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Online decentralized decision making with inequality constraints: an
ADMM approach
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Abstract—We discuss an online decentralized decision making
problem where the agents are coupled with affine inequality con-
straints. Alternating Direction Method of Multipliers (ADMM) is
used as the computation engine and we discuss the convergence of
the algorithm in an online setting. To be specific, when decisions
have to be made sequentially with a fixed time step, there
might not be enough time for the ADMM to converge before
the scenario changes and the decision needs to be updated. In
this case, a suboptimal solution is employed and we analyze
the optimality gap given the convergence condition. Moreover,
in many cases, the decision making problem changes gradually
over time. We propose a warm-start scheme to accelerate the
convergence of ADMM and analyze the benefit of the warm-
start. The proposed method is demonstrated in a decentralized
multiagent control barrier function problem with simulation.

Index Terms—Decentralized control; ADMM; Control barrier
Functions

I. INTRODUCTION

Multiagent systems and networked systems make up a large
portion of the autonomous applications, such as multi-robot
systems, autonomous vehicles, and power networks. In many
cases, due to the large number of agents and the distributed
nature, centralized decision making is not implementable and
people resort to decentralized algorithms. These decentral-
ized decision making problems are usually formulated as
distributed optimization problems, which have been studied
for decades [1], [2]. One typical setup is to optimize over a
summation of functions depending on different subsets of the
decision variables via local optimization and communication
between agents. The algorithm structure and communication
protocol largely depend on the coupling graph topology, in-
cluding the master-worker setting [3], fully connected setting,
and fully distributed setting. Time varying topologies and time
delays have also been considered in the literature [2], [4].

Alternating Direction Method of Multipliers (ADMM) is
one class of optimization algorithms that receive increasing
popularity as a simple yet effective framework for distributed
optimization [5]. Comparing to the gradient based methods
such as [2], it is based on dual ascent, which solves the primal
problem locally, and uses the dual variable to coordinate the
local optimizations at each node. A common way of applying
ADMM to distributed optimization is to formulate it as a
consensus problem, where each agent is associated with a local
objective function, and are coupled with other agents in the
system by a consensus constraint. The idea is to keep local
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copies of variables shared among multiple objective functions
and enforcing consistency of the local copies, which fits right
into the ADMM formulation. There exist a plethora of dif-
ferent variations of ADMM [6] with different communication
topologies and convergence guarantees [7], [8].

In this paper we consider the problem of decentralized
decision making with multiple agents coupled by linear in-
equality constraints. The goal is to search for the solution
that minimizes the violation. Examples of such problems
include motion planning for multiple agents [9], [10], [11],
decentralized model predictive control [12], and decentralized
coordination for power grids [13], [14]. Moreover, we consider
the case where the decentralized decision making problem
is solved repeatedly with gradually changing data, i.e., the
inequality constraints and local objective functions changes
gradually between successive time steps. In online decision-
making problems, the decision need to be made within a
limited amount of time, which can be several seconds, or even
milliseconds, depending on the application. The motivating
example is the obstacle avoidance problem for autonomous
vehicles using control barrier functions, where the actions need
to be determined in the order of 100 milliseconds. The main
contributions of this paper are (1) we propose a consensus-
based framework for online decentralized decision making
with coupling inequality constraints (2) we apply the Prox-
JADMM algorithm with warm-start for online decentralized
decision making with changing topology and analyzed the
optimality gap for unconverged solutions and the continuity
of the optimal solution under changing problem data.
Paper structure. Section II describes the problem setup,
Section III reviews the ADMM setup and the convergence
result, and Section IV presents the main result, the warm-
start Prox-JADMM algorithm for online decentralized decision
making. We show the application of the proposed algorithm on
a autonomous vehicle obstacle avoidance example in Section
V and finally we conclude in Section VI.

II. PRELIMINARIES AND PROBLEM SETUP

We begin with some definitions. A function f : X → R
is convex if ∀x1, x2 ∈ X , λ ∈ [0, 1], f(λx1 + (1 − λ)x2) ≤
λf(x1) + (1 − λ)f(x2). Given a convex function f , if f is
differentiable at x, then ∇f(x) denote the gradient of f at x;
∂f(x) denotes the subgradient of f , which is defined as

∂f(x) := {c ∈ Rn | ∀x1 ∈ X , f(x1)− f(x) ≥ cᵀ(x1 − x)}.

When f is differentiable at x, ∂f = {∇f(x)}. A differentiable
f is strongly convex with parameter σ if ∀x, y ∈ X , f(y) −
f(x) ≥ ∇f(x)ᵀ(y−x)+ σ

2 ||x−y||
2. | · | denotes the element-

wise absolute value of a vector or a matrix, || · || denotes the
2-norm of a vector, || · ||F denotes the Frobenius norm.
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We consider a fully decentralized setting with N agents,
where N may vary over time and the algorithm does not
depend on N . Let xi ∈ Rni be the decision variable for the
ith agent, each agent is associated with the local objective
function fi : Rni → R. A coupling linear inequality is a 3-
tuple (s,As, bs) where s ⊆ {1, 2, ..., N} is a subset of agents,
As and bs defines the following coupling constraint:∑

i∈s
Aisxi ≤ bs,

where Ais is the block of As corresponding to xi. Two agents
xi and xj are neighbors of each other if there exists a coupling
constraint (s,As, bs) where s contains both i and j, and Ni
denotes the neighbor set of agent i, with cardinality Ni. Let
C denote the set of all coupling constraints, the optimization
problem we consider is then:

min
x1,...,xN

∑
i
fi(xi)

s.t. xi ∈ Xi, ∀(s,As, bs) ∈ C,
∑

i∈s
Aisxi ≤ bs,

(1)

where Xi is the domain of xi, assumed to be convex with a
nonempty interior. The compact form of (1) is then

min
x1,...,xN

∑
i
fi(xi)

s.t. xi ∈ Xi, Ax ≤ b,
(2)

where x =
[
xᵀ1 · · · xᵀN

]ᵀ
is the vector consisting of all

xi, A and b matrices are obtained by stacking the As and
bs matrices on the proper dimensions. In practice, (1) can be
infeasible and we solve the following relaxed problem instead:

min
x1∈X1,...,xN∈XN

∑
i fi(xi) + β

∑
(s,As,bs)∈C

1ᵀ max{0,
∑
i∈s

Aisxi − bs} (3)

where the maximum is taken entry-wise, β > 0 is the penalty
on constraint violation, and 1 is a vector of all ones with
the proper dimension. The penalty term is a piecewise affine
convex function of the {xi}.
Remark 1. In [15], the inequality constraint is enforced with
a logarithmic penalty. However, since we consider the cases
where (2) may be infeasible, a linear penalty is chosen instead.
Assuming ∀x, c1 ≤

∑
i fi(xi) ≤ c2, if (2) is feasible, then the

solution to (3) satisfies 1ᵀ max{0,
∑
i∈s

Aisxi − bs} ≤ c2−c1
β .

This means constraint violation due to relaxation can be made
arbitrarily small by increasing β.

To solve (3) decentrally, the local copy idea is adopted.
To be specific, each agent keeps local copies of the decision
variables of its neighbors, and additional consensus constraint
is added so that these local copies agree with the actual
variable. Let xij denote the local copy of xj kept by agent
i, xi := [xᵀi , x

i
j1

ᵀ
, ..., xijNi

ᵀ
]ᵀ ∈ Rni be the vector consisting

of xi and all the local copies of agent i’s neighbors, and let
Aixi ≤ bi be the compact form of the constraint

∀(s,As, bs) ∈ C, i ∈ s,Aisxi +
∑

j∈s,j 6=i
Ajsx

i
j ≤ bs,

Ai ∈ Rmi×ni and bi ∈ Rni . Then define the augmented local
objective function as

Fi(xi) = fi(xi) + β(wi)ᵀ max{0,Aixi − bi}, (4)

where wi ∈ Rmi is a vector with wij = 1/|sj |, sj being
the subset of agents corresponding to the jth row of Ai, and
|sj | being its cardinality. Since the constraint is shared by |sj |
agents, each local objective function gets 1/|sj | of the total
penalty. The decentralized optimization problem is then:

min
x1,...,xN

∑
i
Fi(xi)

s.t. ∀i, xi ∈ Xi, ∀j ∈ Ni, xij = xj ,
(5)

which shall be solved with ADMM.

III. REVIEW OF ADMM
We briefly review the ADMM framework.

Standard ADMM. The standard ADMM algorithm considers
the following problem:

min
x,z

f(x) + g(z)

s.t. Ax+Bz − c = 0,
(6)

where x ∈ Rn, z ∈ Rm are the decision variables, f :
Rn → R, g : Rn → R are convex objective functions,
A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp defines the linear
equality constraint. The ADMM algorithm follows a dual
ascent procedure with the following augmented Lagrangian:

Lρ(x, z, y) = f(x) + g(z) + yᵀ(Ax+Bz − c) + ρ
2 ‖Ax+Bz − c‖2 ,

where y is the Lagrange multiplier of the equality constraint,
ρ > 0 introduces the quadratic terms that facilitates the
convergence of the algorithm. The ADMM updates the follows

xk+1 := arg minx Lρ(x, zk, yk)

zk+1 := arg minz Lρ(xk+1, z, yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c).
(7)

More detail about the ADMM algorithm, including the con-
vergence proof, can be found in [5].
Multiblock ADMM and convergence. The standard ADMM
handles the case with N = 2 coupled variables, the cases
where N ≥ 3 is often referred to as multiblock ADMM, which
solves the following problem:

min
xi

∑N

i=1
Fi(xi)

s.t.
∑N

i=1
Aixi − c = 0.

(8)

There are several different setups for multiblock ADMM.
A direct extension of the standard ADMM algorithm to
the multiblock case is called a Gauss-Seidel ADMM. The
Lagrangian for multiblock ADMM can be directly extended
from the standard case:

Lρ(x1, ...xN , y) =
N∑
i=1

fi(xi) + yᵀ(
N∑
i=1

Aixi − c) + ρ
2

∥∥∥∥ N∑
i=1

Aixi − c
∥∥∥∥2

.

The Gauss-Seidel iteration is then
xk+1

1 := arg minx1
Lρ(x1,x

k
2 , ...,x

k
N , y

k)

xk+1
2 := arg minx2

Lρ(xk+1
1 ,x2,x

k
3 , ...,x

k
N , y

k)

· · ·
xk+1
N := arg minxN

Lρ(xk+1
1 , ...xk+1

N−1,xN , y
k)

yk+1 := yk + ρ(
N∑
i=1

Aix
k+1
i − c).

(9)
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Fig. 1: Convergence rate with 8 and 80 agents in 10 trials

Note the update of xi leverages the updated value of
x1, ...xi−1, which helps the convergence of the algorithm due
to the updated information. See [16] for convergence analysis.

However, as is clear from the algorithm, Gauss-Seidel
ADMM cannot be parallelized and is not suitable for a fully
decentralized setting. Jacobian ADMM refers to the ADMM
algorithms that simultaneously update all xi with the value
from the last iteration, which can be parallelized. However,
due to the lack of updated information, Jacobian ADMM is
less likely to converge comparing to Gauss-Seidel ADMM.
To facilitate convergence, the common strategy is to damp
the changing of the variables between iterations, such as
adding an underrelaxation [17] and adding a proximal term
to the Lagrangian [18]. We shall adopt the latter, named
Prox-JADMM, as our ADMM strategy. Prox-JADMM adds
a proximal term to primal update, and the ADMM update
follows the following procedure:

xk+1
1 := arg minx1

Lρ(x1,x
k
2 , ...,x

k
N , y

k) +
∥∥x1 − xk1

∥∥2

P1

xk+1
2 := arg minx2

Lρ(xk1 ,x2,x
k
3 , ...,x

k
N , y

k) +
∥∥x2 − xk2

∥∥2

P2

· · ·

xk+1
N := arg minxN

Lρ(xk1 , ...xkN−1,xN , y
k) +

∥∥xN − xkN
∥∥2

PN

yk+1 := yk + γρ(
N∑
i=1

Aix
k+1
i − c),

(10)
where γ > 0, and ‖·‖Pi

is the 2-norm induced by Pi � 0. Note
that the dual update for each coupling constraints only depends
on the agents involved, thus can be performed decentrally.

It is shown in [18] that when ρ, γ and {Pi} satisfies{
Pi � ρ( 1

εi
− 1)Aᵀ

iAi, i = 1, 2, ..., N∑N
i=1 εi ≤ 2− γ,

(11)

for some εi > 0, the Prox-JADMM converges with rate
o(1/k). However, it is obvious that (11) becomes increasingly
difficult to satisfy as N increases. In a fully decentralized
problem such as autonomous driving, there may be millions of
agents (considering all vehicles in the road system) and typi-
cally no agent knows the total number of agents. Fortunately,
this convergence proof can be very loose and in practice, we
found that the convergence of Prox-JADMM is much better
than what the theory predicts, and the convergence rate does
not vary much as the number of agents grows. Fig. 1 shows
the convergence in 10 randomly generated trials with 8 and
80 agents, and the rate of convergence is similar.

Remark 2. The proposed framework allows for a fully dis-
tributed implementation with a synchronized dual update,
which can be achieved with a synchronized clock and time
stamps. This is due to the fact that the coupling equality
constraints are local.

IV. PROX-JADMM FOR ONLINE DECENTRALIZED
DECISION-MAKING

In this section, we discuss the Prox-JADMM for online
decentralized decision-making.

A. Quality of unconverged solution

The optimization problem shown in (5) falls into the multi-
block ADMM framework, and as discussed in Section III,
in a fully decentralized setting, we use the Prox-JADMM
introduced in [18]. Under an online setting, Prox-JADMM
may not converge in time, and the unconverged solution is
then taken as the solution to the decision making problem
after a final correction step, which simply solves the primal
update with the current y and without the proximal term:

∀i = 1, ..., N,xi = arg min
xi

Lρ(xk1 , , ...,xki−1,xi,x
k
i+1, ...,x

k
N , y

k) (12)

where k is the last iteration.
In the setup presented in Section II, each xi contains xi and

the local copies xij of its neighbors, xi is then taken as the local
decision. Let x := [xᵀ1 , ...x

ᵀ
N ]ᵀ and let yij be the Lagrange

multiplier associated with the equality constraint xij = xj , we
have the following theorem that quantifies the optimality gap.

Theorem 1. Given any unconverged solution {xi} from Prox-
JADMM after the correction in (12), the objective of (5) J(x)
and the optimal solution J?(x?) satisfies

J(x)− J(x?) ≤
∑

(s,As,bs)∈C

β

|s|
∑
i∈s

∑
j∈s,j 6=i

|Ajs| · |xij − xj |

−
∑
i

∑
j∈Ni

(
(ykij)

ᵀ(xij − xj) +
ρ

2
||xij − xj ||2

)
.

(13)

Proof. The gap can be split into two parts, J(x)−
∑
i Fi(xi)

and
∑
i Fi(xi) − J(x?). Let x̄i := [xᵀi , x

ᵀ
j1
, ..., xᵀjNi

]ᵀ be the
vector of the true decision variables (as opposed to the local
copies) of agent i and its neighbors, by (4), we have

J(x) =
∑
i

Fi(x̄i),∑
i

Fi(x̄i)−
∑
i

Fi(xi) ≤
∑

(s,As,bs)∈C

β

|s|
∑
i∈s

∑
j∈s,j 6=i

|Ajs| · |xij − xj |.

This gives rise to the first line of (13). Since xis are the
optimal solutions to the correction step in (12), we have
L(x1, ...,xN , y

k) ≤ L(x?1, ...,x
?
N , y

k) = J(x?), implying∑
i Fi(xi)− J(x?) ≤ −

∑
i

∑
j∈Ni

(
(ykij)

ᵀ(xij − xj) + ρ
2 ||x

i
j − xj ||2

)
.

Combining the two parts proves the bound.

Theorem 1 shows that the mismatch xij−xj is an important
indicator of the convergence of the algorithm. When the
mismatch between local copies and the true values are small,
the optimality gap is small.
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B. Online decision-making with Prox-JADMM

Online decision-making is very common in engineering
systems. Our motivating example is a control barrier func-
tion quadratic programming (QP), which is determined by
the state of the agents and needs to be solved for every
time step. Similar problems include the optimal power flow
(OPF) problem for power systems and decentralized MPC. To
distinguish the sequential decision making from the iterations
of ADMM between time steps, we let fi[t], C[t] denote the
local objective functions and the constraint set at time t. The
ADMM algorithm would take multiple iterations to obtain a
solution within one time step, then solve an updated problem
with fi[t + 1] and C[t + 1]. Typically the decision making
problem satisfies some continuity condition, i.e., the problem
would gradually change over time. To be more precise, let

F (x) =
∑

i
fi(xi) + β1ᵀ max{0, Ax− b}, (14)

be defined as the total objective on X := X1 × ...× XN . We
begin with the following assumptions.

Assumption 1. The change of the local objective function fi
and the constraint set C over successive time steps is bounded
such that there exists κ > 0 that F [t+ 1]− F [t] is Lipschitz
continuous with constant κ within X , i.e.,

∀t = 0, 1, ..., ∀x, x′ ∈ X ,
|(F [t+ 1]− F [t])(x′)− (F [t+ 1]− F [t])(x)| ≤ κ||x− x′||.

Assumption 2. For all agents, the local objective function fi
is twice differentiable and strongly convex with parameter σ,
and ∇fi is Lipschitz with constant ν.

Proposition 1. Under Assumptions 1, 2, let x?[t] be the opti-
mal solution to (5) at time t, then ||x?[t+1]−x?[t]|| ≤ σ−1κ.

Proof. Proposition 1 is directly adopted from Proposition 4.32
from [19]. Since fis are strongly convex with parameter σ, F
is also strongly convex with parameter σ, thus satisfies the
second order growth condition with parameter σ. Then the
result follows by taking ε to 0.

Proposition 1 gives continuity condition for the optimal
solution of (5), but the dual variable is also critical to the
convergence of ADMM. Although strong duality guarantees
the uniqueness of x?, the dual variables that satisfy the Karush-
Kuhn-Tucker (KKT) condition may not be unique, which is
mainly due to the nondifferentiability of the max function.
One solution is to use a smooth approximation of the max
function, for example, with the LogSumExp function. The
smooth approximation of Fi is defined as

F̄i(xi) = fi(xi) +
β

c
(wi)ᵀ log(ec(A

ixi−bi) + 1), (15)

where exp and log are taken entrywise and c > 0 is a
parameter that tunes the smoothness of the approximation.
The larger c is, the closer the approximation is to the original
function. The total objective after smoothing is then

F̄ (x) =
∑N

i=1
fi(xi) +

β

c
1ᵀ log(ec(Ax−b) + 1). (16)

Fig. 2: Optimal primal and dual values with and without
LogSumExp smoothing

Proposition 2. Under Assumptions 2 and assume F̄ [t+ 1]−
F̄ [t] is Lipschitz with constant κ for all t, let x?[t], y?[t] be
the solution of (5) with Fi replaced by F̄i defined in (15) at
time t, let |s|max be the maximum number of agents coupled
by a single constraint in C, then ||x?[t+ 1]− x?[t]|| ≤ σ−1κ,
and ||y?[t+ 1]− y?[t]|| < ||A||2F

|s|max−1
|s|max βcσ−1κ.

Proof. Following a similar argument made in the proof of
Proposition 1, ||x?[t+ 1]− x?[t]|| ≤ σ−1κ. The dual variable
corresponds to the equality constraint such that all the local
copies are equal to the actual variable. Let yij be the dual
variable of the constraint xij = xj , then y?ij [t] satisfies
y?ij [t] = −∂F̄i(x

?
i [t])

∂xi
j

. The Hessian of the partial derivative

is ∂2F̄i

∂(xi
j)2

=
∑mi

n=1
eA

i
nxi−bi

nβc

(eA
i
nxi−bi

n+1)2|sn|
(Ai

n,j)
ᵀAi

n,j , where Ai
n

is the nth row of Ai, and Ai
n,j is the block correspond-

ing to xij . This implies that ∂F̄i

∂xi
j

has a Lipschitz constant

less than
∑mi

n=1
βc
|sn| ||A

i
n,j ||2F , i.e., ||y?ij [t − 1] − y?ij [t]|| ≤∑mi

n=1
βc
|sn| ||A

i
n,j ||2F ||x?j [t+ 1]− x?j [t]||. Sum up for all i, j,

||y?[t+ 1]− y?[t]|| <
∑

(s,As,bs)∈C

(|s|−1)βc
|s|

∑
i∈s ||Ais||2F ||x?i [t+ 1]− x?i [t]||.

Using Cauchy-Schwartz inequality, we get
||y?[t+ 1]− y?[t]|| < ||A||2F

|s|max − 1

|s|max
βc||x?[t+ 1]− x?[t]||

≤ ||A||2F
|s|max − 1

|s|max
βcσ−1κ.

In practice, we found that smoothing may be unnecessary
if the dual variable in the original problem is smooth enough
w.r.t. the problem data. Fig. 2 shows the result of a numeric
experiment with 8 agents, each xi ∈ R2, fi quadratic, and
the coupling constraints are pairwise. We let the coupling
constraint Ax ≤ b gradually change from the initial value
to the final value via linear interpolation: A = λA1 + (1 −
λ)A2, b = λb1+(1−λ)b2, and let λ change from 0 to 1, where
A1 and A2 share the same sparsity pattern. Fig. 2 shows the
optimal value of x1 and y12 as λ changes. The smoothing
made both x? and y? smoother, yet the unsmoothed curve is
already continuous with a reasonably small Lipschitz constant.
Remark 3. The disadvantage of smoothing in this case is that
it makes the local optimization from a quadratic programming
to an optimization with the LogSumExp function, which is still
convex, but there lacks specialized solvers for it. Therefore,
when y is smooth enough w.r.t. the problem data without
smoothing, we choose to not use smoothing.
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The sensitivity analysis above shows that when the problem
data {fi} and C change gradually over time, the optimal
value also changes continuously. This motivate us to warm
start the ADMM iteration with the solution of both the
primal and dual variables (though unconverged) from last the
iteration. In [18], convergence was proved by showing the
distance from the current solution to the optimal solution is
monotonically decreasing. Although no quantitative analysis
of the convergence rate was given, one would expect that if
the change of the optimal solution between successive time
steps is bounded, the convergence of ADMM can catch up and
maintain a certain maximum distance to the optimal solution,
which is demonstrated in Section V. When the topology of the
communication network changes, the dual variable associated
with the newly added coupling constraint is simply initialized
to be zero.

The warm start online Prox-JADMM is summarized in
Algorithm 1. M is the maximum number of iterations allowed
between time steps (determined by the computation speed and
communication speed). At the beginning of each time step, the
primal and dual variables are warm started with the (possibly
unconverged) values from the last time step.

V. APPLICATION TO MULTIAGENT CBF

The motivating example is a multiagent control barrier func-
tion (CBF) problem that arises in the control of autonomous
vehicles. Control barrier function [20] considers a control
affine dynamic system described by a differential equation

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ U ⊆ Rm, (17)

where x is the state, subject to a safety constraint x /∈ Xd, u
is the input.
Remark 4. To avoid confusion, x denotes system state, fol-
lowing the convention of control literature, the input u is the
decision variable of the ADMM problem introduced later.

A CBF is then a function h : Rn → R that satisfies

∀ x ∈ X0, h(x) ≥ 0

∀ x ∈ Xd, h(x) < 0

∀ x ∈ {x | h(x) ≥ 0} , ∃ u ∈ U s.t. ḣ+ α (h) ≥ 0,

(18)

where X0 is the set of initial states, α(·) is a class-K function,
i.e., α(·) is strictly increasing and satisfies α(0) = 0. The last
condition is called the CBF condition, which guarantees that
any state within the safe set (h(x) ≥ 0) remains safe, and

Algorithm 1 Warm start online Prox-JADMM

1: t← 0, k ← 0
2: {x0

i } ← 0, y0 ← 0
3: while NOT TERMINATE do
4: Obtain {Fi}[t], calculate L
5: for k = 0 : M do
6: Prox-JADMM update following (10)
7: end for
8: Correction step following (12)
9: t← t+ 1, k ← 0, {x0

i } ← {xMi }, y0 ← yM

10: end while

any state outside the safe set converges back to the safe set
exponentially. Given a legacy controller u0 : Rn → U , the
following CBF QP solves for the minimum intervention over
u0(x) while enforcing the CBF condition:

u? = arg min
u∈U

∥∥u− u0(x)
∥∥2

s.t. ∇h · (f(x) + g(x)u) + α (h) ≥ 0,
(19)

which is a QP subject to a linear inequality constraint. The
feasibility of (19) when h(x) ≥ 0 is guaranteed if the set
{x|h(x) ≥ 0} is a control invariant set. This is sufficient
to guarantee safety, since under (19), any nonnegative h will
remain nonnegative. In particular, [10] presents a CBF based
on backup policies, which is applicable to multiagent problems
and the feasibility of the decentralized CBF QP is guaranteed
when h ≥ 0. To be specific, consider N agents with dynamics
xi = fi(xi) + gi(xi)ui, where xi and ui are the state and
input of agent i. The CBF for multiagent collision avoidance
can be decomposed as follows:

h(x1, ...xN ) = min
i=1,..,N

[
hi(xi), min

j∈Ni

hij(xi, xj)

]
, (20)

where hi is the local CBF for agent i, hij is the CBF for
obstacle avoidance between agent i and j, defined for all of
agent i’s neighbors Ni. The multiagent CBF QP is then

min
u1,..,uN

∑
i

∥∥ui − u0
i

∥∥2

s.t. ∀i,∇hi · fi(xi, ui) + α (hi) ≥ 0,

∀j ∈ Ni, ∇hij · (fi(xi) + g(xi)ui + fj(xj) + g(xj)uj) + α (hij) ≥ 0,
(21)

which falls into the form of (1). It is shown in [10] that
when all the hi’s and hij’s are positive, (21) is always
feasible, and a feasible solution can be obtained by a fully
decentralized optimization. However, when h < 0, there is
no guarantee of feasibility, and the decentralized algorithm
without communication proposed in [10] may perform badly.
[21] proposed a presumed cooperation algorithm that also
uses local copies, but consensus cannot be achieved without
communication. This motivates us to use ADMM to improve
the performance via consensus. As mentioned in Section II,
the goal is to minimize the violation of the CBF condition.
The local optimization for agent i is then the following:

min
ui

∥∥ui − u0
i

∥∥2
+ βmax{0,−∇hi · fi(xi, ui)− α (hi)}

+
β

2

∑
j∈Ni

max{0,−∇hij · (fi(xi) + gi(xi)ui + fj(xj) + gj(xj)u
i
j)− α (hij)}

s.t. ui ∈ Ui
(22)

Fig. 3: Total constraint violation of the constraint splitting
method used in [10], the Prox-JADMM, and the optimal
solution solved with centralized optimization
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Fig. 4: Effect of warm start on convergence

where ui contains ui and uij , the local copies of the input of
all its neighbors. Note that the penalty for violating hijs are
multiplied by 1

2 since every hij is shared by two agents, thus
the penalty is also shared by two agents.

The CBF condition is determined by the state of the agents,
changing gradually over time. Therefore, it is straightforward
to find the Lipschitz constant that characterizes the continuity
of the online decision-making problem. The strong convexity
comes from the quadratic local cost of each agent.
Remark 5. Comparing to the cooperative control methods, the
Prox-JADMM CBF approach is fully decentralized, the agents
do not know the total number of agents, they simply exchange
messages with their neighbors and solve the local update in
a synchronous and parallel fashion. Moreover, The agents do
not need to share their local objective functions.

We consider the merging case in autonomous driving, in
which the CBF may start negative since the vehicles on the
two lanes can detect each other only when they are close to
the merging point, and their current path may lead to collision.
Dubin’s car model is used for the vehicle dynamics with
acceleration and yaw rate as input. The time step for updating
the control input is 50ms, and the maximum iteration M for
the Prox-JADMM is 30, chosen based on the sampling time
for control update. The CBF QP only includes hi and hij that
are smaller than a threshold (large h indicates the constraint is
satisfied with a big margin), which localizes the problem and
bounds the size of the local optimization.

Fig. 3 shows the performance comparison of the Prox-
JADMM algorithm with the benchmark in [10] and the optimal
solution. The total constraint violation of Prox-JADMM is
always smaller than the benchmark, and very close to the
optimal solution, as Theorem 1 predicts. Fig. 4 shows the
effect of warm start where ‖∆u‖ .

=
∑
i,j ||uij − uj ||, the

violation of the consensus constraint, which is shown to be an
important indicator of the convergence of ADMM. The blue
and red curves show the consensus violation at the beginning
and at the end (after M iterations) of the ADMM iterations,
respectively. The warm start help reducing ∆u after the update
of the optimization problem and ensures good convergence of
the ADMM, whereas the convergence can be bad without the
warm start.

A video of the highway sim can be found
youtu.be/9qjHuDkpd2E and a python realization of the
Prox-JADMM algorithm with linear inequality constraint can

be found github.com/chenyx09/LCADMM.

VI. CONCLUSION

We present a Prox-JADMM algorithm for online decen-
tralized decision making with coupling inequality constraints.
We show that under gradual change of the problem data, the
optimal solution changes continuously, and warm starting the
ADMM helps accelerate convergence between time steps. The
algorithm is applied to a decentralized control barrier function
problem and the simulation shows that the decentralized
algorithm achieves near optimal performance.
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