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We examine the weak cosmic censorship conjecture (WCCC) for the extremal charged black hole in
possible generalizations of Einstein-Maxwell theory due to the high-order corrections, up to fourth-
derivative terms. Our derivation is based onWald’s gedanken experiment to destroy an extremal black hole.
We find that the WCCC no longer holds for all possible generalizations. Thus, the WCCC can serve as a
new constraint to the high-order effective field theories. However, our constraint is independent of photon’s
self-interactions so that precision measurement of quantum electrodynamics cannot constrain the WCCC.
For higher-dimension operators induced by the one-loop correction for the minimally coupled spinor and
scalar to gravity, our constraint is satisfied.
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Introduction.—Even though the curvature singularity of
a black hole is hidden behind the horizon, it might still be
possible to throw charged or spinning matter into a black
hole in particular ways that can destroy the horizon,
revealing the singularity previously hidden inside. This
kind of gedanken experiments was first proposed long ago
by Wald [1] to test the so-called weak cosmic censorship
conjecture (WCCC) [2], which asserts that the above
gedanken experiments cannot succeed in order to prevent
the singularity from being visible. Although theWCCC can
be checked easily for extremal black holes, it is nontrivial to
prove for near-extremal black holes [1,3] and for general
forms of matter. Recently, significant progress for the
general proof of the WCCC has been made by Sorce
andWald [4] who adopted a general relativistic formulation
of the energy conservation which can work for general
forms of matter obeying the null energy condition (NEC).
In this way, they were able to avoid solving the complicated
dynamical problems of the infalling matter involving the
self-force effect, and succeeded to show that the WCCC
holds for the black holes in Einstein-Maxwell theory, up to
second order variation of the black hole’s mass, charge, and
angular momentum. Moreover, their method of examining
the WCCC also provides a systematic framework for
general theories other than Einstein-Maxwell.
One compelling reason to examine the WCCC for more

general theories of gravity and electromagnetism is that the
standard Einstein-Maxwell theory, which can be a good
approximation at low energies, may need to be corrected at
higher energies. In the low-energy effective field theory
(EFT), these quantum corrections can leave low-energy
relics in the form of higher-order derivative terms
beyond Einstein-Maxwell terms, modifying the black hole

solutions, as well as the relativistic laws of the energy-
momentum conservation. These terms may also make the
WCCC fail. If we take the WCCC as a universal physical
principle, then only those high-order EFTs that admit the
WCCC should be accepted. This is in a similar spirit of
using the weak gravity conjecture [5,6] which takes
“gravity force is the weakest in nature” as a new physical
principle to constrain the high-order EFTs [6].
By dimensional counting, the leading order correction to

Einstein-Maxwell theory is photon’s quartic self-interac-
tion through a virtual scalar or spinor loop, which is a pure
effect of quantum electrodynamics without involving
gravity. Its Lagrangian density takes the form [7]

L ∝ c7FμνFμνFρσFρσ þ c8FμνFνρFρσFσμ; ð1Þ

and the coefficients c7 and c8 can be well measured by
experiments [9]. The next leading order corrections to the
Einstein-Maxwell background is given by the graviton-
photon-photon interaction with a scalar or spinor loop. For
the minimally coupled case, the one-loop effective actions
for the Einstein-Maxwell background induced by spinors
and scalars are given by [10,11]

Lspinor ∝ 5RF2 − 26RμνFμρFν
ρ þ 2RμνρσFμνFρσ; ð2Þ

Lscalar ∝ −
5

2
RF2 − 2RμνFμρFν

ρ − 2RμνρσFμνFρσ; ð3Þ

where we have neglected terms proportional to
∇μFμρ∇νFνρ, as they do not appear in the metric equation
of motion, thus having no effects on the black hole metric
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or our parameter bound. Wewill specifically check whether
the two theories violate the WCCC later.
EFTs, black-hole solutions, and extremality condition.—

To demonstrate the power of the WCCC as a constraint to
the EFTs, in this work we consider the most general quartic
order corrections to Einstein-Maxwell theory, which is
given by the following EFT action:

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
R −

1

4
FμνFμν þ ΔL

�
; ð4Þ

where [12]

ΔL ¼ c1R2 þ c2RμνRμν þ c3RμνρσRμνρσ

þ c4RFμνFμν þ c5RμνFμρFν
ρ þ c6RμνρσFμνFρσ

þ c7FμνFμνFρσFρσ þ c8FμνFνρFρσFσμ: ð5Þ

We will assume ci’s are small and restrict our consideration
to OðciÞ. The aforementioned self-interactions of four
photons are the terms with coupling coefficient c7 and
c8, respectively.
For simplicity, we will consider only the charged non-

spinning black holes. The perturbative procedure of solving
such black hole solutions has been outlined in [8], leading
to a family of solutions parametrized by the mass and the
charge ðM;QÞ. Here, we list some partial results relevant
for our considerations (see Sec. I of Supplemental Material
[14] for full expressions), namely the Maxwell gauge field

At ¼ −
q
r
þ 2q3

5r5

�
c5κ þ c6κ

�
6 −

5mr
q2

�
þ 8c7 þ 4c8

�
; ð6Þ

and the tt component of the metric (see Sec. II of
Supplemental Material [14] for full expressions)

−gtt ¼ 1 −
κm
r

þ κq2

2r2
þ c2

�
κ3mq2

r5
−
κ3q4

5r6
−
2κ2q2

r4

�

þ c3

�
4κ3mq2

r5
−
4κ3q4

5r6
−
8κ2q2

r4

�

þ c4

�
−
6κ2mq2

r5
þ 4κ2q4

r6
þ 4κq2

r4

�

þ c5

�
4κ2q4

5r6
−
κ2mq2

r5

�

þ c6

�
κ2mq2

r5
−
κ2q4

5r6
−
2κq2

r4

�

þ c7

�
−
4κq4

5r6

�
þ c8

�
−
2κq4

5r6

�
þOðc2i Þ: ð7Þ

Here, we define the reduced mass m≡M=4π, the reduced
charge q≡Q=4π, and κ ¼ 8πGN , where GN is the

gravitational constant. Note that in (7) there is no Oðc1Þ
correction.
As shown by Ref. [8], as long as

m ≥
ffiffiffi
2

κ

r
jqj

�
1 −

4

5q2
c0

�
; ð8Þ

the singularity of the space-time will be hidden by a
horizon; more precisely, the outer horizon located at the
outermost solution of gttðrHÞ ¼ 0. Here

c0 ≡ c2 þ 4c3 þ
c5
κ
þ c6

κ
þ 4c7

κ2
þ 2c8

κ2
; ð9Þ

and c0 → 0 recovers the Reissner-Nordstrom solution of
Einstein-Maxwell theory. For a fixed m, as q increases to,
and then exceeds, the critical value at which equality holds
in (8), two horizons will merge and subsequently disappear,
revealing the singularity. In this way, the extremal solution
is defined by imposing equality in (8). This implicitly
defines a function qextðmÞ for the extremal solution. For
each m, the horizon radius of the extremal solution is given
by

rextH ¼mκ

2
þ 4

5m

�
c2þ4c3þ

10c4þc5þc6
κ

−
16c7þ8c8

κ2

�
:

ð10Þ

On this extremal horizon, the electrostatic potential is

Φext
H ¼ −ðξaAaÞjH ¼

ffiffiffi
2

κ

r �
1þ 4c00

5q2

�
; ð11Þ

where ξ⃗ ¼ ∂⃗t is the timelike Killing vector of the space-
time, and

c00 ¼ −
10c4
κ

−
2c5
κ

−
2c6
κ

þ 4c7
κ2

þ 2c8
κ2

: ð12Þ

Henceforth, we refer to ðm; qÞ solutions that strictly satisfy
the inequality (8) as regular solutions, those that take
equality as extremal solutions, and those that violate the
inequality as singular solutions. We may still refer to them
as “black holes,” even though the horizon may or may not
be destroyed.
Gedanken experiment to destroy the horizon.—In

gedanken experiments that attempt to destroy the horizon,
e.g., as set up by Wald [1,4], we shall always (if tacitly)
assume stability of our family of solutions. That is, starting
off with a regular solution ðm; qÞ, as we “throw matter into”
it, the final space-time geometry and field configuration
will settle down to another solution in our family. If our
“way of throwing matter,” for example, described by the
on-shell metric perturbations, field perturbations, and
matter stress-energy tensor in the initial slice, is
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parametrized by w, then the final solution should be given
by ½mðwÞ; qðwÞ�.
In this language, the WCCC dictates that a starting

regular solution ðm; qÞ long before “throwing matter” will
only lead to ½mðwÞ; qðwÞ� that are still regular. As a special
case, let us now consider a starting extremal solution
½m; qextðmÞ�, and a particular approach of throwing matter,
we can write

mðwÞ ¼ mþ wδmþOðw2Þ;
qðwÞ ¼ qextðmÞ þ wδqþOðw2Þ: ð13Þ

The condition for the starting extremal solution to not
become singular, at first order in w, is given by

δm −
ffiffiffi
2

κ

r �
1þ 4c0

5q2

�
δq ≥ 0: ð14Þ

We therefore need to find out whether physical laws in our
modified theory impose that (14) must hold for all infalling
matter—or to find a particular way of throwing matter that
violate (14). The advantage of starting off at the extremal
solution is as follows: once Eq. (14) is violated, then any
infinitesimal w will lead to destruction of the horizon, and
we can restrict ourselves to linear perturbation.
By contrast, starting from a nonextremal black hole with

½m; qextðmÞ − ϵ�, a finite step size for w must be made to
surpass the extremality contour, and in this case the higher
derivatives of mðwÞ and qðwÞ may become important,
requiring the computation of higher-order variations. This
was indeed the situation encountered by Hubeny [3], which
was later addressed by Sorce and Wald [4] by considering
the second order variations. Intuitively, one would expect
the subextremal black holes will obey the WCCC if the
extremal ones do, but the second order variations are
needed for a rigorous examination on the subextremal
case. In this Letter, we shall restrict ourselves to the
extremal black holes.
As it turns out, condition (14) coincides with the

requirement that the horizon area must increase as matter
fall into extremal black holes (see Sec. IVof Supplemental
Material [14] for details). More specifically, if we denote by
Aðm; qÞ the area of the horizon, then one can show that

∂mAðm; qÞ=∂qAðm; qÞjq¼qextðmÞ ¼ dqextðmÞ=dm; ð15Þ

and that dAðmþ wdm; qextðmÞ þ wdqÞ=dw ¼ 0 is equiv-
alent to the equality in Eq. (14). In this way, the violation of
condition (14), or the destruction of the extremal horizon,
relies on the possibility of area decrease at linear order. This
can be possible for the theories we consider even when the
NEC is satisfied, because Raychaudhuri equation is now
modified, and the NEC does not always lead to attractive
gravity.

Test particle.—For a regular solution ðm; qÞ, consider a
test particle with reduced mass δm0 and reduced charge
δq0, falling in from infinity. Using the minimally coupled
action of

Sp ¼ 4π

Z
dτðδm0 − δq0u⃗ · A⃗Þ; ð16Þ

the reduced canonical momentum of the particle,
p⃗ ¼ δm0u⃗ − δq0A⃗, satisfies ξ⃗ · p⃗ ¼ const along the par-
ticle’s trajectory; at linear order in δm0 and δq0, we do not
have to consider the radiation reaction. Applying this to the
particle at infinity and on the horizon, we obtain

δm0ðu⃗H · ξ⃗Þ −Φc
Hδq0 ¼ δm0ðu⃗∞ · ξ⃗Þ ¼ −δE∞; ð17Þ

where u⃗∞ and u⃗H are the 4-velocities of the particle at
infinity and on the horizon, and we have used the fact that
At does not depend on t, hence ξ⃗ · A⃗ vanishes at infinity.
For the final space-time, assuming that it still belongs to

the same family, with ðmþ δm; qþ δqÞ. We can argue
from the charge conservation that δq ¼ δq0, and, from the
conservation of ADM mass, as well as the fact that the
energy of gravitational radiation emitted by the infall
process is Oðδm2Þ, that δm ¼ δE∞: basically, the charge
and the energy of the particle are added to those of the black
hole. We will soon give a more rigorous justification, but
with this in hand we can write

δm −Φc
Hδq ¼ −δm0ðu⃗H · ξ⃗Þ ≥ 0: ð18Þ

The latter inequality is because u⃗H · ξ⃗ ≤ 0: the 4-velocity of
the particle must be pointed toward the future as the particle
crosses the horizon. This can be saturated if the particle is
able to “rest right on top of the horizon.” Inserting Eq. (11)
into Eq. (18), we obtain the relation between δq and δm in
this infalling test particle situation:

δm ≥
ffiffiffi
2

κ

r �
1þ 4c00

5q2

�
δq: ð19Þ

This is clearly different from Eq. (14). However, before
discussing its consequences, we shall introduce the frame-
work by Sorce and Wald, which provides more rigorous
treatment of the energy conservation, and is able to treat
more general infalling matter.
Sorce-Wald method for generic matter.—We now sketch

the method of Sorce and Wald developed in [4,15]. We
follow the notation of Wald, and denote by ϕ ¼ ðgab; AaÞ
the metric and field degrees of freedom.We start off with an
extremal black hole, with ½m; qextðmÞ�, and define a Cauchy
surface Σ0 at early time, and a hypersurface Σ1 which starts
at sufficiently late time when the matter all fall in, and
terminates at null infinity. We denote by H the portion of
the extremal horizon between Σ0 and Σ1 (see Fig. 1). We
then apply perturbation δϕ, as well as matter, with stress-
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energy tensor δTab and electric current δja, also a form of
perturbation, in an open neighborhood of Σ0. We will set up
our initial value problem in such a way that δϕ, δTab, and
δja all vanish in an open neighborhood U surrounding the
intersection of H and Σ0. In principle, δϕ and δTab; δja
should be evolved jointly into the future, but here we
assume stability of our family of solutions, and therefore
can impose that space-time geometry in an open neighbor-
hood of Σ1 is that of ðmþ δm; qþ δqÞ [16].
A general Noether method to derive the law of energy

conservation for such an infalling process is developed by
Iyer andWald [17], which we will briefly sketch as follows.
Given a theory Lagrangian LðϕÞ of gravity and matter, we
can introduce the Lagrangian 4-form L ¼ Lϵ, where ϵ is
the volume form associated with the metric. Then, variation
of L yields

δL ¼ EðϕÞδϕþ dΘðϕ; δϕÞ; ð20Þ

where EðϕÞ ¼ 0 is Euler-Lagrangian equation, and
Θðϕ; δϕÞ is the symplectic potential 3-form. For an
arbitrary vector ξa, one can construct the associated
Noether current Jξ ¼ Θðϕ;LξϕÞ − iξL, which, because
Jξ is conserved, i.e., dJξ ¼ 0, can be rewritten as Jξ ¼
dQξ þ ξaCa with the 3-form constraint Ca ¼ 0 when
equations of motion are satisfied. For instance, in
Einstein-Maxwell theory, the 3-form constraint is given by

ðCaÞbcd ¼ ϵebcdðTe
a þ jeAaÞ; ð21Þ

with Tab ¼ 1=κðGab − κTEM
ab Þ the nonelectromagnetic

stress-energy tensor, and ja ¼ ∇bFab the charge current
of the Maxwell source. Thus the on-shell condition Ca ¼ 0
gives the equations of motionGab ¼ κTEM

ab and∇bFab ¼ 0.
The form (21) also holds when the higher-order derivative
corrections ΔL are present. Assuming EðϕÞ ¼ 0 and ξa

is a Killing vector, i.e., Lξϕ ¼ 0, it is easy to show that
δJξ ¼ diξΘðϕ; δϕÞ which is then combined with
δJξ ¼ dδQξ þ ξaδCa, and is integrated over the hyper-
surface H ∪ Σ1 to yield

Z
∞
½δQξ − iξΘðϕ; δϕÞ� ¼ −

Z
H∪Σ1

ξaδCa; ð22Þ

where we have used the Stoke’s theorem to turn the 3-
surface integral into the boundary integrals at the spatial
infinity∞ and at the intersectionH ∩ Σ0, by also imposing
δϕ ¼ 0 at H ∩ Σ0.
If we assume ξa is the timelike Killing vector ta ¼ ð∂tÞa

for nonspinning black holes, then we denote the change of
the Arnowitt-Deser-Misner (ADM) mass as

δM ¼
Z
∞
½δQξ − iξΘðϕ; δϕÞ�; ð23Þ

and the charge crossing the horizon as

δQ≡
Z
H
ϵabcdδja; ð24Þ

where the electric current δja and the stress tensor δTa
b can

be read off from the following on-shell relation [18]

ðδCaÞbcd ¼ ϵebcdðδTe
a þ AaδjeÞ: ð25Þ

Combining all of the above and requiring the vanishing
of δje and δTe

a on Σ1 as depicted in Fig. 1, we can turn (22)
into the following law of energy conservation for the
infalling process of Wald’s gedanken experiment,

δM −Φc
HδQ ¼ −

Z
H
ϵebcdξaδTe

a: ð26Þ

On horizon H we can relate the 4-volume form ϵ to the 3-
volume form ϵ̃ by the relation ϵebcd ¼ −4n½eϵ̃bcd� where ne
is the null vector normal to H. Using this relation and the
fact ξa ∝ na on H, the right-hand side of (26) turns into
4
R
H ϵ̃δTabnanb, which is nonnegative if matter’s stress

tensor obeys the NEC. Thus, the variational identity (26)
becomes an inequality for matter obeying the NEC,

δM −Φc
HδQ ≥ 0: ð27Þ

This inequality serves as a constraint on the changes of the
black hole’s mass and charge for the infalling process, and
will be used to check the WCCC by comparing with the
condition (14).
Parameter bounds from WCCC.—The Noether method

by Iyer and Wald provides a systematic way to calculate
δM of (23) and δQ of (24) for general theory by evaluating
Θ, Q, and Ca. For example, these quantities for Einstein-
Maxwell theory have been derived in [17], and the results
δM ¼ 4πδm and δQ ¼ 4πδq are then used to show that
the WCCC holds for Einstein-Maxwell theory.
Here, we apply the same method for our higher-order

theory (4). The derivation is tedious but straightforward,
and the result is given in Sec. III of Supplemental Material

FIG. 1. The gedanken experiment to destroy an extremal black
hole. Charged matter, occupying the shaded region, crosses theH
portion of the extremal horizon.

PHYSICAL REVIEW LETTERS 126, 031102 (2021)

031102-4



[14], based on which we can evaluate the corresponding
δM and δQ. As a result, we find that δM ¼ 4πδm because
the corrections due to high-order LagrangianΔL fall off too
quickly to contribute asymptotically to δM. Similarly, we
arrive δQ ¼ 4πδqþOðc2i Þ after tedious calculations [14].
The results are consistent with the test particle case.
Therefore, we conclude that (27), which holds for general
forms of matter obeying the NEC, gives the same condition
Eq. (19) as for the test particle.
Compare the energy condition (19) and the WCCC

condition (14), it is not hard to see that we must have c00 ≥
c0 for the WCCC to hold for theory (4). Explicitly we have

c2 þ 4c3 þ
10c4
κ

þ 3c5
κ

þ 3c6
κ

≤ 0: ð28Þ

This is our key result, which gives the parameter bounds on
the low-energy EFT of quantum gravity by demanding that
this low-energy theory preserves the WCCC.
Values of cj and connections to other bounds.—With our

new bound (28) from the WCCC, it is then natural to ask
how this bound works in the real world. Although black
holes in the real world generally have nonzero angular
momentum, our bound could still serve as a necessary
condition. We first notice that the nonlinear EM terms
contribute to c7 and c8, which do not appear in (28). This
implies that the quantum electrodynamics automatically
bypass the WCCC constraint. Plugging the values of c4, c5,
and c6 from the EFT (2) or (3) into the bound (28), we find
the inequality also holds. An important implication is then,
the WCCC not only holds for Einstein-Maxwell theory, but
may also hold at one-loop level. This could possibly mean
the correctness of the conjecture in the real world.
When the nonminimal coupling between matter and

gravity is present, however, the bound (28) may subject to
change under different situations. This is consistent with
the fact that the combination of c coefficients in our
bound is not invariant under the field redefinition
gμν → gμν þ δgμν [19], where

δgμν ¼ r1Rμν þ r2gμνRþ r3FμρF
ρ
ν þ r4gμνFρσFρσ: ð29Þ

With a proper choice of the matter-gravity coupling, it is
even possible that there yields no bound for the c
coefficients, and that the WCCC always holds. A further
discussion is beyond the scope of this Letter and we would
like to explore it in the future.
It is interesting to compare our WCCC bound (28) with

the bound obtained from the weak gravity conjecture
(WGC), which is [8,19]

c2 þ 4c3 þ
c5
κ
þ c6

κ
þ 4c7

κ2
þ 2c8

κ2
≥ 0: ð30Þ

Note that the WGC is a conjecture which states that gravity
should be the weakest force for any consistent theory of

quantum gravity. We see that the WGC bound will
constrain c7 and c8 in contrast to the WCCC case.
Moreover, these two bounds seem orthogonal to each other
as one is bound above zero and the other bound below.
Because of the seeming orthogonality, combing the WCCC
and the WGC bounds together will be a useful tool to
scrutinize the theory space of the high-order EFTs.
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