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The equations for the earthquake forces on a rigid dam with an inclined upstream 
face of constant slope are solved exactly by two-dimensional potential-flow theory. 
The distribution of the hydrodynamic pressure along the upstream face and the total 
horizontal, vertical and normal loads on the dam are computed from the integral 
solutions. The results obtained from the exact theory are compared with those derived 
from the momentum-balance method and there is reasonable agreement. 

1. Introduction 
An important factor in the design of dams in seismic regions is the action of hydro- 

dynamic pressure exerted on the upstream face of the dam as a result of earthquake 
ground movements. In  part 1 of this study (Chwang & Housner 1978), the two- 
dimensional problem of the added-mass effect of horizontal acceleration of a rigid 
dam with an inclined upstream face of constant slope was solved analytically by 
adopting von KBrmBn’s (1 933) momentum-balance approach. The distribution of the 
hydrodynamic pressure along the sloping dam was determined, and explicit analytical 
formulae for evaluating the total horizontal, vertical and normal loads were also 
presented. It was noted that the normal force coefficient remains practically constant 
a t  around 0.5 for all slopes. 

The objective of this paper is to present an integral solution for the earthquake 
force on a rigid sloping dam based on the exact two-dimensional potential-flow theory. 
The results based on this exact theory are then compared with those derived from the 
momentum-balance method. The two methods are found to be in reasonable agree- 
ment, especially for the total force exerted on the face of the dam. 

2. Two-dimensional potential-flow theory 
As in part 1 of this study, the upstream face of the dam is assumed to have a constant 

slope 1/p (see figure 1) .  If the angle between this interface and the horizontal is 8 = am, 
then 

The fluid in the reservoir is bounded below by a horizontal bottom at y = 0 and above 
by a free surface a t  y = h. The dam is assumed to be rigid and to undergo a constant 
horizontal acceleration a,, in the x direction of sufficiently short duration that the 
perturbation of the free surface is negligible. 

p = cot an. (1 )  
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0 1 E 
FIGURE 1. The reservoir occupied by the fluid in the physical (2) plane 

is mapped conformally int.0 the upper half of the 6 plane. 

With z = x + iy, the conformal mapping 

given by the Schwarz-Christoffel theory, transforms the upper half of the 5 plane 
( 5  = E+iq )  into the region occupied by the fluid (see figure 1). The points A and B 
in t'he physical ( z )  plane are mapped into Y = 0 and + 1 respectively. The points at 
infinity on the free surface ( E )  and at  the reservoir bcttom (F) are mapped into the 
points a t  infinity in the 1; plane along the negative and positive real axes respectively. 
The branch in the 5 plane is so chosen that the argument of the variable in brackets 
in (2)  vanishes as < goes to infinity. 

Since the fluid in the reservoir is assumed to be incompressible and inviscid, the 
hydrodynamic pressure p (in addition to the hydrostatic pressure) caused by the 
horizontal acceleration a, of the dam satisfies the Laplace equation 

vzp = 0. (3) 

(4) 

If we introduce the complex-conjugate funcbion q with respect top ,  we can construct 
an analytic function 

which is also analytic in the transformed variable 5. On the free surface, which 
corresponds to the negative real axis in the 5 plane, t,he pressure p vanishes. At  the 
reservoir bottom, which corresponds to 5 > 1 on the positive real axis, we have 
ap/i?n = 0,  which means that q is a constant. Without loss of generality we may 
assume q = 0 for 5 > 1 along the positive real axis. By contrast, on the sloping up- 
stream face of the dam ap/& takes the constant value -pa,sinan in the z plane. 

f(z) = p + iq 
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Now, if s represents the distance along that sloping face measured from the bottom, 
the Cauchy-Riemann condition ap/& = aq/as gives q = -pa,ssinm along that 
sloping face, which corresponds to the line segment 0 < [ < 1 in the [plane. Therefore, 
along the real axis in the [ plane, we have 

Ref([) = 0 (-a < .$ < 0 ) ,  (5a )  

where the distance a is given by (2 )  as 

Equation (5) is a mixed boundary Condition for f([). However, if we introduce a 
new analytic function g([) by 

where the positive branch is taken for the square-root function, ( 5 )  becomes an 
‘unmixed ’ boundary condition for g([). Thus for real [we have 

-pa,[-:-)s([)sinan 

SfYf = Y-4f(C)7 (71 

(0 < [ < l) ,  

0 (otherwise). ( 8 b )  
Img(5) = { 

An analytic function g(5) which is regu1a.r in the upper half [ plane and vanishes at 
infinity can be obtained from the Poisson integral formula: 

Substituting (7) and (8) into (9), we have 

The hydrodynamic pressure on the dam is the real part off([) for 0 < [ < 1. By 
(6) and (lo), we obtain 

where P denotes the Cauchy principal value. Equation ( l l a )  can be expressed in a 
different form for computational purposes. On differentiating (1  1 a )  with respect to 
6,  we have 

The integrand in ( 1 2 a )  has three branch points in the complex t plane, namely the 
origin, t = 1,  and the point of infinity, By contour integration around the branch cut 
which connects these three branch points and along a circle of large radius, we can 
simplify ( 1 2 a )  to 
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Integrating (12 b) and making use of (6) and some simple transformations, we have 

(11 b )  

The total normal force on the sloping dam can be found by integrating ( I  I )  in the 

Fn = !;/sinan E aP(E)  pas = "sl (-) -d[.  
physical (2) plane: 

77 0 1 - E  5 
By means of (1 1 b) ,  (13) reduces to 

where the normal force coefficient C, is given by 

F, = C, pa, h2, 

The total horizontal and vertical forces on the upstream face of the dam follow 
from (14): 

(15) 

F, = C,pa, h2, C, = C, cos an. (16) 

Fx = Cxpao h2, C, = Cnsina7r, 

These expressions were evaluated by means of a digital computer. 

3. Results and discussion 
The pressure coefficient C,, defined by 

P = C,paoh, 
c m  be obtained along the upstream face of the dam as a function of the distance s 
measured from the bottom of the dam by using (6) and (11  b) with 6 as a parameter. 
In particular, when a = 4, the pressure coefficient at  the dam base becomes 

C, = 87r-'G = 0.7425 (a  = &, 5 = I) ,  (18) 

where G = 0.915965 ... is Catalan's constant. This result agrees exactly with Wester- 
gaard's (1933) result; for dams with a vertical upstream face. The detailed pressure 
distribution along the sloping dam computed from (6) and (1  1 b )  is shown in figure 2, 
in which C, is plotted vs. the vertical distance y l h  for several inclination angles 
8(an)  between 15" and 90". The corresponding results derived in part I by the 
momentum method are shown as dashed lines in figure 2 for comparison. We can see 
from figure 2 that, for any fixed height ylh,  both the pressure based on the momentum 
method and the pressure based on the exact theory decrease as the inclination angle 
0 decreases. However, for fixed values of 8, the momentum method indicates that the 
maximum pressure occurs at  the base of the dam, whereas the exact theory gives the 
maximum pressure at  some distance above the dam base except when 0 = go", when 
the pressure reaches its maximum value at  the base of the dam in both the exact and 
the approximate theory. In  general, the agreement between the momentum method 
and the exact theory is fairly good, and it becomes even better when we consider the 
total horizontal, vertical and normal forces. The horizontal, vertical and normal force 
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FIGURE 3. The horizontal, vertical and normal force coefficients determined from the exact theory 
(solid curves) and from the momentum method (dashed curves) us. the inclination angle 19 or the 
reciprocal of the slope /3. 

coefficients C,, C, and C,, given by (15), (16) and (14b) respectively, are plotted in 
figure 3 as solid lines us. the angle 0 or the reciprocal of the slope p. The corresponding 
results from the momentum method are also plotted in figure 3, as dashed lines. 
When the upstream face of the dam becomes vertical, the exact theory gives 

c, = c, = 0.543, c, = o (e = goo), t 19) 
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which is the same as Westergaard's (1933) result, while the momentum method gives 

c, = c, = 0.555, c, = o (e = goo), (20) 

which is the same as von KBrmBn's (1933) result. The difference between the values 
given by the exact theory and by the momentum method is less than 3 yo. For arbitrary 
values of 0 between 0 and 90" the maximum difference between the force coefficients 
given by the exact theory and the momentum method is about 4.5 yo, the momentum 
method being on the high side. From figure 3 we may also note that the approximate 

(21) 
rule 

given in part 1 is still valid. This approximation may be very useful t o  dam engineers 
for making quick estimates for preliminary designs. 

c, + 0.5 (0  G e G 900) 
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