
ar
X

iv
:a

st
ro

-p
h/

99
09

26
6v

1 
 1

5 
Se

p 
19

99
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 23 April 2018 (MN LATEX style file v1.4)

Testing linear-theory predictions of galaxy formation

Ben Sugerman,1,2⋆ F. J. Summers,2,3⋆ and Marc Kamionkowski2,4⋆
1Department of Astronomy, Columbia University, 538 West 120th Street, New York, NY 10027, USA
2Columbia Astrophysics Lab, Columbia University, 538 West 120th Street, New York, NY 10027, USA
3Department of Astrophysics, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
4Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA

23 April 2018

ABSTRACT

The angular momentum of galaxies is routinely ascribed to a process of tidal
torques acting during the early stages of gravitational collapse, and is predicted from
the initial mass distribution using second-order perturbation theory and the Zel’dovich
approximation. We have tested this theory for a flat hierarchical cosmogony using a
large N -body simulation with sufficient dynamic range to include tidal fields, allow
resolution of individual galaxies, and thereby expand on previous studies. The pre-
dictions of linear collapse, linear tidal torque, and biased-peaks galaxy formation are
applied to the initial conditions and compared to evolved bound objects. We find
relatively good correlation between the predictions of linear theory and actual galaxy
evolution. Collapse is well described by an ellipsoidal model within a shear field, which
results primarily in triaxial objects which do not map directly to the initial density
field. While structure formation from early times is a complex history of hierarchi-
cal merging, salient features are well described by the simple spherical-collapse model.
Most notably, we test several methods for determining the turnaround epoch, and find
that turnaround is succesfully described by the spherical collapse model. The angu-
lar momentum of collapsing structures grows linearly until turnaround, as predicted,
and continues quasi-linearly until shell crossing. The predicted angular momentum
for well-resolved galaxies at turnaround overestimates the true turnaround and final
values by a factor of ∼ 3 with a scatter of ∼ 70 percent, and only marginally yields
the correct direction of the angular momentum vector. We recover the prediction that
final angular momentum scales as mass to the 5/3 power. We find that mass and an-
gular momentum also vary proportionally with peak height. In view of the fact that
the observed galaxy collapse is a stochastic hierarchical and non-linear process, it is
encouraging that the linear theory can serve as an effective predictive and analytic
tool.

Key words: cosmology – dark matter – galaxies:formation – numerical methods –
large scale structure of Universe

1 INTRODUCTION

Large-scale-structure formation (i.e., galaxies and clusters)
most likely resulted from gravitational amplification of small
density inhomogeneities in an otherwise smooth primordial
density field following an initial hot big-bang. This scenario
is supported by the COBE findings of the cosmic microwave
background radiation anisotropies (Smoot et al. 1992). In
the standard-CDM (cold dark matter) model (Peebles 1982;
Bond & Szalay 1983; Bond & Efstathiou 1984), these fluc-

⋆ E-mail: ben@astro.columbia.edu (BS); summers@amnh.org
(FJS); kamion@phys.columbia.edu (MK)

tuations grow in the non-baryonic dark-matter component
before recombination, thereby providing the density pertur-
bations which evolve into structures and voids (for reviews,
see Ostriker 1993; Peebles 1993). The evolution of these in-
homogeneities are relatively easily studied using linear per-
turbation theory as long as the density contrast is small
compared to unity, i.e., within the linear regime. However,
once the density contrast exceeds unity, linear theory breaks
down and either analytic approximations or N-body simu-
lations must be invoked to study the evolution of perturba-
tions.

Application of perturbation approximations in the lin-
ear regime may offer insight into a protogalaxy’s acquisition
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of angular momentum during separation and collapse from
the Hubble flow. Hoyle (1949) first suggested that a pro-
togalaxy’s spin arises from the tidal fields of its neighbors.
An alternative theory, in which galactic spin is the relic of
primeval vorticity, is not widely regarded as favorable (see
the review by Efstathiou & Silk 1983). Peebles (1969) first
examined Hoyle’s theory using a second-order perturbative
expansion to find the growth rate of angular momentum in-
duced by gravitational tidal torques from the surrounding
expanding matter field. In particular, he found that the an-
gular momentum within a spherical comoving volume grows
as t5/3 in an Einstein-de Sitter universe. Second-order ex-
pansion is necessary, since to first order, an isotropic spher-
ical volume can not gain angular momentum from exter-
nal torques. Doroshkevich (1970) found that for a generic
non-spherical volume enclosing a protogalaxy, the angular-
momentum growth rate at early times (in a flat cosmology)
is linearly proportional to time, and that Peebles’ growth
rate resulted from incorrect symmetries. White (1984) de-
termined that Peebles’ findings resulted from surface effects
which convect angular momentum across the boundary of
the enclosing Eulerian volume, and correctly reinterpreted
the analysis to yield the predicted linear growth rate. White
noted that his approximations strictly apply only to early
times, during which the density contrast (or the density field
convolved with a window function of protogalactic scale) is
much less than unity, and that the final spin is dependent
entirely on how the tidal torquing is terminated. Following
the collapse history dictated by the spherical-collapse model
(Partridge & Peebles 1967; Gunn & Gott 1972; Peebles 1980
§19), one typically assumes that a galaxy becomes insensi-
tive to the external tidal field once it separates from the
Hubble flow and begins collapse (Peebles 1969).

Peebles’ and White’s analyses involve volumes centred
on random points, hence the matter contained within those
volumes is not guaranteed to collapse into a bound pro-
togalaxy. However, we expect that protogalaxies will form
in regions of density peaks, currently known as the biased
galaxy-formation model (e.g., Kaiser 1984; Peacock & Heav-
ens 1985; Bardeen et al. 1986). A revised model has been
proposed, in which second-order perturbation expansions
describe tidal torques from high-density peaks acting on the
primordial mass distribution of a protogalaxy, and has been
analyzed by, for example, Hoffman (1986, 1988), and Cate-
lan & Theuns (1996a, hereafter CT96). The acquisition of
angular momentum from tidal fields and the role of tidal
shear has also been studied by, e.g. Binney & Silk 1979;
Heavens & Peacock (1988, hereafter HP88); Ryden (1988);
Quinn & Binney (1992); Dubinski (1992); Zaroubi & Hoff-
man (1993); Bond & Myers (1993); Bertschinger & Jain
(1994); van de Weygaert & Babul (1994); and Eisenstein
& Loeb (1995, hereafter EL95).

Early quantitative comparison of angular-momentum
evolution with linear theory was first addressed by Peebles
(1971) and Efstathiou & Jones (1979). White (1984), us-
ing two 32,768 particle N-body simulations, found that the
mean angular momentum over all groups grows linearly at
very early times (a <∼ 2), however from the individual ex-
amples he shows, one is led to conclude that the dispersion
about this value is quite high. Barnes & Efstathiou (1987,
hereafter BE87) also draw the same conclusion from 7 sim-
ulations using 8,000 − 32,768 particles and a variety of ini-

tial conditions. Again, the mean growth of L at early times
appears linear, while the individual galaxies exhibit a sig-
nificant dispersion. BE87 further concluded that the linear
prediction for the final angular momentum provides only an
order-of-magnitude estimate.

In this paper, we address the predictions of linear theory
and test their validity using a P3MSPH gravitational and
hydrodynamic simulation. We expand on previous numeri-
cal studies by using galaxies evolved with higher numerical
and spatial resolution. Following the collapse history and
evolution of 77 galaxies from high redshift until the present
epoch, we compare the angular momentum to linear the-
ory, to study the accuracy and limits of applicability of this
formalism. We address whether the linear-theory approxi-
mation is applicable in the weakly non-linear and strictly
non-linear regimes. We examine the role and significance of
local effects such as mergers and close tidal encounters on
the evolutionary history. We further examine various mod-
els of protogalactic collapse and comment on the applica-
bility and limitations of each. In a hierarchical-clustering
cosmogony, structure formation is not expected to follow
a simple spherical-collapse model. Therefore, it is most ad-
vantageous if the linear theory successfully predicts the final
angular momentum of a collapsing protogalaxy, for use as a
computational tool, numerical shortcut, and in reconstruct-
ing the primordial density field.

The layout of the paper is as follows. In §2, we briefly re-
viewWhite’s formalism for linear tidal torques, as well as the
predictions of the spherical-collapse model. We describe the
numerical simulation, group-finding, and our galaxy catalog
in §3, and our methodology for measuring pertinent param-
eters for each galaxy in §4. Results are presented in §5. We
first examine the collapse history of galaxies and compare
the qualitative and quantitative predictions of linear theory
to the evolution of our set of galaxies. We then discuss scal-
ings derived from linear theory, compare predictions of the
biased galaxy-formation scenario to our data, and briefly
discuss correlations. The paper concludes with a discussion
in §6.

2 DYNAMICAL FORMALISM

For completeness, we present the derivation of the linear the-
ory developed by White (1984) using the Zel’dovich (1970)
approximation. Consider the matter within an expanding
Friedmann universe to be adequately described as a New-
tonian pressureless cold fluid. The linear-theory mapping
between the Eulerian and Lagrangian comoving coordinates
x and q (respectively) is given by

x(q, t) = q −D(t)∇ψ(q), (1)

where q is defined as the x position of a particle as t → 0;
and ∇ψ is proportional to the peculiar gravitational poten-
tial. D(t) describes the growing density mode. Equation (1)
is a statement of the Zel’dovich (1970) approximation, and
is strictly valid only if 〈δ〉 ≪ 1, where the fractional density
contrast δ(r, t) = ρ(r, t)/ρb(t) − 1. This condition is satis-
fied if the initial density fluctuations have coherence lengths
of protogalactic size. However since this may only be the
case at the earliest times, we smooth the density field by
convolving it with a window function of protogalactic scale.
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Linear-theory predictions of galaxy formation 3

This implicitly assumes that small-scale nonlinearities have
negligible effect on large-scale fluctuations at early times
(White 1984).

The angular momentum of the matter contained within
an Eulerian volume V , neglecting centre of mass motion, is
given by

L(t) =

∫

a3V

drρr × ṙ = ρba
5

∫

V

dx(1 + δ)x × u, (2)

where u = ẋ; a dot refers to the normal time derivative;
r = a(t)x; and a is the cosmological expansion factor. If the
transformation tensor T between Eulerian and Lagrangian
coordinates is defined such that x(q, t) = Tq, then the Ja-
cobian J of T is the change in volume between Eulerian
and Lagrangian coordinates. Since Eulerian and Lagrangian
coordinates are identical at t = 0, J(t = 0) ≡ 1, it fol-
lows directly that ρ/ρ0 = J(0)/J(t). If ρb = ρ0, i.e., the
background mean density is equal to the primordial density,
then we immediately retrieve the continuity equation,

1 + δ[x(q, t), t] = J−1. (3)

From equation (1), we find the peculiar velocity,

v(q, t) = au(q, t) = aḊ∇ψ. (4)

We now transform the integral (2) to the Lagrangian volume
Γ,

L(t) = η0a
2Ḋ

∫

Γ

dq q ×∇ψ(q), (5)

where η0 ≡ ρba
3 = ρ0a

3
0. It is obvious from equation (5)

that the angular momentum L depends on the shape of the
volume Γ that encloses the constituents of the protogalaxy.
Following White (1984), we approximate the potential ψ by
the first three terms of the Taylor series about the origin
q = 0. The linear approximation for the angular momentum
may then be expressed as

L
(1)
i (t) = a(t)2Ḋ(t)ǫijkD

(1)
jl Ilk (6)

where

D
(1)
ij = ∂i∂jψ(0) (7)

is the initial deformation tensor at the origin q = 0;

Iij = η0

∫

Γ

qiqjdq (8)

is the inertia tensor; ǫijk is the anti-symmetric Levi-Civita
tensor; and summation over repeated indices is implicit.
Since the principal axes of the deformation and inertia ten-
sors are, in general, not aligned for a non-spherical volume,
this linear angular momentum should be non-zero.

The time dependence in L(1) lies in the term a2(t)Ḋ(t),
which for an Einstein-de Sitter universe equals 2

3
t/t2o such

that L(1) grows linearly in time. One simplifies the computa-
tion of the deformation tensor using the Fourier transform
of the potential ψ̃(k) where k is the comoving Lagrangian
wavevector. The deformation tensor is now

D
(1)
ij = −

∫

dk

(2π)3
kikj ψ̃(k)W̃ (k,R), (9)

and W̃ (k,R) is the Fourier transform of the smoothing func-
tion WR(q). By filtering ψ on scale R, we effectively filter

out non-linear mode coupling, thereby restricting our ap-
proximations to linear evolution only.

One expects that the angular momentum of a galaxy
will grow only as long as the particle distribution is sensitive
to large-scale tidal couplings (Peebles 1969, 1980). When the
density contrast is small, the gravitational field of a proto-
galaxy acts to collapse the object while the rotation induced
by the tidal field of the surrounding matter opposes this
contraction. Under the assumption of spherical evolution,
the tidal influence of surrounding matter is important until
the density contrast δ ∼ 1, at which point one can consider
the proto-galaxy as an isolated collapsing system (Peebles
1980).

To model its early evolution, we treat the proto-galaxy
as a spherical overdense region in an otherwise flat universe
(Partridge & Peebles 1967; Gunn & Gott 1972; Peebles 1980
§19), and evolve the particles according to the closed Fried-
mann equations (the spherical-collapse model). Specifically,
inside the overdense region, ρ(r) = ρ > ρ, whereas outside,
ρ(r) = ρ and ρ is defined by the flat Friedmann model. In
this formalism, the galaxy should decouple from the tidal
field at the turnaround epoch tM , defined as the time of
maximum expansion and characterized in this model by an
overdensity δ ≃ 4.55. Virialization of the proto-galaxy oc-
curs when the inner mass shells pass through the centre, at
which point time-varying gravitational fields dissipate en-
ergy and relax the system. This dissipation process is known
as violent relaxation and we refer to these shell crossings
through centre as caustic crossings. In the approximation
that we treat a non-spherical, non-uniform distribution un-
dergoing hierarchical collapse as a smoothly evolving closed
universe, we can also predict (to first order) the time of
caustic crossing from the Friedmann equations as tC ≃ 2tM .

Had the region not collapsed but expanded linearly,
turnaround would occur when the overdensity (Peebles
1980)

δ =
3

20
(6π)2/3. (10)

Since turnaround occurs in the weakly non-linear regime, we
must apply L(1)beyond its region of strict validity. It is there-
fore of interest to study how far into the nonlinear regime,
if even as far as turnaround, one may successfully apply the
linear prediction. Furthermore, the Jacobian transformation
J−1 is non-vanishing up until caustic crossing (Shandarin &
Zel’dovich 1989). Therefore we expect that L(1)will be valid
at most until caustic crossing.

3 NUMERICAL SIMULATION AND GALAXY

CATALOG

3.1 Numerical simulation

To test the linear-theory approximation [equation (6)], we
have performed a high-resolution galaxy-formation simu-
lation using the P3MSPH code (Evrard 1988; Summers
1993) which incorporates large- and short-scale gravita-
tional forces with smooth-particle hydrodynamics (Hockney
& Eastwood 1981; Monaghan 1992). We chose a 16h−1 Mpc
comoving box length with periodic boundary conditions in
a standard-CDM Einstein-de Sitter universe (Ω = 1,Ωb =
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4 B. Sugerman, F.J. Summers, M. Kamionkowski

0.05, H0 = 100h km s−1 Mpc−1, and h = 0.5). Initial condi-
tions were generated using a so-called “glass” initial distri-
bution (White 1994) and the Zel’dovich approximation.

To follow galaxy-scale evolution while including larger-
scale tidal fields within a reasonable computational time,
our simulation utilizes multiple resolution regions. A sim-
ulation with 1283 gas and 1283 dark matter (DM) parti-
cles was evolved until initial structures had formed. Using
the results of this partially evolved simulation, we chose a
cubic subregion 8 h−1 Mpc on a side for study. The sub-
region was chosen to contain a mixture of density regions,
yet avoid the center of a rich cluster. The 258,530 gas and
258,530 dark-matter particles in this subregion were retained
at high resolution. The remaining particles outside this sub-
region were combined and collapsed into 229,933 “super”-
dark-matter (SDM) particles (e.g., Katz & White 1993).
The gas:DM:SDM mass ratio is 1 : 19 : 160, with a DM
mass of roughly 109 M⊙ and a total simulation mass of
2.27 × 1015M⊙.

The gravitational softening length for a Plummer-law
force was set to 8 kpc (comoving), with the SPH smoothing
length limited to a minimum of one-third the gravitational
softening. The parameters are appropriate to provide enough
resolution for the formation and evolution of galaxies (see
the note in §5 regarding the use of gas particles within this
region). The simulation is evolved from the initial epoch at
z = 32 (ti = 68.8 Myr) to z = 0 (tf = 13.04 Gyr) using
5000 time steps of 2.592 Myr. Outputs are generated every
25 steps during the initial evolution (10 percent) and every
100 steps thereafter.

3.2 Group-finding algorithm

It should be clearly noted that numerical simulations of this
sort do not form “galaxies,” per se. However, we can identify
the sites of most probable galaxy formation as regions of the
highest overdensity, containing “halos” of dark-matter par-
ticles inside of whose potential wells reside dense gaseous
components. In gravitational simulations of this nature, dis-
crete boundaries between the virialized galaxies and the
outer unbound particles do not exist, therefore the group
finding method must rely on an arbitrary criterion, such
as local overdensity or interparticle spacing. The problem
of group-finding is therefore non-trivial, and has been thor-
oughly examined by, e.g., Summers, Davis & Evrard 1995
and Eisenstein & Hut 1998. Ideally, we would prefer to iden-
tify a galaxy as all the particles in the simulation which are
gravitationally bound as one structure. However, as this is
an N2 calculation, it is computationally far too expensive
for practical use. We chose instead to define a group as a col-
lection of Nmin or more particles all separated by less than a
specified linking length η, known as the “friends-of-friends”
(FOF) approach. Groups found with this method generally
lie within a minimum overdensity contour given by

δmin =
2Ω

(4/3)πη3
. (11)

Since this is only a minimum contour level, the actual aver-
age overdensity of a galaxy will be many times larger. The
FOF algorithm considers only interparticle spacing as the
criteria for forming a group, and thereby does not distin-
guish between particles which are gravitationally bound to

the system. As a first-order solution, once a list is gener-
ated of all particles forming a group according to the FOF
routine, we recursively compute the local potential of that
ensemble and remove any unbound particles.

To identify a galaxy, we generate two independent cat-
alogs of gas and DM groups found using FOF at the final
output (z = 0). Gas groups must contain at least 25 bound
particles and DM groups at least 100, both using a link-
ing length, in units of the mean interparticle spacing, of
η = 0.075, which corresponds to a minimum overdensity
contour δmin ∼ 1000. We then cross-correlate the positions
of the most-bound particle in each group, throwing out any
group which does not have a corresponding counterpart in
the other species, and create a catalog of galaxies contain-
ing both bound DM and gas components. With this method,
we have identified 98 galaxies within the simulation. Other
galaxies exist within cluster regions of the simulation, but,
if the dark-matter halo is mixed within the general cluster
halo, the galaxy is unsuitable for our analysis.

3.3 Selection criteria and galaxy catalog

Once the catalog is made, the particles within any galaxy
may be traced back to any epoch, since every particle in the
simulation is labelled with an ID number, which it main-
tains throughout the entire run. Groups whose initial dis-
tributions were too close to the subregion boundary must
be excluded from the catalog. Not only do these have artifi-
cially distorted primordial distributions, but since they are
located at the boundary with the SDM region, these border
groups contain an unreasonably large number of SDM parti-
cles, which introduce extraordinary gravitational perturba-
tions to the evolving galaxy. Therefore we also disregard any
galaxies containing a significant number (NSDM >∼ 0.1NDM )
of SDM particles.

Galaxies which have undergone large merger events or
are still merging at the final output are tagged as ques-
tionable with respect to the angular-momentum analysis.
Angular momentum is not in a stable state during merging
and gravitational relaxation. Furthermore, in a large merger,
particles within the constituent clumps at earlier times may
flow out of the system and hence not be included in the par-
ticle list created at the final output. This can cause (as we
shall see) a significant amount of angular momentum to flow
into or out of the system at any time and radically distort

the measured evolution.†

Of the 98 galaxies in our catalog, 12 are discarded for
violating boundary conditions; 3 are discarded, and 10 are
tagged as questionable due to mergers; and 6 are discarded
for containing too many SDM particles (All “questionable”
galaxies remain in the catalog). This leaves a usable catalog
of 77 galaxies.

† This may introduce a bias against non-linear effects, as noted
by the referee. In this paper we study the predictive capacity of
linear theory in environments which should be the most stable,
and will present a full examination of evolutionary histories in
paper II. However, of the 13 merging galaxies in the catalog, we
discard only 3.
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Table 1. Statistics for elliptical axis fitting

Axis DC Method Our Method
Ratio N η 〈 % error 〉 χ2 〈 % error 〉 χ2

≥ 0.1 250 0 11.± 30. 206. 4.4± 3.5 6.3
−2 11.± 21. 114. 5.3± 4.3 9.2

1000 0 8.2± 26. 148. 2.2± 2.2 1.9
−2 8.5± 25. 143. 2.8± 2.4 2.7

5000 0 4.6± 17. 64. 1.1± 1.8 0.88
−2 5.2± 19. 75. 1.4± 1.7 0.97

≥ 0.8 250 0 7.5± 5.4 8.6 4.6± 3.3 3.2
−2 7.1± 5.7 8.2 5.6± 3.9 4.7

1000 0 3.7± 2.8 2.2 2.2± 1.6 0.76
−2 3.8± 2.9 2.3 2.6± 2.0 1.1

5000 0 1.8± 1.9 0.68 0.96± 0.75 0.15
−2 2.2± 2.4 1.1 1.1± 0.90 0.22

4 GALAXY PARAMETERS

For each of the galaxies identified in our catalog, we mea-
sure a variety of characteristics for analysis, outlined in the
following subsection.

4.1 Lagrangian versus Eulerian descriptions

One can utilize either a Lagrangian or Eulerian description
in the analysis of a galaxy. The Lagrangian description Γ
is, for our purposes, defined to be the list of particles which
constitute a given galaxy. Γ conserves particle number (i.e.
mass) for all time, and does not allow for flux of particles into
or out of the system. The Eulerian description of a galaxy is
taken to be the list of particles lying within the best-fit ellip-
soidal volume V (described in the next subsection) enclosing
the Lagrangian list Γ. V can be made to conserve mass if
one requires that the volume encloses the same number of
particles as Γ; as a galaxy evolves and deforms, V will vary
significantly over time.

4.2 Principle axes and ellipsoidal fits

The volume V of a galaxy is determined from its ellipsoidal
parameters. However, the accurate determination of axial
ratios or orientation angles of a discrete distribution of par-
ticles is far from trivial. Many groups (e.g. Splinter et al.
1997; de Theije, Katgert & van Kampen 1995; Plionis, Bar-
row & Frenk 1991) use the fact that, for a uniform ellipsoid,
the ratio of the eigenvalues of the (normalized) inertia tensor
is the square of the ratio of the axes. One can then simply fit
spherical shells to halos and determine the axis ratios from
the normalized inertia tensor, as in Frenk et al. (1988). This
method systematically underestimates the axis ratios for
nonspherical distributions. Katz (1991) computes the axis
ratios from the diagonalized inertia tensor by iteratively de-
forming an initial spherical shell into an ellipsoid. The axis
ratios in each step are determined from the particles con-
tained within the ellipsoid of the previous step, however the
major axis is held at a fixed value for all steps. Dubinski
& Carlberg (1991) (the DC method) iteratively perform a
similar analysis in which the normalization parameter for

the inertia tensor and the axis ratios are recursively deter-
mined from each other. Of all these methods, the latter is
the most aesthetically appealing since it relies on the least
number of assumptions (namely, only that the density dis-
tribution is stratified in similar ellipsoids). In test scenarios
using a ρ ∝ r−2 density profile, DC find random errors be-
tween 1 − 10 percent, and note that there is a bias toward
underestimating the axis ratios if the intrinsic values are
>∼ 0.8.

To avoid appealing to initially spherical symmetries,
we perform shape analyses on the full bound-particle list
Γ for each galaxy. We determine the principle axes and Eu-
ler angles (used to rotate between the body and Cartesian
coordinate systems) by finding the eigenvectors of the full
three-dimensional inertia tensor,

Iij =

M(Γ)
∑

α=1

mα

[

δij
∑

k

x2
k − xα

i x
α
j

]

. (12)

Axes vectors (a, b, c) are assigned such that a ≥ b ≥ c and
the Euler angles such that the body a axis is rotated onto the
Cartesian x axis. Once the galaxy is translated and rotated
onto the Cartesian basis, the axis ratios are determined using
the eigenvalues (e =

√

λ2/λ1) of the the two-dimensional
inertia tensors for the particles projected onto the x − y
and x− z planes (effectively equivalent to the non-iterative
method of Katz 1991). One has the option to iterate between
the rotation and projected axis ratios until a desired residual
is achieved. The best-fit volume V is now defined to be the
ellipsoid using these axis ratios and which contains the same
mass as in the Lagrangian volume Γ.

We compared this method to the DC method for test
galaxies with random orientations and axis ratios, contain-
ing between N =100 and 10000 particles and following den-
sity profiles ρ ∝ rη for η ∈ [0,−3]. For each combination of
particle number and density power law, we ran one test with
1000 galaxies having random axis ratios ≥ 0.1 and a second
test with 500 spheroidal galaxies having axis ratios ≥ 0.8. A
subsample of the results are listed in Table 1, which shows
the average error in the computed axis ratios and χ2 (the
sum of the squares of the percent errors for all the fits). In
roughly every case except η = −3 (for which both methods
fail), our fitting routine achieves at least twice the accuracy
of the DC method, with a substantially lower scatter about
the mean. We find that for the spheroidal galaxies, there is a
slightly higher tendency for both methods to underestimate
(by <∼ 10 percent) the actual axial ratios. We note that this
technique does not resolve radial structure, as in Warren et
al. (1992). However this is also not our goal, given that the
majority of our galaxies contain less than 1000 particles per
species.

4.3 Overdensity

For any given galaxy n and epoch t, the overdensity δ(n)(t)
is calculated using the density ρ(n)(t) as given by the best-fit
ellipsoidal volume V and the total mass of particles within
that volume. At the earliest times, the overdensities are
extremely small and the calculation is not strictly robust,
mostly since identification of the volume exactly enclosing a
stochastic distribution is non-trivial. At the initial epoch, we
also calculate the initial overdensity threshold parameter ν,

c© 0000 RAS, MNRAS 000, 000–000



6 B. Sugerman, F.J. Summers, M. Kamionkowski

defined such that δi(M) = νσ(M), where σ(M) is the stan-
dard deviation of the overdensity as measured on the mass
scale of the galaxy in question. For each galaxy of mass M ,
we determine σ(M) by sampling the overdensity of 10,000
randomly placed spheres, each also containing M particles.
This differs from BE87, as Hoffman (1988) has pointed out
that their method may introduce bias in ν by calculating σ
on a physical smoothing scale rather than a galaxy’s mass
scale.

4.4 Predicted and actual angular momentum

We compute L(t) directly for each galaxy from its La-
grangian particle list Γ (containing M particles) using

L =

M
∑

α=1

(rα ×mαvα). (13)

We calculate the predicted angular momentum from equa-
tion (6) by computing the deformation tensor D and inertia
tensor I for each galaxy at the initial epoch only, and evolve
their tensor product forward using the time-dependent fac-
tor a2Ḋ. The deformation tensor, as given by equation (9),
requires the Fourier transform of the potential ψ̃(k). The en-
tire mass distribution is first smoothed onto a uniform grid
using the three-dimensional S2 window function (Hockney
& Eastwood, 1981),

W (r, a) =

{

48
πa4

(

a
2
− r

)

, if r < a
2
,

0, otherwise.
(14)

Note that our S2 smoothing function utilizes the full 3-D
smoothing of a spherical volume onto a grid, as opposed to
using three 1-D smoothings as is done, for example, in the
triangular shaped clouds method.

The resulting density field is Fourier transformed and
convolved with a Greens’ function to yield the k-space po-
tential, which is evaluated in equation (9) along with the
Fourier transform of the S2 function

W̃ (k, a) =
12

(ka/2)4

(

2− 2 cos
ka

2
−
ka

2
sin

ka

2

)

. (15)

Values for L and L(1) will be given in the unconventional
units of 1012M⊙ kpc2 Gyr−1.

4.5 Turnaround and crossing times

Determination of the turnaround time is another nontrivial
problem. Indeed, it is unclear whether an evolving proto-
galaxy ever passes through a period of maximal isotropic ex-
pansion, or whether all material at a given distance from the
centre undergoes turnaround at a common time (Peebles,
1980, p. 86). Any prediction (e.g., the final angular momen-
tum) that is based upon an ill-defined dynamical point dur-
ing evolution (e.g., the angular momentum at turnaround)
will necessarily be skewed by the uncertainty in determining
that epoch. It is therefore important to understand both the
uncertainty involved in localizing the turnaround epoch and
how this propagates through linear predictions.

To explore statistical consistency, we define four inde-
pendent methods to determine the turnaround time for each
galaxy: the first two empirical, the third semi-empirical,
and the latter analytic. In the first method, we calculate

the average radial velocity of particles with respect to the
galaxy’s centre of mass. Turnaround tMd is defined as the
time when this velocity divergence inverts from positive
(expansion) to negative (contraction). The second method
defines turnaround tM% as the earliest time at which at
least half the particles in a galaxy are infalling. The semi-
empirical method measures the overdensity of the galaxy
at each epoch and defines the turnaround tMδ as the time
at which δ(t) ≃ 4.55 (from the spherical-collapse model, §2).
The analytic method measures the initial overdensity of each
galaxy and calculates the epoch tMz from equation (10) such
that

zM = [(20/3)δi(1 + zi)(6π)
−2/3]− 1, (16)

where subscript i indicates the initial value.
Similarly, we use four methods to determine the time

of caustic crossing. As explained above, our first-order def-
inition is tCto = 2〈tM 〉. Once virialized, the galaxy will
have shrunk by a factor of 2, thereby increasing its den-
sity eightfold, and we expect (again to first order) that
δC ≃ 8δM = 43 at tCδ. When computing the velocity di-
vergence, we also calculate the variance in the peculiar ve-
locities of all particles in a galaxy, and we expect that this
value will be highest (i.e. the most disorder in the velocity
field) when the galaxy experiences shell crossing (tCσ). Fi-
nally, if an ellipsoidal proto-galaxy is rotating then we expect
its initial collapse to occur first along the short axis followed
by the intermediate and long axes, and resulting first in a
planar or pancake structure (Zel’dovich 1970; Peebles 1980
§20) followed by a prolate ellipsoid. We define tCax as the
epoch at which the major axis a is longest compared to the
other two, which should indicate the shell crossings of the
shorter axes. For both turnaround and shell crossing, we use
the median of the four methods as the final value (〈tM 〉,〈tC〉
respectively), since the median minimizes the effects of sin-
gle outliers.

5 RESULTS

In SPH simulations, centrally-located gas particles in circu-
lar motion experience an artificial pressure due to the finite
smoothing length of the hydrodynamic forces, and therefore
tend to clump within the inner ∼ 1.5 smoothing radii from
the centre, which typically represents the size of a galactic
disk in this simulation. As such, in this study gas particles
are used only to identify the most probable sites of galaxy
formation, while dark matter dominates the overall dynam-
ics and is therefore used exclusively in this analysis. Dynam-
ical effects of the gas component on dark halo evolution will
be addressed in paper II. Furthermore, it is possible that
the lowest-mass galaxies (M <∼ 200 DM particles) contain
dynamical masses too small for stable numerical resolution.
When applicable, we divide the sample of galaxies into sub-
sets with M > 200 or M > 1000 DM particles, with the un-
derstanding that better-resolved galaxies should naturally
provide more consistent results.

5.1 Collapse history

We first study the spatial evolution of each galaxy in our
catalog by following the particle list Γ from the initial to
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Linear-theory predictions of galaxy formation 7

Figure 1. Particle positions plotted in physical coordinates and projected onto the Cartesian (̂ı, k̂) plane for galaxy 12. The epoch is
listed in Gyr in the upper right corner and the redshift in the lower right corner of each panel. Turnaround and crossing times correspond
roughly to panels [c] and [e], respectively.

Figure 2. Same as Fig. 1 for galaxy 22. Turnaround and crossing times correspond roughly to panels [b] and [d] respectively.

the final epoch. Figures 1 and 2 show the evolution of
galaxies #12 and #22, containing 1776 and 703 DM par-
ticles (respectively). It is evident from these two evolution-
ary sequences that the collapse is neither spherical nor ho-
mogeneous. Rather, the observed evolution, typical of all
the galaxies in our catalog, follows that predicted from the
hierarchical-clustering scenario in the CDM model, in which
a relatively isotropic distribution first collapses into small
objects, which then subsequently accrete and virialize into
the final bound galaxy.

5.1.1 Turnaround

As a predictive tool, the linear theory [equation (6)] depends
upon a reasonable determination of the turnaround time. Of
the four methods listed in §4.5, the analytic method tMz pre-
dicts the turnaround epoch from only the initial conditions,
while the others use measured quantities from the evolv-
ing simulation. In view of the facts that the initial particle

Table 2. Sample turnaround and caustic crossing times

tMd tMδ tMz tM% 〈tM 〉
Galaxy Mass t[Gyr] t[Gyr] t[Gyr] t[Gyr] t[Gyr]

8 2431 2.92 2.66 2.92 2.92 2.92
12 1776 1.56 2.14 1.62 1.56 1.62
22 703 0.91 1.24 1.24 0.91 1.11
30 441 0.85 1.24 0.98 0.78 0.98
32 424 1.82 1.95 1.49 1.82 1.82

tCto tCδ tCax tCσ 〈tC 〉
Galaxy Mass t[Gyr] t[Gyr] t[Gyr] t[Gyr] t[Gyr]

8 2431 5.77 6.55 2.66 4.73 4.73
12 1776 3.18 4.99 3.44 3.44 3.18
22 703 2.14 3.18 3.18 2.66 2.60
30 441 1.88 4.48 2.47 1.75 2.34
32 424 3.44 4.48 4.48 3.44 3.70

c© 0000 RAS, MNRAS 000, 000–000



8 B. Sugerman, F.J. Summers, M. Kamionkowski

distributions are non-spherical, that collapse is hierarchi-
cal, and that turnaround for an ellipsoidal distribution is
ill-defined, it is essential to address whether the spherical-
collapse model can provide any accurate determination of
the turnaround time of a galaxy.

We present the computed turnaround and caustic cross-
ing times for a variety of distinctly different evolutionary
histories in Table 2. Galaxies #12 and #22 (well-behaved
evolution §5.2) are complimented with a large merger (#8)
and galaxies #30 and #32, which suffer strong tidal encoun-
ters (§5.2.2). The respective four methods for determining
each of these evolutionary epochs (described in §4.5) are all
relatively consistent for the galaxies listed, independent of
the large variation in collapse history.

Statistics for the full galaxy catalog, as well as statis-
tics for subsamples of 52 and 34 galaxies with well-behaved
evolution (§5.2) are listed in Table 3. The first pair of data
columns show that the mean dispersion between the epochs
given by the four methods is relatively small (∼ 0.4 Gyr) for
turnaround and slightly larger (∼ 1.4 Gyr) for caustic cross-
ing. Recall from §4.5 that the final value 〈tM 〉 of turnaround
(caustic-crossing) is the median of the four methods; the
mean of these median values is given in the second pair of
columns. A priori, we do not expect the turnaround (caustic
crossing) epochs to be the same for all galaxies, hence the
large dispersion in these values. The average caustic crossing
time is nearly double that for turnaround, reflecting both our
input assumption (§2) and that the spherical-collapse model
is consistent with early post-turnaround evolution.

The last pair of columns in Table 3 give the average ra-
tio of the median turnaround (caustic crossing) time to the
analytic turnaround epoch tMz. That the average value of
〈tM 〉/tMz ∼ 1 with very little dispersion shows that tMz is
highly consistent with the empirical measures of turnaround;
if we believe these latter three values, then the spherical-
collapse model successfully predicts the turnaround epoch.
Further, we find that the average caustic crossing time is
nearly double tMz, also as expected. These tests support
the applicability of the spherical-collapse model for deter-
mination of the turnaround and caustic crossing times.

In both Figures 1 and 2, one clearly observes that the
particles pass through a planar or Zel’dovich (1970) pan-
cake stage at extremely early times. Kuhlman, Melott &
Shandarin (1996) find that the early collapse of the short
axis and growth of the long axis are generic trends of par-
ticle distributions. EL95 also find that the short axis of a
rotating ellipsoid typically collapses first into the expected
sheet-like structure. This planar stage generally correlates
closely with the predicted turnaround for a galaxy. Shell
crossing occurs dramatically in galaxy #12 when the two
pancakes collide, and more subtly in galaxy #22 as the in-
termediate axis collapses. After the collapse of the short
axis, the galaxy still retains a significant quadrupole mo-
ment, since the quadrupoles are proportional to the dif-
ference between the squares of the axis lengths (Peebles
1969). Considering that the acquisition of angular momen-
tum results from a coupling between the large-scale tidal
field and the quadrupole moment of the galaxy, this coupling
will remain significant until the longer axes have collapsed.
We therefore expect the angular momentum in these non-
spherical galaxies to increase beyond the spherically-defined
turnaround epoch. In the linear approximation [eq. (7)], we

use only the initial values of the deformation and inertia
tensors, having assumed that during linear evolution, the
timescales over which these tensors change are long com-
pared to that of turnaround. As the axes collapse, the in-
ertia tensor and hence the quadrupole moment will change
strongly from its initial value, and it is therefore unclear
whether we expect the growth of angular momentum near
or beyond turnaround to continue linearly.

5.1.2 Shape analysis

To aid in studying the shape evolution of our galaxies, we
define the morphological triaxiality parameter as given by
Franx, Illingworth & de Zeeuw (1991),

T =
a2 − b2

a2 − c2
, (17)

for which T = 1 is purely prolate and T = 0 is purely oblate.
One may then classify galaxies with 0 < T < 1

3
as oblate,

1
3
< T < 2

3
as triaxial, and 2

3
< T < 1 as prolate ellipsoids.

For initial conditions similar to ours, EL95 find their
initial halos to be prolate-triaxial. Given that the applicable
collapse model is, to a better approximation, a collapsing el-
lipsoid rather than a sphere, we expect the following generic
evolution of a galaxy: the initial prolate-triaxial particle dis-
tribution first expands linearly with the Hubble flow, and
possibly becomes slightly more spheroidal. As the short axis
collapses, the galaxy moves toward the oblate-pancake state,
until the secondary axis collapses, at which point the galaxy
evolves toward a prolate ellipsoid. At caustic crossing, the
galaxy should pass through its most prolate distribution,
after which virialization processes relax the system into an
eventually spheroidal state. Unless a galaxy has suffered an
extremely large merging event, in which case it is generally
still relaxing or merging at the final epoch, our galaxies have
generally accreted the majority of their clumps by roughly
t = 1

2
tf . Therefore we expect the galaxies to relax and viri-

alize during the second half of the simulation.
We plot the evolution of the axis ratios in Figure 3 for

all 77 galaxies in our catalog. This may be compared with
Figure 2 of EL95 except they evolve their galaxies only until
the caustic crossing time. We see the expected initial quasi-
spherical state (panel [a]) which evolves toward a prolate
ellipsoid (panel [b]) and returns toward a spheroid (pan-
els [c]-[e]). The mean values for the galaxies at each out-
put are plotted in panel [f]. Each galaxy evolves at its own
rate, therefore this latter panel is not a completely accurate
representation of the axial history. Nonetheless, we see the
expected pattern from above. From the initial epoch, axial
ratios briefly move toward the spheroidal state before col-
lapsing toward first a pancake and then a prolate ellipsoid,
after which they return toward a spheroidal distribution.

The evolution of the triaxiality parameter is presented
in Figure 4. Histograms of the triaxiality parameters are
given in panel [a] for ti, the average epoch of caustic crossing
(〈tC〉 = 2.68 Gyr) and tf . The time evolution of the average
values of the triaxiality parameters are given in panel [b]. As
expected, the initial galaxies are prolate-triaxial, and evolve
to a more prolate state at caustic crossing. The final state
of the galaxies is predominantly triaxial with a wide tail of
both prolate and oblate ellipsoids. For comparison, Warren
et al. (1992) find that their halos are predominantly pro-
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Linear-theory predictions of galaxy formation 9

Table 3. Statistics for tM and tC

Catalog σ(tM ) σ(tC ) 〈tM 〉 〈tC 〉 〈tM 〉/tMz 〈tC 〉/tMz

All 77 0.38 1.39 1.54± 0.61 3.07± 1.07 1.13± 0.41 2.27 ± 0.71
LG 52 0.35 1.34 1.51± 0.61 3.00± 1.05 1.07± 0.33 2.17 ± 0.61
SE 34 0.34 1.38 1.48± 0.59 3.02± 1.09 1.02± 0.32 2.10 ± 0.64

Columns 2 & 3 give the average dispersion between the four epochs for deter-
mining tM and tC . Columns 4 & 5 list the average over each catalog of the
median values of the previous four epochs. Columns 6 & 7 list the average
over each catalog of the median epoch divided by the analytically-determined
tMz . See §4.5

Figure 3. Distibutions of axis ratios for the full catalog of galaxies at the (a) initial, (b)-(d) intermediate, and (e) final epochs. (f) The
mean axis ratio for the full catalog of galaxies is plotted for all epochs, starting at the solid dot. After a brief rise (motion with the Hubble
expansion), the average galaxy collapses toward a pancake structure near turnaround (cross mark), then toward a prolate ellipsoid during
shell crossing (star mark) and relaxes into a triaxial system. This Figure may be compared with Eisenstein & Loeb (1995) Figure 2.

late. Dubinski (1994) finds that a coupling between the or-
bital distribution of dark matter and dissipative infall of gas
(post shell-crossing) generally transforms a prolate-triaxial
halo (T ∼ 0.8) to an oblate-triaxial halo (T ∼ 0.5), which
we observe in Figure 4[b]. Dubinski further notes that the
oblateness of the dark halo morphology constrains evolved
halos to have b/a >∼ 0.7, which we see in Figure 3[f]. Finally
he finds that the flattening c/a increases from roughly 0.4
to 0.6, which we also measure post shell-crossing, and which
further agrees with deprojection analyses of observed ellip-
tical galaxies 〈c/a〉 ∼ 0.65 − 0.7 (Binney & de Vaucouleur
1981; Frank et al. 1991; Ryden 1992; Frasano & Vio 1991).

Lastly, we find that the final shape of the galaxy has
little or no dependence on the initial distribution, and there-
fore there does not appear to exist a bijective mapping be-
tween initial and final conditions. Furthermore, this implies
that the mapping between Eulerian and Lagrangian descrip-
tions of galaxies are unique to each particular galaxy and
epoch.

5.2 Evolution of angular momentum

Sample plots of the total angular momentum (L = |L|)
evolution are shown in Figures 5 and 6. The five galax-
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10 B. Sugerman, F.J. Summers, M. Kamionkowski

Figure 4. (a) Binned counts of triaxiality for the full galaxy cat-
alog at different epochs: ti (solid curve); average epoch of caustic
crossing ((t = 2.68 Gyr; dotted curve); tf (dotted curve). (b)
Mean triaxiality for the full galaxy catalog plotted versus epoch.
The distribution is predominantly prolate at 1/4tf and triaxial
at tf See §5.1.2.

ies discussed in the previous section (#s 12, 22, 8, 30, 32)
are displayed in panels 5[a]-[b] and 6[a]-[c] respectively. We
have marked the four turnaround epochs and caustic cross-
ing epochs (see Figure caption for legend) on each curve. In
galaxy #12, each quadruplet of points for both evolution-
ary epochs are nearly coincident. Despite the wide range of
evolutionary histories in the remaining plots, the dispersion
among these sets of points is quite small for each galaxy.
This result supports the conclusions from §5.1.1 that our
determination of these epochs is self-consistent and that the
spherical-collapse model can quantitatively describe these
highly non-spherical processes, including a wide mass range
and interacting systems.

5.2.1 Qualitative comparison with linear theory

Linear theory coupled with the spherical-collapse model pre-
dicts that the angular momentum of an evolving galaxy will
grow linearly until turnaround. From our discussion in §5.1.1
we expect the angular momentum to grow past turnaround
and potentially until caustic crossing. Barring merging and
accretion events, the angular momentum of a bound galaxy
should remain constant in time thereafter.

We find that the expected model just described is only
partially followed by the generic observed evolution of angu-

Table 4. Average 〈β〉 in L ∝ tβ

Catalog β until tM
1
2
(tM + tC) β until tC

All 77 0.93± 0.14 0.87 ± 0.16 0.83± 0.16
LG 52 0.95± 0.10 0.90 ± 0.13 0.84± 0.14
SE 34 0.95± 0.09 0.90 ± 0.13 0.84± 0.14
INT 25 0.90± 0.18 0.83 ± 0.21 0.79± 0.23

lar momentum. The normalized curves of L(t) for 7 galaxies
have been overlayed in Figure 5[c], and describe what we
term the “standard evolution.” L(t) first rises linearly, up
to and often beyond the turnaround epoch. The maximum
value is reached near caustic crossing, after which the an-
gular momentum turns over and slowly decays with time.
52 of our galaxies exhibit smooth linear growth of angular
momentum before turnaround, and of these, 34 evolve ac-
cording to the standard evolutionary sequence described in
panel [c] (the remaining galaxies will be addressed shortly).
We identify the 52 galaxies as the “LG” catalog (for linear
growth) and the subset of 34 as the “SE” catalog (for stan-
dard evolution), while the 25 remaining galaxies are grouped
in the “INT” (for interacting, §5.2.2) catalog.

The average time-dependence of L for the full, LG, SE
and INT catalogs are given in Table 4. The pre-turnaround
evolution of L scales as t to within 5 percent. L(t) devi-
ates more strongly from linearity as it begins to turn over
after tM . On average, L(tC) ∼ (2 − 3)L(tM ) and since
tC ∼= 2tM , the growth of L is still approximately linear
[L(t < tC) ∝ t0.85] between turnaround and caustic cross-
ing. Given the possible non-spherical processes that could
cause L(t) to grow non-linearly at early times (examined in
§5.1.2), it is doubly significant that the observed evolution of
angular momentum so closely matches that predicted from
linear theory, since this indicates that the considerable non-
spherical processes have minimal effect during linear growth.

Simple physics dictates that the angular momentum of
an isolated system must remain constant, and therefore if a
post-turnaround galaxy is indeed largely insensitive to ex-
ternal tidal fields (Peebles 1980) and relatively isolated, we
expect L(t) to remain roughly constant for t >∼ tM for spher-
ical collapse, and t >∼ tC for ellipsoidal collapse. Rather, we
find the general trend, as seen in Figure 5 (and in nearly
every galaxy in our full catalog), that the measured angular
momentum decays after shell crossing. BE87 also find this
trend in their simulations, and attribute it to the loss of
angular momentum to surrounding material during merging
and “highly nonlinear evolution.”

We examined the mechanism for loss of angular momen-
tum by studying galaxies for which we had not culled out
unbound particles after running the FOF group-finding al-
gorithm. After tC , the decay of angular momentum is much
more pronounced. Identically, in galaxies for which we ex-
clude a subset of the outermost bound particles, the angular
momentum also decreases more strongly with time. Since it
is computationally too expensive to determine every bound
particle within a group (§3.2) it is expected that we will not
identify every particle bound to a given system using our
group-finding technique. Each gravitationally-bound galaxy
contains particles at radii greater than our effective over-
density cutoff which have not been included in our catalog,
and to which significant amounts of angular momentum are
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Figure 5. Total angular momentum versus epoch. (a)-(b) Examples of the “standard evolution” of angular momentum, also marked
with the measured turnaround and shell crossing epochs. (c) Overlay of seven normalized standard evolution galaxies. Note the general
features of linear growth beyond turnaround, and decay of angular momentum at later times. Small perturbations in the evolution
correspond to minor tidal encounters with neighbors. Markers: cross = tMd; triangle = tMδ ; solid dot = tMz ; open circle = tM%; solid
star = tCσ ; diamond = tCax; open star = tCto; square = tCδ .

Figure 6. Notation as in Fig. 6. (a) A heavily merging system. (b)-(c) Galaxies suffering large-scale and repeated tidal encounters.

transferred after shell crossing and during relaxation. This
transfer of angular momentum from triaxial distributions to
outlying particles is expected through Landau damping in
self-gravitating systems. Unless every particle bound to a
group can be identified, the apparent decay of the measured
angular momentum will be a general trend of numerical sim-
ulations.

5.2.2 Effects of the local tidal field

The question still remains why 43 of our 77 galaxies which
pass the original selection criteria do not have angular mo-
menta matching the standard evolution model [due to noisy
L(t >∼ tC)], and why 25 of these have angular momenta
which are not smoothly linear at early times. As an ap-
proximate study of the evolution of the tidal field, we com-
pute the torque on each galaxy by every other galaxy in the
simulation (a short N2 calculation since there are only 98
identified groups). Substituting the first three terms of the
Taylor expansion of the potential into the torque integral
and simplifying, we find

τi = ǫijkTjlIlk, (18)

where Ijk is the inertial tensor (equation 8) and (Dubinski

1992).‡

Tij = G
∑

α

mα

3xα
i x

α
j − δijr

2
α

r5α
. (19)

Since we are not measuring the torque due to the full mass
distribution in the simulation, we do not expect τ to remain
constant before turnaround, as would be expected from the
linear growth of L. Conversely, for a universe consisting of
only two galaxies with fixed comoving separation and no
other external tidal forces, we expect the torque to decay as
τ ∝ t−2.

The torque acting on a typical galaxy in the SE catalog
roughly follows a t−2 decay superposed with small perturba-
tions (<∼ 50 percent) reflecting weak encounters with neigh-

‡ It follows that for a potential field ψ, Tij =
[

3∂i∂j − δij∇2
]

ψ

from which we see directly that the the deformation tensor [equa-
tion (7)] is directly related to the gravitational tidal tensor, since
the diagonal elements of both tensors do not contribute to the
antisymmetric tensor product with the inertial tensor (CT96).
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bors, generally at large distances [>∼ (1 − 2) Mpc]. These
typically correspond to low-level (<∼ 10 percent) fluctua-
tions in the angular momentum, especially during late times
(t >∼ tC). Intuitively, these are the expected conditions for
relatively isolated field galaxies. Since the roles of the tidal
field and induced shear in the quasi- and non-linear regimes
of these galaxies are not negligible, models of single systems
(e.g., Zaroubi, Naim & Hoffman 1996) should explore the
quantitative effects of inclusion versus exclusion of tidal in-
teractions.

Naturally, however, not all galaxies will exist in the
“field.” Every galaxy excluded from our SE catalog suffers
strong (1-2 orders of magnitude) and repeated tidal inter-
actions with neighboring galaxies. The angular momenta
of these galaxies can vary by as much as 50 percent over
1 − 2 Gyr periods throughout the entire simulation. These
are galaxies expected to be found in groups or clusters, with
the most massive examples representing the central mem-
bers. Galaxy 30, shown in Figure 6[b], orbits within a few
hundred kpc of a galaxy three times as massive, while suf-
fering minor encounters with comparably sized galaxies at
distances of 1-2 Mpc. While the late-time evolution is highly
erratic, the early growth of L is still linear. Galaxy 32, shown
in panel [c], suffers two close encounters with galaxies three
and five times as massive. Here, the rapid variations in L
appear quasi-periodic, most likely reflecting the rotational

frequency of the galaxy.§ Even in this extreme case, the
growth of L is still linear at early times, although heavily
polluted due to the effects of early tidal interactions. This is
the case with all 25 galaxies in the INT catalog (hence the
name “interacting”). Despite the noisy early evolution, the
average pre-turnaround angular momentum grows as t0.928

(see Table 4) for these galaxies. Therefore, even in the rich
tidal environment of clusters, we find (quasi)linear growth
of L at early times, indicating that the local tidal field is
not negligible, but that the effects do not become dominant
until local evolution becomes non-linear.

We also expect that galaxies may suffer tidal interac-
tions from the outermost shells of their own infalling mat-
ter. In galaxies originating from higher-ν peaks (defined in
§4.3), the matter in the immediately surrounding low-ν re-
gion will have a density similar to that of the collapsing
object at early times. According to the formalism of the
spherical-collapse model, this corresponds to a mass shell of
Ω >∼ 1 but< Ωgalaxy. This shell will follow the collapse of the
galaxy and will evolve into surrounding matter that is closer
than its initial comoving distance, generating more torque
than expected from linear theory (EL95). Even our most
isolated galaxies still undergo small fluctuations in L and τ ,
indicative of the tidal influences of the most closely neigh-
boring environs. Also in systems with significant substruc-
ture, small-scale motions in non-linear regions and torques
caused by nearby structure can effect large changes in inter-
nal angular momentum (BE87). We see this in a few of the
more massive of the galaxies with noisy L(t >∼ tC), where
small satellites with eccentric orbits efficiently transfer angu-
lar momentum out of the central system to the surrounding

§ L is expected to vary at roughly twice the rotational frequency
of the torqued object. This is also seen in the tidal interactions
of binary stars.

matter. However, even when the distributions are non-linear
at early times, we still find exceptionally good agreement
with the qualitative predictions of linear-growth theory.

5.3 Quantitative comparison with linear theory

The predictive capacity of linear theory of tidal torques was
partially examined by BE87, who computed the predicted
final value by measuring the initial Li for each galaxy and
evolving it forward to a = 3 using the linear time factor
such that Lpred = a2ḊLi. They then compared this semi-
empirical prediction with the actual final angular momen-
tum, and found that the predicted final value tends to be a
factor of ∼ 3 larger than the actual Lf with a total scatter
about the mean of roughly the same factor. This method
failed to fully test the linear theory, since it improperly
assigned the same turnaround epoch to every galaxy, and
relied on the actual initial spin, rather than the rotation
predicted from the external tidal field.

To properly test the linear-theory predictions, we eval-
uate the initial conditions using the initial tidal and inertia
tensors, as prescribed in §4.4 and directly compare the re-
sulting values of L(1) [equation (6)] to the actual total angu-
lar momentum at each galaxy’s individual turnaround and
caustic crossing epochs, as well as to the final value Lf .
Since the later-time decay of angular momentum can range
from slightly noisy for the SE catalog to strongly varying
in the INT catalog (discussed in the previous subsection),
the value of the angular momentum at the final epoch L(tf )
may prove sensitive to which epoch we chose to label as “fi-
nal.” We use two methods to approximate the final value Lf

for a smooth decay of angular momentum. We extrapolate
a linear least-squares fit for L(t > tC) to find Llin

f , and also
smooth the angular momentum over time using a 16-point
Savitzky-Golay filter (Press et al. 1992) to find Lsm

f . This
algorithm does not require symmetric smoothing, hence its
applicability.

In Figure 7 we plot galaxy mass versus the ratio of the
predicted to actual angular momentum for the full catalog,
using different symbols for the LG, SE and INT galaxies.
Corresponding histograms for these ratios are shown in Fig-
ure 8. We first address the value of predicted to actual an-
gular momentum at turnaround (panel [a] of both Figures).
The distribution of L(1)/L at tM peaks at a ratio of ∼ 1− 2
with a significant tail to larger values. L(1)(tM ) generally
overestimates the actual value L(tM ) for a given galaxy by
∼ 3− 4 with a dispersion of roughly 50− 70 percent. BE87
also found the same degree of overestimation with a larger
scatter about the mean. Since caustic crossing, rather than
turnaround, is the epoch at which angular momentum ceases
to grow, we also test the correlation of L(1)/L at tC . The dis-
tribution appears similar to those in Figs. 7, and 8 yet with
a mean ratio roughly 1 larger than, and dispersion equal to,
that for turnaround. We previously noted that the growth of
L(tM < t < tC) deviates slightly from linearity. However, in
general L(tC) ∼ (2− 3)L(tM ). Considering that L(1) grows
linearly and also that tC ≃ 2tM , we expect the average value
of L(1)/L to be systematically larger at tC than at tM yet
with a roughly comparable dispersion.

Angular momentum is approximately conserved in the
post-turnaround era, indicating that L(tM ) should correlate
closely with Lf . If the linear-theory prediction of L(1) at
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turnaround does not correlate with the final angular mo-
mentum of an evolved galaxy, then the applicability of the
linear theory is drastically reduced. We show the ratio of
the predicted angular momentum at turnaround to the fi-
nal actual angular momentum L(1)(tM )/Lf in panel [b] of
Figures 7 and 8. The distribution is highly peaked about
∼ 2 − 3, again with a significant tail to higher values, but
with more power in the lesser values as well. Given the typ-
ical stochastic decay of L(t > tC) seen in simulations, we
expect both the mean (since L(1)(tM ) > L(tM ) > Lf ) and
variance (since the decay rate is different for each galaxy) of
this distribution to be higher than when comparing L(1)/L
at tM . In fact, we find that the mean and dispersion for
both ratios are nearly identical. We find similar results by
replacing Lf with Llin

f and Lsm
f . If one approximates the

decay of L as an inherently smooth function of time, then
the tidal noise superposed on that decay is generally only of
the order <∼ 10 percent. Even for galaxies with 50 percent
variation in L(t), the linear fit and smoothed value of Lf

typically differ from the true final value by <∼ 15 percent.
Accordingly, the average ratios for these three methods dif-
fer by roughly the same factor. We conclude that Llin

f and
Lsm

f are consistent methods of approximating the final an-
gular momentum. There is little gained in using these two
methods to determine Lf . However, the smoothed angular
momentum damps out large variations in tidally disturbed
galaxies and thereby allows a more consistent estimation of
the underlying angular momentum evolution at late times,
while the linear fit permits one to extrapolate beyond the
limits of the simulation.

Provided the measured L did not decay at later times,
one would expect the final value Lf to be roughly equal to
the angular momentum at caustic crossing, as seen in Galaxy
#22 (Figure 5[b]). We examine the ratio of L(1)(tC)/Lf ,
and find a peak value of ∼ (4 − 5), again with a disper-
sion of 50 − 70 percent. The mean is again larger since
L(1)(tC) > L(1)(tM ). While caustic crossing may prove itself
more useful than turnaround in linear theory of collapsing
ellipsoidal distributions, it does not provide any increase in
accuracy and cannot be properly implemented until we effi-
ciently circumvent the numerical decay of angular momen-
tum.

Averages for the six ratios discussed and all four galaxy
catalogs are listed in Table 5. We further discriminate be-
tween galaxies with masses M > 200 and M > 1000 par-
ticles for each catalog, in the event that correlations are
mass-dependent. Each average ratio is listed with the per-
cent dispersion about the mean. The deviation about the
mean is higher when including the lowest mass (M < 200)
objects since these have poorer numerical resolution. We
also find that the average ratios for subsets of galaxies with
M > 1000 are typically larger than subsets also containing
lighter galaxies (M > 200 and M > 0). As seen in Figure
7, less massive objects exhibit stronger scatter toward the
smaller end of the ratio scale, which lowers the average and
raises the dispersion. The distributions of these points have
roughly the same peaks and high-end tails for the differ-
ent catalogs (Fig. 8). Thus the average and scatter about
the mean are generally comparable between catalogs for the
same mass scale. Except for the mean ratios at caustic cross-
ing, which have systematically larger values, the mean and
dispersion values for all the tests are highly consistent, in-

Figure 7. (a) Predicted versus actual total angular momentum at
turnaround. (b) Predicted angular momentum at turnaround ver-
sus final actual angular momentum. Both distributions are cen-
tred about ∼ 3 with a ∼ 70 percent dispersion. Crosses denote

the excluded (INT) catalog, triangles indicate members of the LG
catalog only, and circles indicate members of the SE catalog (LG
implicit).

dicating that L(1) is well correlated with both L(tM ) and
Lf .

Previous studies (White 1984, BE87) also conclude that
linear theory overestimates L by a factor of ∼ 3. We find a
scatter about this mean of roughly 70 percent for low-mass
objects and 50 percent as the mass scale is increased. Since
our largest objects show stronger correlations, we expect
that improvements in resolution will further tighten the cor-
relation between actual and predicted angular momentum.

5.4 Peak heights

Following the biased-galaxy formation scheme (Kaiser 1984;
Politzer & Wise 1984; Peacock & Heavens 1985; Bardeen et
al. 1986), we expect that galaxy formation only occurs for
density peaks above a given threshold of the initial Gaussian
density field. The relative peak height above the underlying
fluctuation of the density field is characterized by ν = δ/σ,
where σ is determined for the mass scale of the galaxy in
question. Since evolving peaks are subject to strong tidal
fields, not every high-ν peak is guaranteed to evolve into
a galaxy. Rather, peaks can be stretched or sheared such
that the highest-ν regions fail to undergo infall while lower-
ν peaks collapse into bound structures (Van de Weygaert &
Babul 1994; EL95). Rather than assume that all our galaxies
originated from the highest-ν peaks, we have the luxury of
tracing back the final bound structures to the initial density
field to test the correlation of peak height with collapse.

For a CDM power spectrum, as the mass scale increases,
the deviation σ will decrease since larger volumes more
closely approximate the background density. Furthermore,
low peaks on a high mass scale become higher-mass peaks
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Table 5. Average values for L(1)/L

M > N
L(1)(tM )
L(tM )

L(1)(tC)
L(tC)

L(1)(tM )
L(tf )

L(1)(tM )

Llin(tf )

L(1)(tM )
Lsm(tf )

L(1)(tC)
L(tf )

Full 0 77 2.85 (0.70) 3.87 (0.74) 3.10 (0.70) 2.69 (0.72) 2.89 (0.75) 5.73 (0.75)

200 39 3.17 (0.71) 4.25 (0.61) 3.11 (0.62) 2.87 (0.59) 3.00 (0.64) 5.73 (0.62)
1000 11 3.79 (0.62) 4.98 (0.48) 4.47 (0.54) 4.29 (0.54) 4.41 (0.54) 8.18 (0.45)

LG 0 52 2.58 (0.73) 3.61 (0.73) 2.72 (0.72) 2.50 (0.72) 2.54 (0.73) 5.08 (0.75)
200 28 2.97 (0.70) 4.04 (0.66) 2.90 (0.67) 2.72 (0.63) 2.83 (0.66) 5.26 (0.67)
1000 9 3.97 (0.62) 5.04 (0.49) 4.32 (0.60) 4.11 (0.59) 4.34 (0.59) 8.12 (0.48)

SE 0 34 2.61 (0.71) 3.61 (0.67) 2.73 (0.69) 2.51 (0.68) 2.60 (0.70) 3.51 (0.70)
200 20 3.31 (0.56) 4.49 (0.45) 3.17 (0.60) 2.86 (0.57) 3.00 (0.59) 5.45 (0.52)
1000 8 3.69 (0.63) 4.17 (0.63) 4.17 (0.63) 3.91 (0.60) 4.06 (0.62) 6.87 (0.47)

INT 0 25 3.51 (0.61) 4.81 (0.76) 4.05 (0.59) 3.26 (0.68) 3.80 (0.72) 7.87 (0.66)
200 11 3.66 (0.74) 5.03 (0.43) 3.60 (0.48) 3.26 (0.48) 3.39 (0.62) 6.95 (0.45)
1000 2 3.20 (· · ·) 4.32 (· · ·) 5.17 (· · ·) 5.22 (· · ·) 4.77 (· · ·) 8.88 (· · ·)

Averages are listed with the respective fractional dispersions in parentheses.

Figure 8. Binned histograms corresponding to ratios plotted in
Fig. 7. The solid curve denotes all galaxies, the dashed curve de-
notes galaxies with M ≥ 200 and the dotted curve those galaxies
with M ≥ 1000 particles.

when measured on lower mass scales. We expect that as the
mass scale increases, both the maximum peak height and the
frequency of occurrence of the highest peaks will decrease.
We tested this by measuring ν at 5 × 104 randomly placed
points for mass scales of 2500, 1000, 500 and 100 particles.
We found σ = 6.95×10−2, 8.68×10−2 , 0.103, 0.145 respec-
tively, indicating that σ is anticorrelated with the mass scale
M . Histograms for these essays are plotted in Figure 9. All
four mass scales have nearly the same distribution for ν < 2.

Figure 9. Binned histogram of peak height ν for 50,000 randomly
placed spheres containing 2500 (solid curve), 1000 (dashed curve),
500 (dot-dashed curve) and 100 (dotted curve) particles.

As the mass scale decreases, the maximum peak-height in-
creases as well as the number of high-ν peaks encountered,
as predicted.

From these findings, one might be led to conclude that
ν should vary inversely with mass scale, such that more low-
mass galaxies should originate from high-ν peaks. There are
two effects which lead to the opposite correlation. First, low-
ν peaks on high mass scales are likely to contain, and to be
identified with, a galaxy arising from a higher-ν peak on a
smaller mass scale. Second, the high-ν peaks on small mass
scales evolve quickly and become lower-ν peaks on higher
mass scales. Both effects tend toward medium-ν peaks on
medium mass scales, and a deficit of low-ν, high-mass peaks
as well as high-ν, low-mass peaks. That implies a correlation
of higher peak height with mass scale.

We find values of ν between 0.7 and 2.6 for the full cat-
alog, with the lowest and highest peaks being the rarest. In
Figure 10, we plot the distribution of ν versus mass scale for
the four catalogs, accompanied by the best-fit lines for each
catalog. On average, ν is larger for higher-mass galaxies and
there are relatively few high-ν, low-mass galaxies, as pos-
tulated above. Furthermore, the distribution of moderate-
mass objects is spread over a wide range of values of ν,
with very few peaks > 2. This may also be a consequence
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Figure 10. Peak height ν versus mass scale for the same catalogs
as Fig. 7. Also plotted are the least-squares linear interpolations
for the full (solid curve), LG (dot-dot-dot-dashed curve), SE (dot-
ted curve) and INT (dashed curve) catalogs.

Figure 11. As in Fig. 10 but plotting turnaround time versus
peak height ν.

of the “migration” scenario described above, which makes
low-ν, high-M and high-ν, low-M galaxies comparatively
rare. This underlines that biasing is a function of scale. For
a high-mass distribution to evolve into a high-mass galaxy,
it appears that it must come from a larger-peak density re-
gion, otherwise the outer mass shells do not collapse and the
object evolves into a lower-mass galaxy.

From equation (16), we find the turnaround time for

a galaxy scales as tM ∝ δ
−2/3
i . As ν increases, the time

a galaxy spends in the linear regime decreases. We plot ν
versus turnaround time in Figure 11, in which we have also
plotted the best-fit lines for all four catalogs. In all cases, tM
appears to vary inversely with ν, as expected. Since a galaxy

Figure 12. As in Fig. 10 but plotting specific angular momentum
versus peak height ν.

Figure 13. As in Fig. 10 but plotting spin parameter λ versus
peak height ν.

acquires most of its angular momentum through tidal inter-
actions before turnaround, this implies that higher-ν ob-
jects should gain less angular momentum (Hoffman 1986).
We plot the specific angular momentum J ≡ L/M versus
ν in Figure 12, again complemented with best-fit lines for
the four catalogs. Instead, we find the moderate trend that
angular momentum increases with increasing peak height,
most drastically for the SE galaxies. If one considers the
peaks scenario, higher peaks tend to be more strongly clus-
tered (Kaiser 1984; Bardeen et al. 1986), implying that high
peaks evolve in environments within stronger local tidal
fields. Even though these objects spend less time in the lin-
ear regime, the local tidal field must have a more significant
effect. CT96 also find, from angular-momentum probabil-
ity distribution functions derived from linear theory, that
higher-ν peaks tend to having higher L.

A common measurement is the dimensionless spin pa-
rameter λ = LE1/2/GM5/2. Due to the problem outlined
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Figure 14.Mass versus specific angular momentum for the galax-
ies with ν < 1.5 (six-pointed stars) and ν ≥ 1.5 (open hexagons),
superposed on theoretical equiprobability contours from Fig. 9 of
CT96, corresponding to peaks with height 1/2 ≤ ν ≤ 3/2 (dot-
ted contour) and 3/2 ≤ ν ≤ 5/2 (solid contour). The dashed line
indicates the scaling L/M ∝ M2/3.

in §5.2.1 in identifying all bound particles within a group,
uncertainty in the particle make-up of a galaxy effects all
three measurables in λ. Given this caveat, we examined the
spin parameter measured at turnaround and the final epoch
versus peak height. It is expected (e.g. Hoffman 1988, HP88)
that λ and ν will be anti-correlated for galaxies arising from
a random density-field. The distributions are displayed in
Figure 13, and show no meaningful correlations other than a
mean around λ ∼ 0.05 with an appreciable scatter, which is
consistent with previous findings (e.g., BE87, HP88). Given
the large uncertainties that enter into λ, this result suffers
from the limited size of our sample. We will reexamine the
λ− ν anti-correlation with our larger data set in paper II.

CT96 calculate the equiprobability contours for mass
and specific angular momentum for a CDM power spectrum,
onto which they superpose (their Figure 9) observations by
Fall (1983) for the masses and specific angular momenta of
luminous elliptical, Sb and Sc galaxies. Spirals are gener-
ally constrained within the contour limits but do not fol-
low the slope of the probability distributions. The elliptical
galaxies mostly lie outside the high probability contours and
also exhibit a discrepant slope. We display the equiproba-
bility contours for peaks with height 1/2 ≤ ν < 3/2 and
3/2 ≤ ν ≤ 5/2 from CT96, superposed with data from our
galaxy catalog, separated into galaxies with ν < 1.5 and
ν ≥ 1.5, in Figure 14. Both sets of galaxies are very well
constrained within the corresponding contours, although the
locus of points for ν < 1.5 lies off-centre from the probabil-
ity maximum. Since the probability distribution functions
of CT96 have been derived from equation (6), this excellent
match lends validity to the use of ensemble averages derived
from linear theory.

5.5 Scalings

In the previous section, we found that the final value of the
angular momentum Lf roughly equals that at turnaround,
as predicted by linear theory. This value can be estimated
from equation (6) using the turnaround condition δ = 1.07
[equation (10)]. This condition can be written equivalently
as δ = −D(tM )∇2ψ, from which the previous relation yields
the equivalent condition DM ≃ 1/∇2ψ where DM = D(tM ).
Denoting the initial mass and radius of the protogalaxy
by M and R0 respectively, we insert this into equation (6)
(White 1994; CT96),

Lf ∼ a2M ˙DM∇2ψMR2 = a2M
˙DM

DM
MR2

M

∝
˙DM

DM
ρ
−2/3
b,M M5/3

∝

(

aM ˙DM

˙aMDM

)

˙aM
aM

ρ
−2/3
b,M M5/3

∝ Ω0.6H(ΩH2)−2/3M5/3

∝ Ω−0.07
(

˙aM
aM

)−1/3

M5/3, (20)

where in the last step we have used the approximation given
by Peebles [1993, eq. (5.120)]. For an Einstein-de Sitter uni-
verse, a ∝ t2/3 and Ω = 1 and the previous expression sim-
plifies to

Lf
∼= L(tM ) ∝ t

1/3
M M5/3. (21)

From a physical standpoint, we expect objects with larger
masses to gain a greater final angular momentum, not only
due to the linear mass term in the basic expression for
L(t), but also since larger masses tend to fill larger vol-
umes, whereby more massive galaxies will have larger mo-
ment arms on which the tidal field will act. Additionally,
the longer the tidal field acts upon an object, the greater
the acquired angular momentum, hence the dependence on
the time at which angular momentum stops growing. How-
ever, since the turnaround time is a function of overdensity
(hence mass), the time dependence in equation 21 is not

fully given by t
1/3
M .

We test equation (21) directly in Figure 15, in which

we have plotted Lf versus M5/3 and t
1/3
M M5/3 for all four

galaxy catalogs. With a correct scaling, the distribution of
points will be linear. We find that the scaling Lf ∝ t

1/3
M M5/3

yields the smallest χ2 residual and also has the most linear
distribution in all four catalogs.

To more properly test the validity of these scalings,
we must see if they naturally occur in the data. We use
the singular value decomposition (SVD) method of general-
ized least-squares fitting (Press et al. 1992) to solve for the
power-law exponents by rewriting equation (21) as a linear
combination of logarithms

logLf = log(const) + α logM + β log tM (22)

Since the growth of angular momentum continues past
turnaround and up until crossing time tC , we fit equation
(22) for tC as well as tM . Selected results are listed in Ta-
ble 6. We find that Lf scales with mass M1.5−1.75, which
is highly consistent with an M5/3 dependence. The scalings
in turnaround and caustic crossing time both vary incon-
sistently, and differ from the t1/3 dependence, as expected
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Figure 15. Final angular momentum for the same catalogs as Fig. 7 versus scalings determined from eq. (6). (a) Lf ∝ M5/3. (b)

Lf ∝ t
1/3
M M5/3 (the best χ2 residual for all catalogs).

Table 6. Scaling parameters for SVD fitting

Mα MαtβM MαtβC
M > N α χ2 α β χ2 α β χ2

Full 0 77 1.76 2.63 1.67 0.645 2.21 1.71 0.595 2.36
200 39 1.72 2.26 1.63 0.481 2.10 1.64 0.394 2.18

LG 0 52 1.76 1.55 1.66 0.595 1.22 1.70 0.498 1.38
200 28 1.67 1.57 1.59 0.446 1.43 1.61 0.295 1.53

SE 0 34 1.76 1.43 1.64 0.772 1.09 1.70 0.523 1.28
200 20 1.75 1.72 1.47 1.09 1.22 1.55 0.821 1.49

from our discussion above. At present, our findings remain
inconclusive regarding the temporal factor in equation (21).
Considering that our galaxies cover more than a decade in
mass, whereas the turnaround times typically differ by less
than 40 percent, it is not surprising that Lf scales predom-
inantly on the mass. It is perhaps more surprising that the
empirically determined mass scaling so closely matches lin-
ear theory.

5.6 Correlations

Our final examination of linear theory is to check whether
equation (6) predicts the correct spin axis for a galaxy. Given
the effects of the local tidal field examined in §5.2.2, it is pos-
sible that the direction of L will vary over time. In this case,
since the direction of the predicted L(1) remains fixed at its
initial value, we find little reason to expect any long-term
correlation between the two vectors. To test the stability
of L(t), we plot the average value of the inner product of
the angular momentum at turnaround LM with L(t) for
the full, LG and SE catalogs in Figure 16 (top panel). Fol-
lowing turnaround, which occurs at roughly 2 Gyr, angular
momentum is relatively stable in time, and hence the local

tidal field predominantly affects only the magnitude rather
than the direction.

To quantify the allignment of two vectors, we consider
them weakly parallel if the angle between them is less than
30◦. Table 7 lists the number of galaxies in each catalog and
mass scale for which the two vectors L and L(1) are weakly
parallel or anti-parallel. We consider the vectors correlated
if they satisfy the weakly parallel condition for at least 90
percent of the epochs in the simulation. The probability of
two randomly oriented vectors are separated by θ is given by
the ratio of the arc subtended by θ to that of the unit circle
p = θ/π. For θ = 30◦, we expect 1/6 of randomly placed
pairs of vectors to be aligned. The last column of Table 7
lists the number of correlated galaxies from each subset we
expect if the orientation of L and L(1) is completely random.
In no case is the correlation more probable than random. To
confirm this finding, we plot in Figure 16 (bottom panel) the
average absolute-value inner product of the two vectors for
the full, LG and SE catalogs in time. For a randomly orien-
tated distribution, 〈L · L(1)〉 = 2/π ≃ 0.64, which we have
marked in both panels. In the right-hand abscissa of each
panel, we have indicated the fraction of randomly oriented
pairs of vectors with separation angle less than θ = 30◦

which are required to yield the corresponding average inner
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Figure 16. Average inner products of spin-vectors in time. An
uncorrelated distribution will remain at 2/π = 0.64, marked by
the dot-dot-dot-dashed line. The right-hand abscissa indicates the
fraction of randomly oriented pairs of vectors with separation an-
gle less than θ = 30◦ which are required to yield the corresponding
average inner product on the left-hand abscissa. Top panel: the
mean value of cos |L ·L(tM )| for the full catalog (solid line), LG
catalog (dotted line) and LG catalog (dot-dashed line). Bottom
panel: the mean value of cos |L ·L(1)| for the full, SE and LG
galaxy catalogs versus time.

Table 7. Correlation statistics for L‖L(1)

M > N Ncorrelated Nanti−corr. Nrandom

Full 0 77 5 4 12.8
200 39 3 3 6.5
1000 11 1 2 1.8

LG 0 52 4 4 8.7
200 28 2 3 4.7
1000 9 1 2 1.5

SE 0 34 4 4 5.7
200 20 2 3 3.3
1000 8 1 2 1.3

product on the left-hand abscissa. We see that the alignment
between the actual and predicted angular momentum does
not occur more often than random from the above prob-
ability argument, and only occurs for roughly 10% of the
galaxies in the full catalog, 18% of the LG, and ∼24% of
the SE catalog. It thus appears that linear theory predicts
the correct spin axis with, at most, only marginal statistical
significance.

6 DISCUSSION AND CONCLUSIONS

In this paper, we have examined the predictions of linear col-
lapse and linear tidal-torque theory within the framework of
a high-resolution N-body and hydrodynamical simulation.
This permits the study of evolution well into the non-linear

regime, thereby placing important constraints on the valid-
ity and applicability of linear theory to the full range of
evolutionary periods. In this paper, we have examined the
evolution of dark matter, typical of galactic dark halos.

The simplest treatment of galaxy evolution at early
times follows the spherical-collapse model, in which we
treat the proto-galaxy as a spherically isotropic closed
(i.e., overdense) distribution embedded within an Einstein-
de Sitter universe. The observed evolution is qualitatively
described by the ellipsoidal-collapse model (Peebles 1980;
EL95) in which the short axis of the rotating ellipsoidal
proto-galaxy first collapses into a pancake, followed by col-
lapse of the secondary and tertiary axes which form caus-
tics that relax into virialized triaxial systems. While the
spherical-collapse model greatly oversimplifies the observed
collapse of galaxies (namely, it is a hierarchical and ellip-
soidal process), analytic predictions correlate strongly with
empirical measurements. The turnaround time tM corre-
sponds closely with the initial collapse of the short ellip-
soidal axis. Furthermore, the epoch tC at which this spheri-
cal model predicts shell-crossings correlates closely with the
collapse of the long axes of the evolving proto-galaxy.

The linear-theory tidal-torque formalism (§2) predicts
that the angular momentum L of a galaxy will grow lin-
early [equation (6)] until turnaround, at which point self-
gravitation dominates large-scale tidal torque. Since the
quadrupole moment (on which the tidal field acts) of an
elliptical ensemble remains significant until the long axis col-
lapses, we synthesize a “standard evolution” in which L(t)
grows linearly beyond turnaround, turns over during shell
crossing, and remains constant as the galaxy relaxes and
virializes. As local tidal-interactions increase in strength and
frequency, the evolution of L becomes increasingly noisy,
however all our galaxies follow an underlying linear growth
of L at early times. This agrees with analytic non-linear per-
turbative solutions of the Lagrangian fluid equations (Cate-
lan & Theuns, 1996b) which indicate that the initial torque
on a galaxy is a good estimate of the torque during the en-
tire period of angular-momentum acquisition, i.e. angular
momentum will grow linearly in time since tidal torque is
approximately constant. Post shell-crossing, the measured L
appears to decrease, as a numerical result of the redistribu-
tion of angular momentum to bound particles outside the
overdensity cutoff generated during galaxy-identification.
Unless all bound particles are identified in a galaxy (an
N2 calculation), the apparent decay of L at late times is
a generic numerical trend of simulations.

We test the predicted total angular momentum, L(1),
by comparing the value calculated from equation (6) to the
true value of L at the turnaround, caustic crossing, and final
epochs. Equation (6) at turnaround systematically overes-
timates the true turnaround L(tM ) and the final Lf by a
factor of ∼ 3 with a dispersion of roughly 70 percent for
lower-mass, and 50 percent for higher-mass galaxies. This
broad distribution of predicted versus actual angular mo-
mentum is expected from statistical analysis (HP88), and
can be easily understood through, e.g. time-varying tidal
effects, ellipsoidal collapse, and uncertainty in the actual
epoch of decoupling of the galaxy from the large-scale tidal
field. The nearly ubiquitous overestimation of L by linear
theory observed in this and previous work is less easily ex-
plained. In the linear theory formalism, the angular momen-
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tum imparted to a galaxy equals the torque of a large-scale
shear field on the moment arm of the initial particle distribu-
tion, which scales as the square of the distance. Furthermore,
equation 6 explicitly assumes that the Taylor expansion of
the potential ψ is constant both in time and throughout
the collapsing volume at early times. If this approximation
breaks down for outlying particles in the initial distribution
(see Figs. 1, 2) the quadratic dependence of angular mo-
mentum with distance will inflate the predicted value L(1)

(A. Heavens & R. Jimenez 1999, private communication).
This motivates a study of the inner mass-shells of collaps-
ing galaxies, for which we expect linear theory will more
correctly model actual evolution.

The agreement of turnaround and final angular mo-
menta implies that L(tM ) is a robust estimator of Lf . How-
ever, given the result that angular momentum grows beyond
turnaround due to ellipsoidal collapse, we suspect that if
the decay of L post-shell-crossing can be eliminated then
L(tC) at shell-crossing will prove the more useful quantity.
We find that the predicted direction of the angular momen-
tum is only nominally more correlated with the true spin
axis than we would expect from purely random alignment.
Considering the rapid variation of local tidal fields due to
neighbors and the non-linear redistribution of the inertial
properties of an evolving galaxy, it is of little surprise that
equation (6) only weakly predicts the direction of the an-
gular momentum, and of even greater surprise that it does
so closely predicts the magnitude. Nonetheless, this under-
lines the limitations of applying linear theory to a highly
non-linear problem.

Linear theory predicts that the final angular momen-
tum varies proportionally to M5/3 [equation (21)], which
we find to be robust from generalized least-squares fitting.
Equations (6) and (21) further permit the calculation of en-
semble averages and probability distributions without the
need for lengthy numerical simulations. The predicted prob-
ability distribution of specific angular momentum versus
mass (CT96), for example, matches closely with our data
(§5.4). This tool may permits the numerical calculation of
the angular-momentum function using the Press-Schecter
formalism (Press & Schecter 1974), which estimates the
mass function of collapsed objects in the universe. Theo-
retical correlations of shape, morphology, spin, and density
will constrain models of galaxy formation once observations
of dark-halo properties become available. It appears, how-
ever, that correlations involving the direction of the angular-
momentum vector (such as the misalignment of L and the
minor body axis) must be relegated to numerical simula-
tions, since linear-theory predictions of the spin axes are
statistically unreliable.

We examine trends in the initial density peaks of
our galaxies, and compare them to predictions from the
Gaussian-peaks formalism. Higher-mass objects tend to
originate from higher initial density peaks, with relatively
few high-mass low-peak or low-mass high-peak objects. We
question whether tidal torques not only spin up proto-
galaxies before turnaround, but also influence the volume
of mass from which the galaxy evolves. Van de Weygaert
& Babul (1994) find that the evolution of density peaks is
highly sensitive to external shear, which can disrupt one
peak into many halos or form halos from low-ν environ-
ments. EL95 determine from their study of elliptical col-

lapse that the geometry of the collapsing region is deter-
mined largely by the external shear, and not uniquely by
the initial high-density peak. Were there no significant tidal
shear, anisotropies in the primordial medium would evolve
roughly spheroidally, such that the final object would map
surjectively to the initial density peak. However, local and
large-scale tidal shear distorts the minor anisotropies in the
high-density peak, resulting in a triaxial system which ac-
cretes mass from the surrounding lower-density shells. The
final bound object rarely resembles the initial region from
which it evolved, and cannot be directly mapped back to
the initial density peak. The spherical-collapse model is in-
adequate in this respect, since it cannot quantify the strong
role of tidal shear on the collapse history.

From the spherical-collapse model, one expects that ob-
jects evolving from higher peaks collapse more quickly and
spend less time in the linear regime. However, contrary to
the corollary of this trend, galaxies from higher peaks also
have higher final angular momenta. HP88 found this result
for power spectra with fluctuations larger than the small-
scale smoothing length. Since high peaks are more statisti-
cally correlated, they experience stronger tidal forces, and
hence galaxies evolving from higher peaks are potentially
subject to stronger local torque. These galaxies have shorter
collapse times since external tidal shearing tends to accel-
erate collapse and act as a source of internal gravity (Hoff-
man 1986; Zaroubi & Hoffman 1993; Bertschinger & Jain
1994; EL95). Perhaps more straightforward is the fact that,
from the scaling correlation in equation (22), angular mo-
mentum scales significantly more strongly with mass than
turnaround time. Although peak height and collapse time
are inversely proportional, the direct variation of mass and
peak height dominates, from which we expect that peak
height and angular momentum will vary proportionally as
well.

Our simulation evolved particles within only one-eighth
of the comoving box. This significantly decreased the neces-
sary CPU time while providing a realistic large-scale tidal
field. However, galaxies evolving at the vacuum boundary of
our subsampled region as well as those containing particles
from the third, supermassive dark-matter species had to be
disregarded. Paper II will discuss this analysis within the
framework of a full-scale, single-component simulation with
1283 particles and identical initial conditions. This will pro-
vide at least eight times the number of bound objects, span a
higher mass range and will not suffer from conditions which
force us to eliminate objects from our catalog. Higher mass
scales will permit a study of internal mass shells, for which
we expect that the consistent overprediction by linear theory
of actual angular momentum will be resolved. It is uncertain
how significantly the gas component effects the dynamics of
dark-halo evolution; by comparing identical halos in both
simulations, we will also examine this question.

Numerous other statistical tests could be performed on
our data set. Correlation functions of the principal axes
and actual angular momentum of nearby neighbors (Splinter
et al. 1997) can verify the underlying physics of the tidal-
torque scenario, since the large-scale tidal field should cause
nearest neighbors to spin about roughly the same axis, while
the most distant neighbors should counter-rotate. BE87 test
alignment statistics of axis vectors, angular-momentum and
separation vectors between nearest neighbors to also look
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for coherence from tidal fields. The misalignment vector be-
tween the apparent spin axis and the projected short ellip-
tical axis may indicate relationships between triaxial sys-
tems and ellipticities, and has been studied by, e.g., BE87;
Frenk et al. 1988; Quinn & Zurek 1988; Warren et al. 1991;
Franx, Illingworth & de Zeeuw 1991; and Dubinski 1992.
These tests rely on a larger statistical sample with larger
dynamical resolution than we have available, and will thus
be addressed in paper II. We anticipate that the substan-
tially larger data-set will also reduce the uncertainty in the
linear-theory prediction of angular momentum and permit
more quantitative conclusions regarding peak-height corre-
lations and scalings.
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