
Supplemental Materials: Constraints on low-energy effective theories from weak
cosmic censorship

Baoyi Chen,1 Feng-Li Lin,2 Bo Ning,3 and Yanbei Chen1

1Burke Institute of Theoretical Physics and Theoretical Astrophysics 350-17,
California Institute of Technology, Pasadena, California 91125
2Department of Physics, National Taiwan Normal University,
No. 88, Sec. 4, Ting-Chou Road, Taipei 11677, Taiwan

3College of Physics, Sichuan University, Chengdu, Sichuan 610064, China

I. CORRECTIONS TO THE MAXWELL SOURCE AND STRESS TENSOR

We consider the most general fourth-derivative higher order corrections to Einstein-Maxwell theory, namely,

I =

∫
d4x
√
−g(

1

2κ
R− 1

4
FµνF

µν + ∆L) (1)

where

∆L = c1R
2 + c2RµνR

µν + c3RµνρσR
µνρσ (2)

+ c4RFµνF
µν + c5RµνF

µρF νρ + c6RµνρσF
µνF ρσ

+ c7FµνF
µνFρσF

ρσ + c8FµνF
νρFρσF

σµ .

The field equations obtained by the variation of the action (1) with respect to Aµ and gµν are given respectively by

∇ν(Fµν − Sµν) = 0 , (3)

and

Rµν −
1

2
gµνR = κTµν = κ(T̃µν + ∆Tµν) . (4)

In the above T̃µν = Fµ
ρFνρ − 1

4gµνFρσF
ρσ is the stress tensor of the Maxwell theory, and ∆Tµν and Sµν are the

corrections respectively to the stress tensor and Maxwell source field from the higher-dimension operators.
Here we list the details of the corrections to the Maxwell source field and stress tensor and , i.e., Sµν in Eq. (9) and

∆Tµν in Eq. (10) of the main text:

Sµν = 4c4RF
µν + 2c5(RµρFρ

ν −RνρFρµ) + 4c6R
µνρσFρσ +

+ 8c7FρσF
ρσFµν + 8c8FρσF

ρνFµσ , (5)

and

∆Tµν = c1
(
gµνR

2 − 4RRµν + 4∇ν∇µR− 4gµν�R
)

+

+ c2
(
gµνRρσR

ρσ + 4∇α∇νRαµ − 2�Rµν − gµν�R− 4RαµRαν
)

+

+ c3

(
gµνRαβγδR

αβγδ − 4RµαβγRν
αβγ − 8�Rµν

+4∇ν∇µR+ 8RαµRαν − 8RαβRµανβ
)

+

+ c4
(
gµνRF

2 − 4RFµ
σFνσ − 2F 2Rµν + 2∇µ∇νF 2 − 2gµν�F

2
)

+

+ c5
(
gµνR

κλFκρFλ
ρ − 4RνσFµρF

σρ − 2RαβFαµFβν)

−gµν∇α∇β(FαρF
βρ + 2∇α∇ν(FµβF

αβ)−�(FµρFν
ρ)
)

+

+ c6
(
gµνR

κλρσFκλFρσ − 6FανF
βγRαµβγ − 4∇β∇α(FαµF

β
ν)
)

+

+ c7
(
gµν(F 2)2 − 8F 2Fµ

σFνσ
)

+

+ c8
(
gµνF

ρκFρσF
σλFκλ − 8Fµ

ρFν
σFρ

κFσκ
)
. (6)

Note that F 2 = FρσF
ρσ and � = ∇a∇a.
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II. CORRECTIONS TO THE REISSNER-NORDSTRÖM BLACK HOLE

The functions λ(r) and ν(r) are related to the components of Ricci curvature tensor Rµν via

1

2

(
Rtt −Rrr

)
−Rθθ =

1

r2
d

dr

[
r(e−λ(r) − 1)

]
, (7)

Rtt −Rrr = −e
−λ(r)

r
[ν′(r) + λ′(r)] .

To solve for λ and ν explicitly, we need an additional boundary condition. Assuming that at r → ∞ the metric
approaches the Schwarzschld solution, the results are then given by

e−λ(r) = 1− κM

4πr
− 1

r

∫ ∞
r

dr r2
[

1

2

(
Rtt −Rrr

)
−Rθθ

]
, (8)

ν(r) = −λ(r) +

∫ ∞
r

dr r
(
Rtt −Rrr

)
eλ(r) .

We further take the trace-reverse of Eq. (10) from the main text and obtain that

Rµν = κ

(
Tµν −

1

2
Tgµν

)
, (9)

where T is the trace of the total energy-momentum tensor Tµν , and is given by T = T tt + T rr + 2T θθ . Plugging the
trace-reversed Einstein field equation into the integral expression (8), we get

e−λ(r) = 1− κM

4πr
− κ

r

∫ ∞
r

dr r2T tt , (10)

ν(r) = −λ(r) + κ

∫ ∞
r

dr r
(
T tt − T rr

)
eλ(r) .

Once we know the diagonal components of the energy-momentum tensor, it will be straightforward to compute the
corrections to the spherically symmetric static spacetime as induced by Tµν .

We now take our background spacetime to be Reissner-Nordström black hole in four-dimension. That is,

eν
(0)

= e−λ
(0)

= 1− κM

4πr
+

κQ2

32π2r2
, (11)

F (0)
µν dx

µ ∧ dxν =
Q

4πr2
dt ∧ dr .

Here ν(0)(r) and λ(0)(r) refer to the metric components in the unperturbed black hole spacetime, and F
(0)
µν is the

background electromagnetic energy-momentum tensor. Considering the action in Eq. (2) of the main text, we treat
the corrections from higher-dimension operators as perturbations. For convenience, we also introduce a power counting
parameter ε, and consider a one-parameter family of actions Iε, which is given by

Iε =

∫
d4x
√
−g(L0 + ε∆L) . (12)

The original action will be recovered after setting ε = 1. We then expand everthing into powers series in ε. For
instance,

gµν = g(0)µν + εh(1)µν +O(ε2) , Fµν = F (0)
µν + εf (1)µν +O(ε2) . (13)

At order ε1, the stress energy tensor is given by

T (1)
µν = T̃µν [g(0), f (1), F (0)] + T̃µν [h(1), F (0), F (0)] + ∆Tµν [g(0), F (0)] . (14)

Noting that in order to compute the corrections to the metric, we need to calculate Tµ
ν instead of Tµν . At order ε1,

Tµ
ν (1) is given by

Tµ
ν (1) = T̃µ

ν [g(0), F (1)] + ∆Tµ
ν [g(0), F (0)] . (15)
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We solve for the corrections to Maxwell equations, and obtain that the nonzero components of f
(1)
µν are

f
(1)
tr = −f (1)rt =

1

32π3r6
(
c5κQ

3 − 16πc6κMQr + 6c6κQ
3 + 8c7Q

3 + 4c8Q
3
)
. (16)

This corresponds to the gauge field Aa given by

At = −q
r

+
2q3

5r5

(
c5κ+ 6c6κ−

5c6κmr

q2
+ 8c7 + 4c8

)
, Ar = Aθ = Aφ = 0 . (17)

With the corrections to Fµν , we can solve for the corrected energy-momentum tensor Tµ
ν (1). We then find the

corrected metric tensor component to be

e−λ =1− κm

r
+
κq2

2r2
+ c2

(
3κ3mq2

r5
− 6κ3q4

5r6
− 4κ2q2

r4

)
+ c3

(
12κ3mq2

r5
− 24κ3q4

5r6
− 16κ2q2

r4

)
+ c4

(
14κ2mq2

r5
− 6κ2q4

r6
− 16κq2

r4

)
+ c5

(
5κ2mq2

r5
− 11κ2q4

5r6
− 6κq2

r4

)
+ c6

(
7κ2mq2

r5
− 16κ2q4

5r6
− 8κq2

r4

)
+ c7

(
−4κq4

5r6

)
+ c8

(
−2κq4

5r6

)
,

e+ν =1− κm

r
+
κq2

2r2
+ c2

(
κ3mq2

r5
− κ3q4

5r6
− 2κ2q2

r4

)
(18)

+ c3

(
4κ3mq2

r5
− 4κ3q4

5r6
− 8κ2q2

r4

)
+ c4

(
−6κ2mq2

r5
+

4κ2q4

r6
+

4κq2

r4

)
+ c5

(
4κ2q4

5r6
− κ2mq2

r5

)
+ c6

(
κ2mq2

r5
− κ2q4

5r6
− 2κq2

r4

)
+ c7

(
−4κq4

5r6

)
+ c8

(
−2κq4

5r6

)
. (19)

In the above we have defined the reduced quantities m = M/4π and q = Q/4π. Note that the R2-term in the action
has no contributions to the equation of motion at leading order in ε. The contributions from RµνR

µν and RµνρθR
µνρθ

can be canceled out by choosing c2 = −4c3. This directly confirms that the Gauss-Bonnet term is a topological
invariant and does not influence the equation of motion. Due to the fact that only the tr- and rt−component of Fµν
are nonzero, the term FµνF

µνFρσF
ρσ always have twice the contributions from FµνF

νρFρσF
σµ towards the equation

of motion.

III. EXPLICIT FORMS OF Qξ AND Ca FOR THE HIGHER THEORY

The Lagrangian 4-form L for the higher theory can be written as L = L0 +
∑
i ciLi. In this appendix, by following

the canonical method developed by Iyer and Wald, we derive and present the Noether charge and constraint associated
with each term in L.

Variation of the Lagrangian 4-form L0 yields

δL0 = δgab

(
− 1

2κ
Gab +

1

2
TEM
ab

)
ε+ δAa

(
∇bF ba

)
ε+ dΘ0 , (20)

where Gab = Rab − 1
2gabR is the Einstein tensor, and TEM

ab is the electro-magnetic stress-energy tensor, which is
defined by

TEM
ab = FacFb

c − 1

4
gabFdeF

de . (21)

The symplectic potential can be written as

Θ0 = ΘGR + ΘEM , (22)
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where

ΘGR
abc (φ, δφ) =

1

2κ
εdabcg

degfg (∇gδgef −∇eδgfg) , (23)

ΘEM
abc (φ, δφ) = −εdabcF deδAe . (24)

Let ξa be any smooth vector field on the spacetime. We find that the Noether charges associated with the vector field
are respectively, (

QGR
ξ

)
ab

= − 1

2κ
εabcd∇cξd , (25)(

QEM
ξ

)
ab

= −1

2
εabcdF

cdAeξ
e . (26)

The equations of motion and constraints are given by

E0δφ = −ε
(

1

2
T abδgab + jaδAa

)
, (27)

Cbcda = εebcd (T ea + jeAa) , (28)

where we have defined Tab = 1
κ

(
Gab − κTEM

ab

)
as the non-electromagnetic stress energy tensor, and ja = ∇bF ab is the

charge-current of the Maxwell sources.
We similarly obtain the Noether charges and constraints for all higher-derivative terms. The results are presented

below.
a. L1 Variation of L1 yields

δL1 = δgab(E1)abε+ dΘ1 , (29)

where we have defined

(E1)ab =
1

2
gabR2 − 2RRab + 2∇b∇aR− 2gab∇c∇cR . (30)

The Noether charge associated with the vector field ξa is

(Q1
ξ)ab = εabcd

(
−4ξc∇dR+ 2R∇dξc

)
. (31)

The constraints are given by

Cbcda = −2εebcd (E1)
e
a . (32)

b. L2 Variation of L2 yields

δL2 = δgab(E2)abε+ dΘ2 , (33)

where we have defined

(E2)ab =
1

2
gabRcdR

cd +∇c∇bRac +∇c∇aRbc − gab∇d∇cRcd −∇c∇cRab − 2RacRbc . (34)

The Noether charge associated with the vector field ξa is

(Q2
ξ)ab = εabcd

(
4ξ[f ∇c]Rf d +Rf

d∇fξc +Rf
c∇dξf

)
. (35)

The constraints are given by

Cbcda = −2εebcd(E2)
e
a . (36)
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c. L3 Variation of L3 yields

δL3 = δgabc3(E3)abε+ dΘ3 , (37)

where we have defined

(E3)ab =
1

2
gabR2 + 2gabRcdR

cd + 2RabR− 8RcdR
acbd + 2∇b∇aR− 4�Rab . (38)

The Noether charge associated with the vector field ξa is

(Q3
ξ)ab = εabcd

(
−4ξe∇fRefcd + 2Ref

cd∇fξe
)
. (39)

The constraints are given by

Cbcda = −2εebcd(E3)
e
a . (40)

d. L4 Variation of L4 yields

δL4 = δgab(E
g
4 )abε+ δAa(EA4 )aε+ dΘ4 , (41)

where we have defined the equation of motions for gab and Aa respectively as

(Eg4 )ab =

[
−Rab +

1

2
gabR− gab∇2 +∇(a∇b)

]
F 2 − 2RF acFb

c , (42)

(EA4 )a = 4∇b
(
RF ab

)
. (43)

The Noether charge associated with the vector field ξa is

(Q4
ξ)ab = εabcd

(
F 2∇dξc − 2ξc∇dF 2 + 2RF cdAeξ

e
)
. (44)

The constraints are given by

Cbcda = −2εebcd(E
g
4 )ea − εebcd(E

A
4 )eAa . (45)

e. L5 Variation of L5 yields

δL5 = δgab(E
g
5 )abε+ δAa(EA5 )aε+ dΘ5 , (46)

where we have defined the equation of motions for gab and Aa respectively as

(Eg5 )ab = 2F (bcFc
dRa)d − F acF bdRcd +

1

2
Fc
eF cdgabRde (47)

−∇(aF b)c∇dFcd − F cd∇d∇(aF b)c − F (bc∇d∇a)Fcd − F (bc�F a)c

−∇(bFcd∇dF a)c − F cdgab∇(d∇e)Fce −∇dF bc∇dF ac

+
1

2
gab∇cF cd∇eFde −

1

2
gab∇dFce∇eF cd ,

(EA5 )a = 2∇c
(
RbcF ab + F bcRab

)
. (48)

The Noether charge associated with the vector field ξa is

(Q5
ξ)ab = εabcd

[
−2ξeAeF

fcRf
d − 2ξcF f(e∇eFf d) + ξe∇d

(
F fcFef

)
+ Ff

dFe
f∇[cξe]

]
. (49)

The constraints are given by

Cbcda = −2εebcd(E
g
5 )ea − εebcd(E

A
5 )eAa . (50)
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f. L6 Variation of L6 yields

δL6 = δgab(E
g
6 )abε+ δAa(EA6 )aε+ dΘ6 , (51)

where we have defined the equation of motions for gab and Aa respectively as

(Eg6 )ab =
1

2
F cdF efgabRcdef − 3F (acF deRb)cde (52)

− 2F (ac∇c∇dF b)d − 2F (ac∇d∇cF b)d − 4∇cF (ac∇dF b)d ,
(EA6 )a = 4∇d

(
F bcRadbc

)
. (53)

The Noether charge associated with the vector field ξa is

(Q6
ξ)ab = εabcd

[
2ξeAeF

fgRfg
cd − 2ξe∇f

(
F cdFe

f
)

+ F cdFef∇fξe
]
. (54)

The constraints are given by

Cbcda = −2εebcd(E
g
6 )ea − εebcd(E

A
6 )eAa . (55)

g. L7 Variation of L7 yields

δL7 = δgab(E
g
7 )abε+ δAa(EA7 )aε+ dΘ7 , (56)

where we have defined the equation of motions for gab and Aa respectively as

(Eg7 )ab =
1

2
gabF 2F 2 − 4F acF bcF

2 , (57)

(EA7 )a = 8∇b
(
F abF 2

)
. (58)

The Noether charge associated with the vector field ξa is

(Q7
ξ)ab = εabcd

(
4ξeAeF

cdF 2
)
. (59)

The constraints are given by

Cbcda = −2εebcd(E
g
7 )ea − εebcd(E

A
7 )eAa . (60)

h. L8 Variation of L8 yields

δL8 = δgab(E
g
8 )abε+ δAa(EA8 )aε+ dΘ8 , (61)

where we have defined the equation of motions for gab and Aa respectively as

(Eg8 )ab =
1

2
gabFc

dFd
eFe

fFf
c − 4F acF bdFc

eFde , (62)

(EA8 )a = −8∇d
(
F abF

b
cF

cd
)
. (63)

The Noether charge associated with the vector field ξa is

(Q8
ξ)ab = εabcd

(
4ξeAeFf

dFg
cF gf

)
. (64)

The constraints are given by

Cbcda = −2εebcd(E
g
8 )ea − εebcd(E

A
8 )eAa . (65)

Finally, the above results can be summarized in the following compact form:

(Qξ)c3c4 = εabc3c4
(
Mabc ξc − Eabcd∇[c ξd]

)
, (66)

where

Mabc ≡ −2∇dEabcd + EabF A
c , (67)

and

(Cd)abc = εeabc(2E
pqreR d

pqr + 4∇f∇hEefdh + 2EehF F dh − 2Ad∇hEehF − gedL) (68)

with

Eabcd ≡ δL

δRabcd
, EabF ≡

δL

δFab
. (69)
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FIG. 1: Extremality contour and constant area contours. Extremal black holes live on the red solid line which divides the
whole parameter space into the naked singularity region and the non-extremal black hole region. The constant area contours
are always tangent to the extremal line. A small perturbation around an extremal point then shifts the spacetime to one of
the following: (i) a naked singularity when the horizon area is decreased; (ii) another extremal solution when the area is

unchanged; and (iii) a nonextremal black hole when the area is increased.

IV. PROOF THAT CONSTANT AREA DIRECTION IS ALONG THE EXTREMALITY CURVE

Suppose the radius, hence area A of the horizon is determined implicitly by the following equation

F (M,Q,A) = 0 . (70)

Extremality condition requires, in addition, that

∂AF (M,Q,A) = 0 . (71)

This is because the two roots of 1/grr coincide at this location.
Extremal black holes is a one-parameter family, with Qext(M), Aext(M) determined jointly by Eqs. (70) and (71).

In practice, when Q < Qext(M), we will have contours of constant A (as shown in Fig. 1), determined by

∂MFdM + ∂QFdQ = 0 , (72)

or

(dQ/dM)A = −∂MF/∂QF . (73)

On the other hand, we can find out the direction of the extremality curve in the (M,Q,A) space. The tangent
vector satisfies

∂MF∆M + ∂MF∆Q+ ∂AF∆A = 0 . (74)

However, because we have ∂AF on that curve, we have ∂AF = 0 and also

(dQ/dM)ext = −∂MF/∂QF . (75)

This means, on the extremality contour, the direction at which area remains constant is the same as the contour
itself. This does not mean that the contour all has the same area — instead, constant area contours reach the
extremality contour in a tangential way, as shown in the figure.
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