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I. DERIVATION OF THE MICROSCOPIC
DYNAMICAL EQUATIONS

In order to connect the dynamics of the OPCP and
the exciton condensate with the microscopic description
of Ta2NiSe5, we start from a commonly used two-band
semiconductor Hamiltonian with spinless fermions [1–4]
and inter-band interactions,

H =
∑
k

(εkck
†ck + µkvk

†vk) +
∑
i

(V ci
†civi

†vi

+ω0bi
†bi + g(bi

† + bi)(ci
†vi + vi

†ci))

(1)

The bands are formed by the quasi-one-dimensional lat-
tice and i, k are the corresponding lattice sites and mo-
mentum. Each operator and parameter is defined in the
main text. We also set ~ = 1 for simplicity.

The equations of motion for the complex exciton or-
der parameter Φi = 〈c†ivi〉 and the real lattice displace-

ment Xi = 〈b†i + bi〉 can be obtain by expressing Eq. (1)

in terms of a nonequilibrium path integral (i.e. in the
Keldysh framework) and introducing Φ as a dynamic,
bosonic Hubbard-Stratonovich field. This allows one to
integrate out the fermionic modes and derive the equa-
tions of motion for Φ, X via saddle point equations.

In a path integral approach, the partition function Z
corresponding to the Hamiltonian in Eq. (1) is formally
obtained from a field integral of the form

Z =

∫
D[{c̄i, ci, v̄i, vi, b∗i , bi,Φ∗i ,Φi}]eiS , (2)

where D represents the common field integral measure
and c̄i, ci, v̄i, vi are independent Grassmann fields, rep-
resenting the fermion modes in conduction and valence
bands, and b∗i , bi,Φ

∗
i ,Φi are complex fields, correspond-

ing to the phonon and exciton condensate modes. The
Keldysh action S is obtained in the canonical way [5] and
reads as S = Sf + Sb with the fermion part

Sf =
∑
l,m

∫
t

Ψ̄l,t

(
C−1l,m,t Ml,tδl,m
M∗l,tδl,m W−1l,m,t

)
ΨT
m,t (3)

and the boson part

Sb =
∑
l

∫
t

[
(b∗c,l,t, b

∗
q,l,t)B

−1
l,t

(
bc,l,t
bq,l,t

)
(4)

− V
(
Φ∗c,l,tΦq,l,t + Φ∗q,l,tΦc,l,t

) ]
.

Here, Ψl,t = (c1,l,t, c2,l,t, v1,l,t, v2,l,t) is the fermion spinor
in Keldysh space and each field carries an index triplet
(i, l, t), which labels Keldysh component i (i = 1, 2 for
Grassmann fields and i = c, q for complex fields), lat-
tice site l and time t. The matrices B,C,W are the
Keldysh space Green’s function for phonons, conduction
band, and valence band. They are diagonal in frequency
and momentum space

C−1k,ω =

(
0 ω − εk − iη

ω − εk + iη 2iη tanh(ω/2T )

)
(5)

and W−1k,ω is identical with εk → µk. Also,

B−1k,ω =

(
0 ω − ω0 − iη

ω − ω0 + iη 2iη tanh(ω/2T )

)
(6)
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with η → 0+. The matrix Ml,t describes the local cou-
pling of the fermions to the exciton and phonon fields

Ml,t =
[
1
(
V Φc,l,t + gXc,l,t

)
+ σx

(
V Φq,l,t + gXq,l,t

)]
.
(7)

The fermion part Sf is quadratic in Grassmann fields
and integration according to Grassmann calculus yields
the formal expression

Sf = −iTr (log [1− CMWM∗]) = i

∞∑
n=1

1

n
Tr (CMWM∗)

n
,

(8)

where the trace includes the sum over Keldysh indices
and lattice sites and an integral over time. In order
to eliminate the phonon field from the nonlinear ac-
tion Sf, one performs a polaron-type shift Φc/q,l,t →
Φc/q,l,t− g

V Xc/q,l,t. For small exciton field amplitudes Φ,
Eq. (8) can be expanded up to fourth order in the fields
(n ≤ 2) and in powers of derivatives. The equations of
motion for the exciton condensate and the displacement,
which are represented by the classical fields Φc,l,t, Xc,l,t

are obtained via the saddle-point equations (and their
complex conjugates)

δS

δbq,l,t
=

δS

δΦq,l,t
= 0. (9)

This yields the equations of motion by further intro-
ducing the perturbation of light via Peierls substitution,
which is argued to work better for an electronically lo-
calized system [4], and assuming the lattice constant d =
1:

iZ∂tΦ = (−D̃(∇− iqA)2 + m̃+ Ũ |Φ|2)Φ +
2g

V
X, (10)

∂t
2X = −(ω0

2 +
2g2ω0

V
)X − 2gω0 Re(Φ), (11)

with the parameters D̃, m̃, Ũ , Z depending on integrals
over Green’s functions and therefore on the band struc-
ture of the material and the temperature T of the system.
Assuming a band gap ∆ and kBT < ∆, i.e. negligible
population in the conduction bands, we can write out
these parameters

m̃ = 1− 2V√
∆(2Jc + 2Jv + ∆)

, (12)

D̃ =
2JcJvV√

∆(2Jc + 2Jv + ∆)
3 , (13)

Z = V

(
2Jc + 2Jv + 2∆√

∆(2Jc + 2Jv + ∆)
3

)
, (14)

Ũ =

(
2(3(Jc + Jv)

2 + 4∆(Jc + Jv) + 2∆2)√
∆(2Jc + 2Jv + ∆)

5

)
V 3. (15)

The equations in the main text are obtained via m =
m̃/Z, U = Ũ/Z, D = D̃/Z, g′ = g/(ZV ), and f =

D̃q2A2/Z,αF exp (− 4 ln 2t2

σ2 ).
Also, we can obtain real valued equations of motion

by defining Φ = φ + iη. To characterize the dephas-
ing of the phononic and electronic channels, we also add
phenomenological decaying terms to both branches. It
is straightforward to add a −2γph∂tX term to the struc-
tural dynamical equation and γph can be determined ex-
perimentally. For the complex electronic order parame-
ter, on the other hand, we rewrite the order parameter
dynamical equation as followed:

i∂tΦ = ((−D(∇− iqA)2 +m+U |Φ|2)Φ + 2g′X)(1− iγe),
(16)

Here γe is dimensionless. It expresses the ratio of de-
phasing dynamics due to a non-zero temperature to the
coherent dynamics of the order parameter. Both dynam-
ics are generated by the same effective free energy func-
tional. It determines the dephasing time of the electronic
Higgs/Goldstone oscillations as validated in Section II.

Also, we ignore the spatial diffusion and the phonon
frequency shift due to an order of magnitude estimate
g ≈ ω0�V . With all of the above rectifications we have:

∂tφ = (f+m+U(φ2+η2))η−γe((f+m+U(φ2+η2))φ+2g′X),
(17)

∂tη = −(f+m+U(φ2+η2))φ−2g′X−γe(f+m+U(φ2+η2))η,
(18)

∂t
2X = −ω0

2X − 2gω0φ− 2γph∂tX. (19)

We then construct the initial conditions for the above
equations, which guarantee that X is static and Φ re-
mains real and static before the light excitation:

φ|t=0 =

√
4gg′/ω0 −m

U
. (20)

η|t=0 = 0. (21)

∂tX|t=0 = 0, (22)

X|t=0 = −2g

ω0

√
4gg′/ω0 −m

U
, (23)

After establishing the equations and the initial condi-
tions, we can numerically solve the differential equations
and trace the dynamics of the complex electronic order
parameter Φ and the real structural order parameter X
[Fig. S1], as well as the dynamical free energy land-
scapes. By taking the fast Fourier transform (FFT) of
X in the time interval from 0 ps to 20 ps with different
pumping fluence values, we obtain the order-parameter-
coupled phonon (OPCP) amplitude versus fluence curves
[Fig. S2].
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FIG. S1: Simulated time evolution of the electronic and lattice order parameters in the (a)-(d) overdamped (e=1) and (e)-(h)
underdamped (e=0.1) cases. In each case, data are shown with uences below and above the critical uence, and the model
parameters are set to !0=(2�) = 2 THz, g = 2 THz, V = 60 THz, � = Jc = Jv = 40 THz, and ph = 0:3 THz. (a),(e) Time
evolution of the real part of the electronic order parameter. (b),(f) Time evolution of the imaginary part of the electronic order
parameter. (c),(g) Time evolution of the lattice order parameter. (d),(h) Trajectory of the electronic order parameter.

To simulate the two-pulse pumping situation, one sim-
ply adds another f term to Eq. (17) and (18) that is
identical to the first, except that this f term is centered
at the time when the second pulse arrives at the sample.
The initial conditions are the same. Here we apply a
FFT to X in the time interval between the arrival of the
second pulse and 20 ps thereafter. We thus obtain the
OPCP amplitude versus fluence at different time delays
[Fig. S5].

II. DETERMINATION OF THE MICROSCOPIC
PARAMETERS

From our experiment we get ω0/(2π) = 2 THz. The
chosen microscopic parameter values in Ref.[3, 4] repro-
duce the equilibrium band structure qualitatively well,
therefore we adopt these and set g = 2 THz, V = 60
THz, ∆ = 40 THz, Jc = Jv = 40 THz, m = −17 THz,
U = 132 THz, D = 13.3 THz, and g′ = 0.83g. The Higgs
mode frequency −2m = 34 THz qualitatively matches
the gap size ∆ [6]. The corresponding fast oscillation
is beyond the time resolution of our experimental setup,
and hence cannot be resolved. The phonon dephasing
time we measured is approximately 3 ps, thus γph ≈ 0.3
THz. This set of parameter choices is self-consistent but
may not be unique. We also demonstrate that the spe-
cific choice of the above microscopic parameters does not
change the main conclusion of this paper, i.e. the rever-
sal of the EI order [Fig. S2(b)]. We simulate our incident
light as a σ = 100 fs Gaussian irradiating the sample at
t = 0. The pump fluence F is thus the only tunable
parameter.

There is uncertainty in the determination of the elec-
tron decay rate γe. Recent theories have demonstrated

that the electronic system can oscillate in an amplitude
(Higgs) and phase (Goldstone) mode around the tran-
sient free energy minimum [3], but there is no experimen-
tal evidence of such modes so far. A large γe describes the
overdamped case where the electronic subsystem adia-
batically evolves into the transient free energy minimum,
while a small γe captures the underdamped case where Φ
explores a larger region of the Mexican-hat potential via
rapid oscillations of the Higgs and the Goldstone modes
upon light excitation [Fig. S1(h)]. We demonstrate that
the nature of the electronic decay, whether overdamped
or underdamped, does not change our main finding, i.e.
the reversal of the EI order and the concurrent anomalous
phonon amplitude dependence. We simulated the afore-
mentioned two cases using either γe = 1, which typically
characterizes an overdamped scenario with no oscillation
[Fig. S1(a)-(d)], or γe = 0.1, which describes the under-
damped case [Fig. S1(3)-(h)]. With γe = 0.1, the rapid
Higgs/Goldstone oscillation clearly damps out in 0.25 ps.
Despite the distinction in γe, the dynamics of Φ and X
are comparable qualitatively at times longer than 0.25
ps after the light excitation. The clear reversal when the
pump fluence is higher than the critical fluence is real-
ized independent of the value of γe. Further, alteration
of the electron dephasing rate has a minimal affect on
the reversal critical fluence [Fig. S2(a)]. Since an inves-
tigation of the behavior of the Higgs/Goldstone mode is
beyond the scope of this work, we only simulate with the
overdamped case hereafter.


	Contents
	I. Derivation of the microscopic dynamical equations
	II. Determination of the microscopic parameters
	III. Difference between the calculated and experimental critical fluence
	IV. Ultrafast heating and subsequent cooling
	V. Non-monotonic behavior of the OPCP amplitude versus fluence above the critical fluence
	VI. ISRS/DECP phonon simulation
	VII. Experiment and fitting details
	VIII. Detailed comparison of double-pump experiment and simulation
	References

