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Acoustic Cavitation Rheometry

Lauren Mancia,� a Jin Yang,b Jean-Sebastien Spratt,c Jonathan R. Sukovich,d Zhen Xu,d Tim Colonius,c Christian Franck,b

and Eric Johnsena

Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical
properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018,
112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties
of polyacrylamide hydrogel under high strain-rates from 103 to 108 s� 1. While promising, laser-induced cavitation involves plasma
formation and optical breakdown during nucleation, a proce ss that could alter local material properties before measurements are
obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused
ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels.
Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubbleradius histories in
0:3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting
parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel
concentration and high strain-rate loading. Our �ndings de monstrate the utility of applying IMR and data assimilation methods with
single-bubble acoustic cavitation data for measurement ofviscoelastic properties.

1 Introduction
Characterization of soft materials such as polymers, hydrogels,
biological tissues, and tissue phantoms is important to a variety
of engineering and biomedical applications1–4. Soft materials
are challenging to characterize, particularly at high rates, given
their inhomogeneity, high compliance 5, and the dependence of
their mechanical properties on strain rate6. Traditional methods
measure bulk material properties under quasi-static loading con-
ditions. At high strain-rates, dynamic loading tests such as the
Taylor impact test7,8 and split Hopkinson pressure bar9 are typ-
ically used. The Taylor impact test emulates ballistic loading but
is inherently destructive and poorly suited to soft, highly compli-
ant materials. The split Hopkinson pressure bar is more versa-
tile and has been used to characterize biological materialsinclud-
ing bone10 and muscle11. However, its use is generally limited
to loading rates of 104 s� 1 and higher applied stresses. There
are also technical challenges associated with specimen prepara-
tion 9,12.

Using relatively simple and inexpensive setups, cavitation has
enabled rheometry techniques capable of probing the local ma-
terial properties of complex, soft specimens13–15. The �rst of
these methods, the cavitation rheology technique (CRT), involves
creating a cavity in soft material via needle injection of air and
measurement of the critical pressure corresponding to mechan-
ical instability. The critical pressure is directly related to the
material's elastic modulus. CRT has been successfully applied
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to the measurement of eye vitreous16, eye lens17, skin18, and
polymer 19 properties. This method is minimally invasive, cost-
effective, ef�cient, and applicable at microscopic length scales;
however, injection must be slow enough for a quasi-static as-
sumption to hold 14,15. The Volume Controlled Cavity Expansion
(VCCE) method is a needle-based cavitation rheometry technique
that permits inference of rate-dependent material properties with-
out knowledge of the maximum recorded cavity pressure20; how-
ever, Chockalingamet al.21 note that VCCE is still limited to strain
rates of � 1 s� 1. Thus, both CRT and VCCE have limited abil-
ity to characterize soft materials at the high strain rates (> 103

s� 1) most relevant to blast injury diagnostics and mitigation 22,23,
focused ultrasound ablation24, and laser surgery6,25. Recently,
novel cavitation-based rheometry techniques have been devel-
oped to characterize soft materials subjected to these extreme
conditions 15,26. Unlike traditional methods for high strain-rate
material characterization 9, techniques such as Small-scale Bal-
listic Cavitation (SBC)27 and Inertial Microcavitation-based high
strain-rate Rheometry (IMR) 15 share many of the advantages of
CRT. The IMR method in particular has been used to measure
nonlinear viscoelastic properties of polyacrylamide15,26.

IMR uses high-speed videography to track the radius vs. time
behavior of a bubble produced via inertial cavitation, then com-
pares recorded radius measurements with numerical simulations
that permit inference of viscoelastic material parameters for a
given constitutive model. The method effectively characterizes
the shear modulus and dynamic viscosity of polyacrylamide gels
of varying stiffness15. IMR was �rst demonstrated with laser cav-
itation data, but the authors note that any input of energy ca-
pable of inducing inertial cavitation in the medium can be used
to obtain radius vs. time measurements. Laser cavitation isiniti-
ated when the rapid concentration of high temperatures and pres-
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sures generated during laser plasma formation triggers explosive
expansion25. In contrast, ultrasound generates cavitation when
a suf�cient pressure rarefaction causes some pre-existingdefect
or nucleus in a material to grow explosively into a larger cav-
ity. Ultrasound-induced cavitation is not complicated by plasma
formation, making it more relevant to focused ultrasound ap-
plications and potentially more analogous to tissue deformation
in blast and ballistic injuries. However, given the technical dif-
�culty of generating single bubbles with high-amplitude ul tra-
sound, only recently have re�ned experimental techniques per-
mitted a rigorous comparison of single-bubble dynamics gener-
ated via laser vs. ultrasound28. Acoustic cavitation data from
Wilson et al.28 were subsequently used to measure the cavita-
tion nucleus size distribution in water 29 and to validate existing
models for single-bubble dynamics30.

The present study introduces acoustic cavitation rheometry as
an extension of the IMR method for use with acoustic rather than
laser-induced cavitation data. This technique is then usedto char-
acterize 0:3% and 1% agarose gel specimens �rst studied by Wil-
son et al.28 . Bubble stress-free radius size and agarose proper-
ties, including viscosity and elastic constants, are inferred using
a combination of ultrasound-induced bubble radius vs. time mea-
surements and a numerical model for single bubble dynamics.
The gel is modeled as a viscoelastic Kelvin-Voigt material with ei-
ther a Neo-Hookean or strain-stiffening hyperelastic spring and
a linear dashpot. Our parameter distributions are subsequently
compared to available quasi-static measurements of agarose ma-
terial properties. We then discuss additional sources of uncer-
tainty and provide a comparison of IMR applied with acoustic
vs. laser-induced inertial cavitation data. We conclude with an
analysis of the 0:3% gel data using a recently proposed data as-
similation modi�cation of IMR 31, demonstrating the potential of
acoustic cavitation rheometry to accommodate additional sources
of modeling and experimental uncertainty.

2 Methods

2.1 Experiments

The experimental methods for generating single bubbles viahigh-
amplitude ultrasound were described previously28. In this work,
we analyze the 19 data sets in0:3% agarose and the20 data sets
in 1% agarose from that study. To summarize, the gel specimens
were prepared according to the procedure described by Vlaisavl-
jevich et al.32 with the modi�cation that gels solidi�ed at 17:8 � C
rather than 4 � C. This slight difference in preparation had a neg-
ligible effect on the Young's moduli of each gel measured under
quasi-static conditions32. Given that agarose can be considered
incompressible at high strain rates33 with Poisson's ratio, n � 0:5,
the shear modulus of each gel is taken to be 1/3 of its measured
Young's modulus. Thus, the approximate quasi-static shearmod-
uli of 0:3% and 1% agarose gels in this study are0:38 � 0:16 kPa
and 7:2 � 0:33 kPa, respectively.

Experiments were performed in a open-topped, spherical
acoustic array that was10cm in diameter and populated with 16
focused transducer elements with a center frequency of1 MHz.
A 5:8cm-diameter opening at the top of the transducer permitted

Fig. 1 Scaled bubble radius vs. time data adapted from Wilsonet al. 28

for 19 experiments in0:3% (open markers) agarose gel and20 experiments
in 1% (�lled markers) agarose gel.

insertion of the gel specimens. Bubbles were nucleated using a
1:5-cycle acoustic pulse containing a single rarefactional pressure
half-cycle29 with an amplitude of � 24 MPa. For each experiment,
bubbles were nucleated at least5 mm away from previous cavi-
tation sites, and specimens had speci�c acoustic impedanceclose
to that of water (within 5%) to ensure samples could be regarded
as in�nite relative to the bubbles. Bubbles were imaged through
a single cycle of growth and collapse using a camera with a �xed
frame rate of 400kHz. The multi-�ash-per-camera-exposure tech-
nique34 generated images of nested, concentric bubbles which
were differentiated using brightness thresholding and edge de-
tection. Bubble radii were measured at individual �ash poin ts by
applying a circle �t to their detected boundaries. For all ex per-
iments, the magnitude of the spatial resolution uncertainty was
less than 4.3 mm and temporal resolution uncertainty was less
than 1.25 ms.

The scaled radius vs. time data,(ti ;Ri) for all experiments is
shown in Figure 1, where the open markers correspond to the
0:3% gel data and the �lled markers correspond to the 1% gel
data. As in previous studies15,28,29, the scaling is by the maxi-
mum bubble radius, Rmax and the collapse time, tc. As noted in
a previous study of cavitation nuclei sizes in water29, this data
collapse with appropriate scaling suggests that all experiments
are governed by the same physics. In the present case, however,
there are signi�cant uncertainties in the local material re sponse
and viscoelastic parameters of the gel specimens, as well asin the
initial conditions.

2.2 Theoretical Model and Numerical Methods

Numerical simulations are based on a theoretical model for cav-
itation in a viscoelastic medium that has been used in multiple
prior studies of ultrasound-induced cavitation 24,28,32,35–38 and is
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thus described only brie�y here. A spherical homobaric microbub-
ble is subjected to a tensile half-cycle experimental waveform,
pf (t), with an amplitude of � 24 MPa. The Keller-Miksis equa-
tion 39 is used to model spherical bubble dynamics in a homoge-
neous, weakly compressible medium:
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where the sound speed,c¥ , density, r ¥ , far-�eld pressure, p¥ , sur-
face tension, S, and viscosity, m, are �xed at the values given by
Wilson et al.28 The time-dependent pressure inside the bubble,
pb(t), is coupled to the energy equation solved inside the bub-
ble40–42. Gel surrounding the bubble remains at a constant am-
bient temperature of 25 � C, and the interface between the bubble
and surrounding gel is assumed to be impervious to gas diffusion.
This model has been used in previous studies30,40–43 of bubble
growth and collapse observed in acoustically nucleated cavitation
experiments28,30,36,43,44.

The selection of an appropriate viscoelastic constitutivemodel
for the gel specimens is nontrivial but can be elucidated with
rigorous application of the IMR approach15. For this study, we
model both gel specimens using Kelvin-Voigt-type models with ei-
ther a Neo-Hookean45 or a higher-order strain-stiffening 26 elas-
tic term. The �nite-deformation Neo-Hookean model was �rst ap-
plied in the context of inertial cavitation by Gaudron et al.45 . This
model is favored for high-amplitude ultrasound simulation s given
the typically large bubble growth observed in these cases24,36,38.
It was also used to model laser-induced inertial cavitation in
polyacrylamide15,26. Additionally, higher-order strain-stiffening
models46, which are observed to be signi�cant in the dynamic
response of soft materials47–49, have recently been applied to
model laser-induced inertial cavitation in polyacrylamid e26. Here
we apply an adaptation of the Fung model50, which is approxi-
mated by using the �rst two terms of the Taylor series expansion
of the Fung model. For the remainder of the text we refer to it
as the Quadratic Law Kelvin-Voigt (QLKV) model26. The integral
of the deviatoric contribution of the stresses in the surrounding
medium is given by:
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where R is the time-dependent bubble radius andR0 is the stress-
free radius corresponding to a reference con�guration; depar-
tures from this radius give rise to restoring elastic stresses. Con-
stant viscoelastic properties of the gel specimens includegel vis-
cosity, m, shear modulus, G, and a stiffening parameter, a . Note
that when a = 0 the strain stiffening QLKV model reduces to the

Neo-Hookean model.
The above stress integral thus contains four parametric uncer-

tainties (G, a , m, and R0), reducing to three for the Neo-Hookean
case (a = 0). The stress-free radius,R0, is taken to be the ini-
tial bubble radius in all simulations. Physical parameters for wa-
ter and air are assumed constant for all simulations and are the
same as those given in prior work28,29 with the exception of the
material properties to be inferred. We adopt a previously pre-
sented non-dimensionalization for the resulting system of ODEs
and PDE24. Time marching is achieved using a variable-step,
variable-order solver based on numerical differentiation formulas
(MATLAB ode15s) 51,52. Spatial derivatives in the energy equation
are computed using second-order central differences15,44.

2.3 Inference of Material Properties

Fig. 2 Dimensional radius vs. time data for 19 experiments in 0:3%
agarose gel. The best �t simulation obtained with the Neo-Hookean
model for a representative experimental data set (�lled squares) is shown
in black.

2.3.1 IMR Aproach

Material properties for the 0:3% and 1% agarose gels are inferred
using Neo-Hookean and QLKV viscoelastic models. The coupling
of each experimental data set to uncertain material parameters
is achieved with numerical simulations of single-bubble dynam-
ics. For each experimental radius vs. time data set, we perform
a series of simulations iterating over a maximum of four uncer-
tain material parameters (G, a , m, R0) using one of three as-
sumed models: (i) Neo-Hookean (a = 0, 3 �exible parameters),
(ii) quasi-static QLKV (G �xed at measured quasi-static values for
each gel concentration, 3 �exible parameters), and (iii) ge neral
QLKV (4 �exible parameters). Simulation results are time-shifted
within � 0:8 ms as needed for temporal alignment with a given
experimental data set. Next, the normalized root mean squared
error (NRMSE) is calculated between the radius and time data
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points from a given experimental data set, yexp, and their nearest
neighbor points on a simulation trace, ysim:

NRMSE= 1�
kyexp� ysimk
kyexp� yexpk

: (3)

The NRMSE for each data set ranges from� ¥ (poorest �t) to 1:0
(best �t). For example, Fig. 2 shows the 19 individual radius vs.
time data sets for 0.3% gel in dimensional form. The black trace is
the simulation obtained using the Neo-Hookean model initialized
with a G, m, and R0 that best �t a representative data set (black
squares). For this representative case,G= 8:5 kPa,m= 0:088Pa�s,
and R0 = 1:4 mm, and the �t is 0:97.

2.3.2 Data Assimilation Approach

To account for additional modeling and experimental uncertain-
ties, Spratt et al.31 modi�ed the IMR method of Estrada et al.15 ,
using ensemble-based data assimilation to estimate viscoelastic
material properties with the same laser-induced cavitation mea-
surements. This approach is straightforward to apply to the
present ultrasound measurements, with minor modi�cations . In
particular, to verify the above results and examine uncertainty in
parameter estimates, we apply the hybrid ensemble-based 4D-Var
method (En4D-Var)31, which is well-suited to experimental data
with smaller numbers of measurements per data set.

En4D-Var is based on the iterative ensemble Kalman
smoother53,54, in which the state dynamics are represented
through an ensemble ofq state vectors, the mean of which repre-
sents the estimate at any given time. The state vectorxxx is com-
prised of all the dependent variables, to which the parameters to
estimate are appended. Here, the state vector is

xxx = f R; �R; pb;S;T;C;G;m;R0;a ;tsg; (4)

where R is the bubble wall radius, �R the velocity, pb the bubble
pressure,S the stress integral, T and C the discretized tempera-
ture and vapor concentration �elds inside the bubble, G the shear
modulus, m the viscosity, R0 the stress-free radius,a the stiffen-
ing parameter in the QLKV model, and ts a time-shift parameter
used to initialize the bubble growth. The different models ( Neo-
Hookean and both QLKV models) from section 2.2 are re-written
as nonlinear operators,F, which step each state vector in the en-
semble forward in time such that F(xxxk) = xxxk+ 1. A linear operator
H is de�ned, which maps the state vector to measurement space.
Here, the state vector is mapped to its �rst element H(xxxk) = Rk as
we use radius measurements. Using a Gauss-Newton algorithm,
the En4D-Var then minimizes the following cost function:

J(xxx) =
1
2 å

k
bkkyyyk � H � Fk 0(xxx)k2

RRR+
1
2

kxxx� x̂xxkk2
C0

; (5)

where bi are weights attributed to given time steps, yyyk is the ra-
dius data at time k, RRR is the estimated measurement noise co-
variance matrix, and C0 is the initial ensemble covariance. The
�rst term minimizes the difference with experimental data a cross
the entire time domain, weighed by estimated measurement er-
ror, while the second term minimizes difference with the ensem-
ble average, weighed by the ensemble covariance. More details

about the algorithm can be found in Spratt et al.31 .

This method is implemented with both gels, using the three ma-
terial models described in section 2.3. An ensemble size ofq = 48
was used, and the initial ensemble is sampled from a Gaussian
distribution centered around an initial state vector. The d epen-
dent variables in this initial state vector are taken from th e IMR
code initialization, and values near IMR results are used asinitial
guesses for the parameters to estimate.

3 Results

3.1 IMR Results

For a given experimental data set (Ri ;ti), an ensemble of simu-
lations is run to obtain the time history of the radius, R(t). In
each ensemble, the shear modulus,G, stiffening parameter, a ,
viscosity, m, and stress-free radius,R0, are varied assuming one of
three viscoelastic models: Neo-Hookean, quasi-static QLKV, and
general QLKV. The parameters in the simulation producing the
smallest normalized root-mean squared error constitute the best
�t. The mean and standard deviations of IMR results for each
parameter weighted by normalized rms error are summarized for
each model in Table 1 for the 0.3% and 1% gel data. Figure 3
shows the distributions of each parameter obtained with the Neo-
Hookean and general QLKV models using IMR.

The shear modulus distributions differ notably for the Neo-
Hookean and QLKV models. In the 0.3% gel, a weighted meanG
of 9:0 kPa is inferred with the Neo-Hookean model, which is sig-
ni�cantly larger than the mean quasi-static measurement of 0:38
kPa and the weighted mean of0:42 kPa inferred with the general
QLKV model. TheG distribution for the general QLKV model is
also more narrow than that obtained with the Neo-Hookean or
quasi-static QLKV models and falls within the 95% con�dence in-
terval of the mean quasi-static measurement. All distributions are
broader for the 1% concentration gel, but the trends are otherwise
similar to the 0.3% gel results. Namely, a large meanG of 30kPa is
obtained with the Neo-Hookean model. The signi�cantly smal ler
mean quasi-static measurement of7:2 kPa is comparable to the
mean of 6:9 kPa inferred with the general QLKV model. Again, the
mean G obtained with the general QLKV model falls within the
95% con�dence interval of the quasi-static measurement. Shear
modulus distributions inferred using the Neo-Hookean and QLKV
models for each gel concentration are shown in Fig. 3 (b), which
illustrates the smaller G values and minimal variance achieved
with the general QLKV model. The quasi-static and general QLKV
models both include an additional elastic constant: the stiffening
parameter, a . In the 0.3% gel, a weighted mean a of 0:026 is
obtained with the quasi-static QLKV model. A larger meana is
obtained with the general QLKV model, but the distributions in-
ferred with either model have similar variance. In the 1.0% gel,
the mean values obtained with both QLKV models are0:025, but
use of the general QLKV model results in a slightly broadera dis-
tribution. The a distributions obtained with the general QLKV
model are shown in the inset in Fig. 3 (b). This distribution h igh-
lights the minimal distinction between a distributions inferred
from the 0:3% and 1% gel data.

The viscosity distributions are similar for each material model.
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In the 0.3% gel, a weighted mean mof 0:092Pa�s is inferred with
the Neo-Hookean model while the QLKV models both result in
a weighted mean viscosity of 0:086 Pa�s. The distributions also
demonstrate similar variance. Inferred viscosity distributions for
the 1% gel have larger means but are again similar for each ma-
terial model. A weighted mean mof 0:14 Pa�s is obtained with the
Neo-Hookean model, and both QLKV models produce the same,
slightly larger mean m of 0:15 Pa�s. Figure 3 (c) shows the m
distributions obtained with the Neo-Hookean and general QLKV
models for each gel concentration. Signi�cant overlap between
mdistributions inferred with the Neo-Hookean and general QLKV
models is evident.

The stress-free radius distributions inferred with each material
model demonstrate signi�cant overlap. For the 0.3% gel data,
optimized R0 values obtained with the Neo-Hookean model are
centered about a weighted mean of0:68 mm with a standard de-
viation of 0:45 mm. The distribution of R0 values obtained with
the quasi-static QLKV model is more narrow but has a comparable
weighted mean of 0:43 mm. Use of the more general QLKV model
with �exible G results in the same meanR0 as in the quasi-static
case but with further narrowing of the R0 distribution. All models
produce larger R0 values for the 1% gel. The meanR0 inferred
with the Neo-Hookean model is 0:93 mm with a standard devia-
tion of 0:66 mm. Both the quasi-static and general QLKV models
give rise to a larger mean R0 of 1:3 mm, but the general QLKV
model again gives a more narrow distribution. Stress-free radius
histograms obtained with the Neo-Hookean and QLKV models for
each gel concentration are shown in Fig. 3 (a). Relative to the
Neo-Hookean model, use of the general QLKV model results in
tighter R0 distributions as well as greater distinction between R0

distributions inferred from the 0:3% and 1% gel data.

Normalized rms error (NRMSE) distributions for IMR-
optimized parameters obtained using the Neo-Hookean, quasi-
static QLKV, and general QLKV models are shown in Figure 4.
NRMSEs> 0:9 are achieved for all data sets, regardless of mate-
rial model. Both QLKV models achieve NRMSE distributions with
comparable means but smaller variance than the Neo-Hookean
model. For the 0:3% gel data sets with IMR, Neo-Hookean model
NRMSE ranges from0:92 to 0:98 with a mean of 0:96, quasi-static
QLKV model NRMSE ranges from0:93to 0:98with a mean of 0:96,
and general QLKV model NRMSE ranges from0:94 to 0:99 with
a mean of 0:97. Smaller NRMSEs and less distinction between
models is seen in the 1% gel data sets: The Neo-Hookean model
and both QLKV models achieve a mean NRMSE of0:96.

3.2 En4D-Var Results

We now analyze the simulations results by running them through
En4D-Var. Initial guesses as to each material property are deter-
mined based on the estimates in Table 1. For example, in the
0.3% gel case, the initial guesses with all models areR0 = 0:5 mm
and m= 0:1 Pa�s. For the Neo-Hookean model, the shear modu-
lus initial guess is G = 10 kPa. For both QLKV models, the initial
guess isa = 0:03, and while the shear modulus is �xed at G= 0:38
kPa in the quasi-static case, the initial guess isG = 0:5 kPa in the
general QLKV case.

Table 1 Weighted mean and standard deviation of inferred properties
for 0.3% and 1% agarose specimens obtained using Neo-Hookean (NH),
quasi-static QLKV (QS QLKV), and general QLKV (Gen QLKV) mod els
(mean � standard deviation). Note that G for the QS QLKV model is a
measured value reported as mean� 95% con�dence interval.

Model G (kPa) a (10� 2) m (Pa�s) R0 (mm)

0.3% gel
NH 9.0 � 0.62 0 0.092 � 0.031 0.68 � 0.45
QS QLKV 0.38� 0.16 2.6 � 1.2 0.086 � 0.023 0.43 � 0.38
Gen QLKV 0.42� 0.062 2.9 � 1.1 0.086 � 0.024 0.43 � 0.31

1% gel
NH 30 � 3.8 0 0.14 � 0.025 0.93 � 0.66
QS QLKV 7.2� 0.33 2.5 � 0.62 0.15 � 0.022 1.3 � 0.49
Gen QLKV 6.9� 0.49 2.5 � 0.77 0.15 � 0.026 1.3 � 0.44

Table 2 Weighted mean and standard deviation of inferred properties
using En4D-Var for 0.3% and 1% agarose specimens.

Model G (kPa) a (10� 2) m (Pa�s) R0 (mm)

0.3% gel
NH 9.66 � 0.55 0 0.086 � 0.028 0.51 � 0.07
QS QLKV 0.38� 0.16 3.0 � 0.1 0.097 � 0.026 0.50 � 0.03
Gen QLKV 0.50� 0.05 3.0 � 0.3 0.094 � 0.026 0.51 � 0.06

1% gel
NH 36 � 3.57 0 0.14 � 0.031 1.03 � 0.04
QS QLKV 7.2� 0.33 2.4 � 0.15 0.16 � 0.038 1.29 � 0.06
Gen QLKV 7.7� 0.89 2.5 � 0.12 0.16 � 0.036 1.29 � 0.05

Table 2 summarizes the results with En4D-Var for both the
0.3% and 1% agarose specimens. These results are compara-
ble with those in table 1. A key difference, however, appearsin
the comparatively much smaller stress-free radius and stiffening
parameter standard deviations. In fact, the estimates for these
parameters are very close to the initial guess in all cases. This
indicates that given these initial guesses the En4D-Var is unable
improve on these results and converged quickly to the original
value. This behavior is further discussed in section 4.4

The radius-normalized RMS errors obtained with the En4D-Var
are also similar those obtained with IMR. For example, in the
0.3% gel case, the normalized RMS errors ranges from 0.91 to
0.98 with a mean of 0.96 with the Neo-Hookean model. For the
quasi-static QLKV model, they range from 0.93 to 0.98 with a
mean of 0.95. Finally for the general QLKV model, the range is
0.94 to 0.98 with a mean of 0.96.

4 Discussion
The present study is the �rst to use single-bubble acoustic cavita-
tion data to measure the nonlinear viscoelastic propertiesof soft
materials. Like the laser-based IMR method15, acoustic cavitation
rheometry can be used to infer the local mechanical properties of
complex soft materials subjected to high strain-rate (> 103 s� 1)
loading. Single-bubble radius vs. time measurements are coupled
to material properties using bubble dynamics modeling. Prop-
erty distributions are thus in�uenced by both model-based and
parametric uncertainties. Perhaps the greatest model-based un-
certainty lies in the form of constitutive model assumed for the
soft matter specimens. We adopt �nite-deformation Kelvin-Voigt
models in this work given their quantitative success in physics-
based modeling of cavitation in soft matter with a limited nu m-
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Fig. 3 Distributions of (a) shear modulus with sti�ening paramete r as inset, (b) viscosity, and (c) stress-free radius for0:3% and 1%
agarose gels obtained with Neo-Hookean (a = 0) and general QLKV models.
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Fig. 4 Distributions of normalized rms error (NRMSE) obtained wit h the (a) Neo-Hookean, (b) quasi-static QLKV, and (c) general QLKV models.

ber of parameters15,24,36,38. The NRMSE �t distributions in Fig. 4
demonstrate improving data �t and greater �t precision as mo d-
els increase in complexity from Neo-Hookean to general QLKV.
Additional model-based uncertainty remains in the acoustic forc-
ing waveform chosen for our numerical simulations. The precise,
time-dependent acoustic forcing experienced by bubbles inthe
focal region cannot be directly measured due to damaging cavita-
tion at the hydrophone tip. Our analytic approximation is su ccess-
ful in high-amplitude ultrasound contexts 29,30 and is a reasonable
choice of pressure waveform in these water-based gels observed
to have the same cavitation threshold28. A prior validation study
in water supports the validity of this analytic approximati on for
high-amplitude acoustic forcing but concedes that dedicated ex-
periments are necessary to determine the exact pressure experi-
enced the bubble30. Parametric uncertainties in addition to the
stress-free radius, elastic constants, and viscosity values measured
by this method include material constants such as surface tension
and thermodynamic parameters, which are assumed equivalent
to their values for water 30. This assumption is appropriate for
these water-based gels but variation of these parameters should
be considered if this method is used to characterize more complex
materials. Each of the material properties inferred for the agarose
gel specimens in this study are now discussed in greater detail.

4.1 Elastic Parameters

Shear modulus is inferred using an assumed material model,
which we take to be a Neo-Hookean, quasi-static QLKV, or general
QLKV model. Vlaisavljevichet al.32 measured the Young's mod-
uli for agarose gels with a parallel plate rheometer; these moduli
were subsequently used as physical parameters for simulations of
cavitation in agarose gels28,32. Agarose is considered nearly in-
compressible at high strain rate33, so these values can be readily
converted to mean shear moduli of 0:38 kPa for 0:3% gel and 7:2
kPa for 1% gel. Notably, these measurements were performed
on gross specimens under quasi-static conditions. In general,
local shear moduli inferred from inertial cavitation exper iments
are expected to be larger given the stiffening behavior observed
in gels subjected to high strain-rates55,56. The Neo-Hookean

model infers local mean shear moduli that are more than 4 times
larger than these quasi-static measurements for each gel speci-
men. Similarly, application of IMR to polyacrylamide specimens
using laser-induced cavitation data and a Neo-Hookean model
yielded shear moduli at least two times larger than quasi-static
measurements15.

The quasi-static and general QLKV models include gel shear
modulus and introduce another elastic parameter: the stiffening
constant, a . Our results show minimal distinction between the
parameter distributions obtained with either QLKV model, which
shows that even a QLKV model with variable shear modulus effec-
tively infers the measured quasi-static shear modulus for each gel
specimen. Values fora in the QLKV models are fairly similar for
gel specimens of either concentration, but trend slightly larger for
the 0:3%gel. A trend of smaller a for stiffer samples was observed
previously in a cavitation rheometry study of soft and stiff poly-
acrylamide26. This polyacrylamide study also measureda values
of 0:5� 1:0, which are signi�cantly larger than those in agarose.
This contrast likely re�ects the distinct microstructures of agarose
and polyacrylamide. The signi�cantly larger shear moduli p re-
dicted by the Neo-Hookean model relative to the QLKV model are
a direct consequence of neglecting higher-order stiffening effects
captured with the a -dependent terms of Eq. 2. Inclusion of these
effects is also responsible for the greater �t accuracy and precision
achieved with the QLKV models.

4.2 Viscosity

Viscosity of the gel specimens is also inferred and shown to be
largely independent of the assumed viscoelastic model. Wilson
et al.28 proposed using an agarose viscosity of0:115Pa�s for 0:3%,
1%, 2:5%, and 5% gel specimens28. Although they admit this
value is uncertain, it was found to result in a relationship be-
tween initial radii and gel concentration that followed the same
approximate scaling as agarose pore size and gel concentration.
As noted by previous authors46, there are currently no measured
values of agarose viscosity relevant to cavitation conditions. Past
studies of ultrasound-induced cavitation in agarose have assumed
water viscosity (0:001 Pa�s)32 or considered a range of viscosi-
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ties (0:001 - 10 Pa�s)46 to account for this otherwise unknown
quantity. Meanwhile, shear wave elastography techniques have
been used to infer gel viscosity under more typical conditions.
For example, a prior study assuming a Kelvin-Voigt type material
model measured a viscosity of0:22 Pa�s for an agar-gelatin phan-
tom at 400 kHz57. Still assuming a Kelvin-Voigt model, other
authors measured a viscosity of1 Pa�s under ballistic loading of
a 10 wt% ballistic gelatin block 58. Larger viscosity values of5
to 900 Pa�s have also been measured for agar under frequencies
ranging from 20 to 200 Hz59. In part due to this wide variation
in measurements, Movahedet al.46 conclude that a single vis-
cosity parameter cannot fully describe dissipative behavior of the
gels but that the effective viscosity of agarose should be assumed
to be larger than that of water. Our �ndings support the use of
viscosity values on the order of 0:1 Pa�s for agarose gels, which
is also consistent with the polyacrylamide viscosities (0:101 Pa�s
and 0:118 Pa�s) obtained from laser-induced cavitation data and
a Neo-Hookean model15.

4.3 Stress-Free Radius

Our use of acoustic rather than laser-induced cavitation experi-
ments requires the consideration of an additional parameter, the
stress-free radius, R0, which is equivalent to the initial radius
in our simulations. Compared to the conventional laser-based
IMR procedure, we �t the entire bubble growth and collapse,
not just the latter, thus bypassing the need to assume a given
state (temperature and composition �elds inside the bubble) at
the bubble's maximum size. Instead, an initial (stress-free) ra-
dius is provided. Numerous studies have suggested that cavita-
tion bubbles in high-amplitude ultrasound arise from pre-existing
nuclei 28,29,32,37,38,60–62. Previous work has used high-amplitude
ultrasound experiments to infer the nucleus size distribution at
the acoustic cavitation threshold in water 29. In the setting of
agarose gels and other soft matter, the physical signi�cance of the
initial radius parameter is less clear, but acoustic cavitation in soft
materials likely originates from pre-existing defects which act as
stress risers and are analogous to cavitation nuclei in liquids28,63.
Wilson et al.28 �rst hypothesized that stress-free radii could be
related to agarose porosity. They found a correlation between
measured agarose pore size64,65 and initial radii they estimated
for representative agarose gel specimens of varying concentra-
tion. Using only maximum radii of three data sets per gel speci-
men, they inferred nuclei sizes of approximately 1:4 mm in 0:3%
gel and 0:25 mm in 1% gel. In contrast, our present study �nds
that stress-free radii are larger in the higher concentration gel,
with inferred sizes of approximately 0:43 mm in 0:3% gel and 1:3
mm in 1% gel. These values could be a re�ection of where cavi-
tation occurs in both gel specimens. For example, the stress-free
radius distribution for 0:3% gel is weighted towards smaller val-
ues, which suggests bubbles might be arising from nanoscalenu-
clei29 contained in water-�lled pores. In this case, bubbles grow
from nanometer-sized nuclei but are affected by elasticityonly af-
ter reaching micron-scale sizes, which may be on the order ofthe
pore size. In addition, fewer cavitation events occur in the 1%gel,
implying that experiments could be preferentially nucleat ing the

Fig. 5 Histogram of combined �nal stress-free radius, shear modulus,
sti�ening parameter and viscosity ensembles for0:3% gels with the En4D-
var using the QLKV model.

largest pores in this stiffer gel specimen. Finally, the assumption
that agarose pore size is related to the size of cavitation nucleus is
reasonable but unproven. An alternative explanation is that gels
immediately fracture under the high stresses and strains devel-
oped at the onset of cavitation24. This process could then lead
to `effective' initial or stress-free radii sizes which have no clear
correlation with pore size.

4.4 Uncertainties

The En4D-Var results can further inform the uncertainties associ-
ated with the material property estimates obtained, e.g., due to
variations in samples.

Figure 5 summarizes the En4D results with the QLKV model for
each material property. These histograms combine all �nal en-
semble members across the 19 data sets (with an ensemble sizeof
48, the total number of ensemble members is thus19� 48= 912).
An approximately Gaussian distribution is obtained for all four
quantities, the mean of which are our estimates for each quantity,
thus con�rming that the En4D-Var estimates are uniform across
all data sets.

Figure 6 shows the iterative estimation of each parameter for
all 19 data sets, again with the QLKV model. It appears that the
viscosity estimates are relatively scattered, which points to a rel-
atively high sensitivity to changes in viscosity in our estimator.
By contrast, the spread in stress-free radius, shear modulus and
stiffening parameter is quite narrow around the initial gue ss, indi-
cating that in this regime and given this guess the estimatorcould
not improve the �t signi�cantly. Overall, this uncertainty assess-
ment demonstrates that the acoustic cavitation extension of IMR
applied with data assimilation methods provides robust parame-
ter estimates comparable to those obtained with the traditional
IMR optimization approach.
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Fig. 6 Iterative estimation of the stress-free radius, shear modulus,
sti�ening parameter and viscosity for 0:3% gels with the En4D-var using
the QLKV model.

4.5 Acoustic vs. laser-induced cavitation data

This work demonstrates that the IMR method can be applied
using radius vs. time data from ultrasound-nucleated cavitation
bubbles. Novel experimental techniques28 and recent validation
of models for bubble dynamics under high-amplitude ultrasound
forcing permit this extension of the IMR method. Notably, th e
latter validation studies 30 enable characterization of the high-
amplitude acoustic waveform, a previously signi�cant source of
model-based uncertainty. Use of acoustic cavitation measure-
ments removes uncertainties associated with laser-material inter-
actions and optical breakdown. Acoustic cavitation also has di-
rect relevance to clinical ultrasound applications and could more
closely approximate cavitation phenomena in blast injuries. Laser
cavitation measurements are still advantageous in avoiding un-
certainties associated with the acoustic forcing waveform and
with the likely stochastic distribution of pre-existing ca vitation
nuclei and associated stress-free radii. At the present time, laser
experiments are more robust and repeatable than ultrasound-
based experiments, in that a single bubble is nucleated, grows,
and collapses, by contrast to acoustically generated bubbles some-
times breaking up into smaller bubbles before any rebounds are
observed66. However, it is conceivable that the advantages and
disadvantages of each method could ultimately prove comple-
mentary. For instance, a combined approach could involve use
of laser-induced cavitation data to determine cavitation-relevant
material parameters, followed by use of acoustic cavitation data
to determine local waveform characteristics. A similar approach
has been used to determine mechanical properties of gels at lower
rates using continuous pressure waveforms67,68.

5 Conclusions
Cavitation-based rheometry techniques provide a minimally inva-
sive means of characterizing soft, viscoelastic materialssuch as

gelatin and biological tissue. This work presents a novel cavi-
tation rheometry technique using radius vs. time data obtained
from acoustic cavitation experiments. Based on focused ultra-
sound radius vs. time data and using a numerical model for sin-
gle bubble dynamics in a �nite deformation Kelvin-Voigt med ium
with either a Neo-Hookean or higher order Quadratic Law elas-
tic term, we infer properties including stress-free radius, elastic
parameters, and viscosity of0:3% and 1% agarose gel specimens
�rst studied by Wilson et al.28 . Our �ndings illustrate the utility
of single-bubble acoustic cavitation for measurement of viscoelas-
tic properties. Use of acoustic cavitation data is advantageous in
avoiding the complications of optical breakdown and potential
material property alterations in laser-induced cavitation. Acous-
tic cavitation rheometry is ideally suited for inference of tissue
properties in the setting of high-amplitude ultrasound tre atments.
Furthermore, the presented acoustic cavitation extensionof IMR
is shown to be robust, obtaining comparable parameter values
when used in conjunction with novel data assimilation methods.

Con�icts of Interest
There are no con�icts to declare.

Acknowledgements
This work was supported by ONR Grant No. N00014-18-1-2625
(under Dr. Timothy Bentley).

Notes and references
1 O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif,

J. C. Weaver, N. Huebsch, H.-p. Lee, E. Lippens, G. N. Duda
et al., Nat. Mater., 2016, 15, 326–334.

2 K. Y. Lee and D. J. Mooney,Prog. Polym. Sci., 2012, 37, 106–
126.

3 H. Storrie and D. J. Mooney, Adv. Drug Deliv. Rev., 2006, 58,
500–514.

4 W. Solomon and V. Jindal, LWT-Food Science and Technology,
2007, 40, 170–178.

5 P. D. Arora, N. Narani and C. A. McCulloch,Am. J. Pathol.,
1999, 154, 871–882.

6 E.-A. Brujan and A. Vogel,J. Fluid Mech., 2006, 558, 281–308.

7 G. I. Taylor, Proc. R. Soc., Lond., Ser. A, 1948, 194, 289–299.

8 D. Allen, W. Rule and S. Jones,Experimental Mechanics, 1997,
37, 333–338.

9 W. W. Chen and B. Song,Split Hopkinson (Kolsky) bar: design,
testing and applications, Springer Science & Business Media,
2010.

10 R. M. Kulin, F. Jiang and K. S. Vecchio,J. Mech. Behav. Biomed.
Mater., 2011, 4, 57–75.

11 C. Van Sligtenhorst, D. S. Cronin and G. W. Brodland,J.
Biomech., 2006, 39, 1852–1858.

12 Y. Hu, J.-O. You, D. T. Auguste, Z. Suo and J. J. Vlassak,J.
Mater. Res., 2012, 27, 152–160.

13 C. W. Barney, C. E. Dougan, K. R. McLeod, A. Kazemi-
Moridani, Y. Zheng, Z. Ye, S. Tiwari, I. Sacligil, R. A. Rig-
gleman, S. Caiet al., Proc. Natl. Acad. Sci. U.S.A., 2020, 117,
9157–9165.

1-11 | 9



14 J. A. Zimberlin, N. Sanabria-DeLong, G. N. Tew and A. J.
Crosby,Soft Matter, 2007, 3, 763–767.

15 J. B. Estrada, C. Barajas, D. L. Henann, E. Johnsen and
C. Franck,J. Mech. Phys. Solids, 2018, 112, 291–317.

16 J. A. Zimberlin, J. J. McManus and A. J. Crosby,Soft Matter,
2010, 6, 3632–3635.

17 J. Cui, C. H. Lee, A. Delbos, J. J. McManus and A. J. Crosby,
Soft Matter, 2011, 7, 7827–7831.

18 M. S. Chin, B. B. Freniere, S. Fakhouri, J. E. Harris, J. F. La-
likos and A. J. Crosby,Plast. Reconstr. Surg., 2013, 131, 303e.

19 K. C. Bentz, S. E. Walley and D. A. Savin,Soft Matter, 2016,
12, 4991–5001.

20 S. Raayai-Ardakani, Z. Chen, D. R. Earl and T. Cohen,Soft
Matter, 2019, 15, 381–392.

21 S. Chockalingam, C. Roth, T. Henzel and T. Cohen,J. Mech.
Phys. Solids, 2020, 104172.

22 M. K. Nyein, A. M. Jason, L. Yu, C. M. Pita, J. D. Joannopoulos,
D. F. Moore and R. A. Radovitzky,Proc. Natl. Acad. Sci. U.S.A.,
2010, 107, 20703–20708.

23 A. Ramasamy, A. M. Hill, S. Masouros, I. Gibb, A. M. Bull and
J. C. Clasper,J. R. Soc. Interface, 2011, 8, 689–698.

24 L. Mancia, E. Vlaisavljevich, N. Youse�, M. Rodriguez, T.J.
Ziemlewicz, F. T. Lee, D. Henann, C. Franck, Z. Xu and
E. Johnsen,Phys. Med. Biol., 2019, 64, 225001.

25 A. Vogel, N. Linz, S. Freidank and G. Paltauf,Phys. Rev. Lett.,
2008, 100, 038102.

26 J. Yang, H. C. Cramer and C. Franck,Extreme Mech. Lett.,
2020, 39, 100839.

27 M. P. Milner and S. B. Hutchens,Extreme Mech. Lett., 2019,
28, 69–75.

28 C. T. Wilson, T. L. Hall, E. Johnsen, L. Mancia, M. Rodriguez,
J. E. Lundt, T. Colonius, D. L. Henann, C. Franck, Z. Xuet al.,
Phys. Rev. E, 2019, 99, 043103.

29 L. Mancia, M. Rodriguez, J. Sukovich, S. Haskell, Z. Xu and
E. Johnsen,Ultrasound Med. Biol., 2020.

30 L. Mancia, M. Rodriguez, J. Sukovich, Z. Xu and E. Johnsen,
Phys. Med. Biol., 2020, 65, 225014.

31 J.-S. Spratt, M. Rodriguez, K. Schmidmayer, S. Bryngel-
son, J. Yang, C. Franck and T. Colonius, Characteriz-
ing viscoelastic materials via ensemble-based data assimi-
lation of bubble collapse observations, 2020, Preprint at
https://arxiv.org/abs/2008.04410 .

32 E. Vlaisavljevich, K.-W. Lin, A. Maxwell, M. T. Warnez, L.Man-
cia, R. Singh, A. J. Putnam, B. Fowlkes, E. Johnsen, C. Cain
et al., Ultrasound Med. Biol., 2015, 41, 1651–1667.

33 V. Normand, D. L. Lootens, E. Amici, K. P. Plucknett and P. Ay-
mard, Biomacromolecules, 2000, 1, 730–738.

34 J. R. Sukovich, S. C. Haskell, Z. Xu and T. L. Hall,J. Acoust.
Soc. Am., 2020, 147, 1339–1343.

35 K. B. Bader,Phys. Med. Biol., 2018, 63, 095010.

36 L. Mancia, E. Vlaisavljevich, Z. Xu and E. Johnsen,Ultrasound
Med. Biol., 2017, 43, 1421–1440.

37 E. Vlaisavljevich, Z. Xu, A. D. Maxwell, L. Mancia, X. Zhang,
K.-W. Lin, A. P. Duryea, J. R. Sukovich, T. L. Hall, E. Johnsen

et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2016, 63,
1064–1077.

38 E. Vlaisavljevich, A. Maxwell, L. Mancia, E. Johnsen, C. Cain
and Z. Xu, Ultrasound Med. Biol., 2016, 42, 2466–2477.

39 J. B. Keller and M. Miksis,J. Acoust. Soc. Am., 1980, 68, 628–
633.

40 A. Prosperetti, J. Fluid Mech., 1991, 222, 587–616.

41 A. Prosperetti, L. A. Crum and K. W. Commander,J. Acoust.
Soc. Am., 1988, 83, 502–514.

42 V. Kamath, A. Prosperetti and F. Egolfopoulos,J. Acoust. Soc.
Am., 1993, 94, 248–260.

43 M. Warnez and E. Johnsen,Phys. Fluids, 2015, 27, 063103.

44 C. Barajas and E. Johnsen,J. Acoust. Soc. Am., 2017, 141,
908–918.

45 R. Gaudron, M. Warnez and E. Johnsen,J. Fluid Mech., 2015,
766, 54–75.

46 P. Movahed, W. Kreider, A. D. Maxwell, S. B. Hutchens and
J. B. Freund,J. Acoust. Soc. Am., 2016, 140, 1374–1386.

47 S. Raayai-Ardakani, D. R. Earl and T. Cohen,Soft Matter,
2019, 15, 4999–5005.

48 S. Raayai-Ardakani and T. Cohen,Extreme Mech. Lett., 2019,
31, 100536.

49 P. Chen and V. B. Shenoy,Soft Matter, 2011, 7, 355–358.

50 Y.-c. Fung, Biomechanics: mechanical properties of living tis-
sues, Springer Science & Business Media, 2013.

51 L. F. Shampine and M. W. Reichelt,SIAM journal on scienti�c
computing, 1997, 18, 1–22.

52 L. F. Shampine, M. W. Reichelt and J. A. Kierzenka,SIAM Rev.,
1999, 41, 538–552.

53 M. Bocquet and P. Sakov,Q. J. R. Meteorol. Soc., 2013, 140,
1521–1535.

54 P. Sakov, D. S. Oliver and L. Bertino,Mon. Weather Rev., 2012,
140, 1988–2004.

55 Y. Wang, S. Wang, C. Xu, S. Xuan, W. Jiang and X. Gong,
Composites Science and Technology, 2016, 127, 169–176.

56 J. Kwon and G. Subhash,J. Biomech., 2010, 43, 420–425.

57 S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus,
S. Abouelkaram and J. Culioli, J. Acoust. Soc. Am., 2004, 116,
3734–3741.

58 L. Liu, Y. Fan and W. Li,J. Mech. Behav. Biomed. Mater., 2014,
34, 199–207.

59 V. Nayar, J. Weiland, C. Nelson and A. Hodge,J. Mech. Behav.
Biomed. Mater., 2012, 7, 60–68.

60 K. B. Bader, E. Vlaisavljevich and A. D. Maxwell,Ultrasound
Med. Biol., 2019, 45, 1056–1080.

61 E. Vlaisavljevich, A. Maxwell, M. Warnez, E. Johnsen, C. Cain
and Z. Xu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control,
2014, 61, 341–352.

62 A. D. Maxwell, C. A. Cain, T. L. Hall, J. B. Fowlkes and Z. Xu,
Ultrasound Med. Biol., 2013, 39, 449–465.

63 P. Guan, S. Lu, M. J. Spector, P. K. Valavala and M. L. Falk,
Phys. Rev. Letters, 2013, 110, 185502.

64 J. Narayanan, J.-Y. Xiong and X.-Y. Liu, Journal of Physics:

10 |



Conference Series, 2006, p. 83.

65 N. Pernodet, M. Maaloum and B. Tinland, Electrophoresis,
1997, 18, 55–58.

66 A. P. Duryea, C. A. Cain, W. W. Roberts and T. L. Hall,IEEE

Trans. Ultrason. Ferroelectr. Freq. Control, 2015, 62, 2068–
2078.

67 R. Oguri and K. Ando, Phys. Fluids, 2018, 30, 051904.

68 E. Shirota and K. Ando, J. Phys. Conf. Ser., 2015, p. 012001.

1-11 | 11


	1 Introduction
	2 Methods
	2.1 Experiments
	2.2 Theoretical Model and Numerical Methods
	2.3 Inference of Material Properties
	2.3.1 IMR Aproach
	2.3.2 Data Assimilation Approach


	3 Results
	3.1 IMR Results
	3.2 En4D-Var Results

	4 Discussion
	4.1 Elastic Parameters
	4.2 Viscosity
	4.3 Stress-Free Radius
	4.4 Uncertainties
	4.5 Acoustic vs. laser-induced cavitation data


