Prime Focus Spectrograph (PFS): the Prime Focus Instrument

Institute of Astronomy and Astrophysics, Academia Sinica, California Institute of Technology, Princeton University, Durham University, Laboratório Nacional de Astrofísica, Kavli Institute for the Physics and Mathematics of the Universe(WPI), The University of Tokyo, Subaru Telescope,

Abstract

The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph design for the prime focus of the 8.2m Subaru telescope. PFS will cover 1.3 degrees diameter field with 2394 fibers to complement the imaging capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime Focus Instrument (PFI) provides the interface with the top structure of Subaru telescope and also accommodates the optical bench in which Cobra fiber positioners and fiducial fibers are located. In addition, the acquisition and guiding cameras (AGCs), the cable wrapper, the fiducial fibers illuminator, and viewer, the field element, and the telemetry system are located inside the PFI. The mechanical structure of the PFI was designed with special care such that its deformations sufficiently match those of the HSC's Wide Field Corrector (WFC) so the fibers will stay on targets over the course of the observations within the required accuracy. The delivery of PFI components started in 2017. After the verification of these components, the mechanical structure of the PFI is fully assembled in early 2019 and all Cobra positioners are integrated in summer 2020. A temperature controlled chamber with precise xy scanner was setup for the verification of the Cobra fiber positioners. The testing of the convergence performance of Cobra positioners is now in progress.

PFI Overview

- The PFI is the prime focus unit of PFS to be installed in the prime focus structure. The PFI structure has two parts: the upper structure comprises of the upper/lower link structure, the positioner frame, the fiber positioning system, AGC cameras, electronic boxes and the field element.
- The mass load for the entire PFI is 487 kg and for the rotating part is 348 kg.
- Average motor speed adjusted to be around 0.07 degree/step
- One dimensional target convergence for Phi and Theta motor respectively

Test of Cobra Modules

All Cobra modules were tested after the delivery from Caltech. The test items including:
- The arm length, center and hardstop angles of the two rotational motors of each positioner
- Average motor speed adjusted to be around 0.07 degree/step
- The motor speed at different angle, i.e. motor map
- One dimensional target convergence for Phi and Theta motor respectively

In order to quantify the performance for target convergence, we defined the signal to noise ratio (SNR) for each Cobra positioner after each iteration.

The equation used to calculate the SNR is:

\[SNR = \left| \frac{d}{r_{\text{final}} + r_{\text{max}} - r \times t_{\text{max}}} \right| \]

where \(d \) is the distance to the target position, \(r_{\text{final}} \) is the coupling radius which is 0.075 mm, \(t_{\text{max}} \) is 900 sec; the typical integration time for PFS observations, \(t_{\text{max}} \) is 105 sec; the maximum allocated time to move the fiber and \(t_{\text{max}} \) is 12 sec; the time used for each steps, \(n \) is the iteration number. When fiber is within 20µm to the target, the SNR should be higher than 0.92.

PFI Structure Integration

The integration sequence of the PFI structure includes:
- Install all cables and coolant lines
- Integrate Positioner frame with Cobra optical bench
- Install the electronics boxes
- Add Upper/lower link and cable wrapper
- The integration PFI with Cobra. The location of the bipods and the deformation measurements are marked.

The location and deformation of the PFI focal plane

The location of the focal plane is controlled by the shims between the positioner frame and the COB. The distance is within 30 µm to the designed distance and the difference among the three bipods are within 5 µm.

The deflection is measured with dummy weight installed on the optical bench. The deflection at different elevation angle is shown in the following table.

<table>
<thead>
<tr>
<th>Elevation Angle</th>
<th>Deflection (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 degree</td>
<td>33, 39, 38 (µm)</td>
</tr>
<tr>
<td>60 degree</td>
<td>49, 26, 21 (µm)</td>
</tr>
<tr>
<td>90 degree</td>
<td>58, 8, -1 (µm)</td>
</tr>
</tbody>
</table>

Cobra Modules Integration in PFI

Since the Cobra modules are closely packed. Extreme cares were taken during the installation of the modules to protect the Cobra positioners as well as the fiducial fibers. Several tools have been made for facilitate the process. After the installation is completed, we measured the home positions and repeated the Cobra module measurement items. In order to reduce the risk of removing the installed modules, the Cobra modules were installed by 4 steps. We installed one module first, then added to 9 modules, 21 modules and finally a fully populated focal plane.

Summary

The integration and test of the PFI is still ongoing. After all Cobra modules were installed, there were 5 broken fibers in the system including 4 broken fibers damaged during the module fabrication. With all Cobra modules installed, we have started the connectorization of the Tower connectors each connects to one PFS spectrograph. The final target convergence tests with all modules will start in early 2021. We will also test the target convergence with the real target positions prepared for the survey. After it is completed, we will install AGCs and the field element and the associated calibration and tests as the last step for the focal plane integration. Then, we will install the calibration lamp and the covers for the PFI. The PFI is planned to be shipped to Hawaii in May 2021.