experiments (respectively) and the corresponding dashed (dotted) vertical lines represent the
pass-band and stop-band frequencies. The peristaltic harmonics (dotted gray lines) decrease with increasing
frequency, so although variations at the fourth (i.e., highest-frequency) harmonic are not resolved, they are
expected to be of small magnitude. The area injection rate oscillations about the mean (blue) for the optimal
(b) LF, (c) IF, and (d) HF cases, as in Fig. 7, where, in (b), outliers (magenta stars) more than three standard
deviations away from a fit of all 550 points are excluded from the final fit (red). For the LF case, the black
(green) circles are less (more) than two standard deviations from the final fit, and no points meet this threshold
for the IF and HF cases shown.
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FIG. 9. The same plots as Fig. 3, but shown for a sinusoidal flow rate with an additional sinusoidal
peristaltic waveform Qpsin(2π fpert ) added about the mean flow rate for all cases considered. A constant
Qp = 0.486Q0 based on the magnitude of the first peristaltic harmonic is set for the CFR case in Fig. 8(b).
Using this value, the oscillatory parameter is limited to ξ � 0.51 to maintain a positive injection rate. The
ξ -axis and color (ε-axis) limits in this plot differ from those in Fig. 3.

the IF and HF cases, we report the equivalent value of t0 with the smallest magnitude. The mean
interfacial radius in the first frame, averaged (± one standard deviation) over all 80 experiments, is
R(0)/b = 16.2 ± 1.4.

Figures 8(a)–8(e) show, respectively, the linear fit of the area enclosed by the interface A(t ) for
the CFR case, the Fourier spectra of the optimal experiments, and the nonlinear least-squares fits of
Q(t ) for the optimal LF, IF, and HF cases, as depicted in Fig. 7. The inset plot shows one limitation of
our experiments, the peristaltic nature of the mean flow rate supplied by the nominally CFR pump.
The effects of the peristaltic fluctuations can be seen for the HF case in Fig. 8(e) in the noticeable
peak amplitude variations. These variations occur since (i) there are only approximately six points
per HF oscillation and (ii) these HF oscillations occur on smaller timescales than the peristaltic
variations, which we do not filter to preserve the HF waveform. Nevertheless, as seen in Fig. 8(d),
the 10 IF oscillations are consistent and well fit. In Fig. 8(c), the noise level is attributed mostly to
the scale of the imposed oscillations and the fact that not all noise from the peristaltic variations
can be filtered out during differentiation. For this LF case the initial fit (not shown) using all 550
points is visually nearly identical to the final fit (shown). Collectively, the results of Fig. 8 support
the assumption of an approximately constant phase-averaged mean injection rate.

123902-21



RAHUL ARUN et al.

APPENDIX C: LINEAR INSTABILITY GROWTH INCLUDING A PERISTALTIC WAVEFORM

The instability predictions in Fig. 3 consider a truly CFR as the reference case, which gives the
corresponding growth f 0

n (t f ), as in (17). As shown in Fig. 8(b), the first harmonic of the peristaltic
fluctuations is non-negligible (roughly half the mean injection rate) and correspondingly they have
an influence on the instability growth when included in the model (11). In Fig. 9, we incorporate the
peristaltic variations into all cases (including the CFR) and find qualitatively similar overall features
to those in Fig. 3, but with noticeable modulation in the scale and distribution of stable in unstable
regions in (ξ, n) space.
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