Long-term operation of a laser frequency comb with the Habitable Zone Planet Finder

Connor Fredrick, Andrew Matcalf, Scott Diddams, Ryan Terrien, Chad Bender, Sam Halverson, Suvarth Mahadevan, Joe Ninan, Apita Roy, Guðmundur Stefánsson

1National Institute of Standards and Technology, 2University of Colorado at Boulder, 3Air Force Research Lab, 4Carleton College 5University of Arizona, 6Jet Propulsion Laboratory, 7Pennsylvania State University, 8Center for Exoplanets and Habitable Worlds, 9California Institute of Technology

Near Infrared Radial Velocity Calibration
- We have constructed and installed a laser frequency comb (LFC) calibrator for the Penn State Habitable Zone Planet Finder (HPF) at the Hobby-Eberly telescope
- The LFC has now been running continuously for over two years. Here we provide details of its long-term operation

30GHz EOM Comb
- Electro-optic modulators (EOM) convert the continuous wave (CW) laser into a 30GHz comb
 - 10nm bandwidth
 - 300fs pulse duration

Supercontinuum Generation and Spectral Flattening
- 1st Stage Broadening
 - 2W (66pJ) optical power (pulsed energy)
 - Normal dispersion highly nonlinear fiber (HNLF)
 - Generate bandwidth for ultrashort pulse
 - >70fs pulse duration now possible
- 2nd Stage Broadening
 - 252mW (16pJ) optical power (pulsed energy)
 - Anomalous dispersion SiN chip waveguide
 - Supercontinuum from 700nm to 1600nm
- Combination of static optical filter and spatial light modulator (SLM) flatten intensity profile

Autonomous Frequency Comb
- The comb has been running autonomously at McDonald Observatory since May 2018
- Built on robust fiber-integrated electro-optic modulator technology
- The entire comb fits on a 2 x 5 optical breadboard
- Power supplies and control electronics fit in a standard electronics rack
- Control software automates the upkeep of the comb and interfaces with the HPF

Stable and Reliable Supercontinuum
- A SiN nonlinear photonic waveguide broadens the spectrum by 20x with only ~18 pJ of input pulse energy
- Over 2x10^14 spectra have been reliably generated at the 30GHz rate
- The supercontinuum spectrum has a stationary point where the overall (bulk) spectral amplitude is maximized at a given input power
- The dispersive wave (DW) power at 700 nm shows a linear dependence in this region and its power is used to lock the spectrum and minimize amplitude fluctuations

Absolute Frequency Stabilization
- The frequency comb is referenced to the SI second
- The short-term frequency reference is a Rb clock
- This is quoted long-term by GPS
- An auxiliary 125 MHz Er fiber comb locks the output of the 1064 nm CW laser

Enabling Tool for NIR Precision RVs
- HPF yields state-of-the-art long-baseline stellar RVs at NIR wavelengths

References

Funding: NIST-on-a-Chip, NSF AST 1310875. Thanks also to entire HPF collaboration team and Hobby-Eberly staff!

Image of the LFC spectrum with the HPF’s H2RG Detector

Multiple new publications, and more results coming......