CaltechAUTHORS
  A Caltech Library Service

Effects of Incorporating β-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity

Narita, Kai and Hiromoto, Sachiko and Kobayashi, Equo and Sato, Tatsuo (2021) Effects of Incorporating β-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity. Metals, 11 (2). Art. No. 227. ISSN 2075-4701. doi:10.3390/met11020227. https://resolver.caltech.edu/CaltechAUTHORS:20210128-123721179

[img]
Preview
PDF - Published Version
Creative Commons Attribution.

11MB
[img] PDF - Supplemental Material
Creative Commons Attribution.

1MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20210128-123721179

Abstract

For applications of biodegradable load-bearing implants, we incorporated 10 or 20 vol% β-tricalcium phosphate (β-TCP) into Mg-based composites through reaction sintering in the spark plasma sintering process. We previously reported that the evolved microstructure enhanced mechanical properties before degradation and modified in vitro degradation behaviors. In this study, immersion tests in physiological saline and subsequent compression tests in the air were conducted to investigate the effects of degradation on mechanical integrity. In the immersion tests, Mg/β-TCP composites showed no visible disintegration of sintered particles due to interfacial strength enhanced by reaction sintering. Local corrosion was observed in the Mg matrix adjacent to the reaction products. In addition, Mg/10% β-TCP showed dense degradation products of Mg(OH)2 compared with Mg and Mg/20% β-TCP. Those degradation behaviors resulted in reducing the effective load transfer from the Mg matrix to the reaction products as reinforcement. The yield strength decreased by 18.1% for Mg/10% β-TCP and 70.9% for Mg/20% β-TCP after six days of immersion. These results can give a broad view of designing spark plasma sintered Mg/bioceramic composites with the consideration of mechanical integrity.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.3390/met11020227DOIArticle
https://www.mdpi.com/2075-4701/11/2/227/s1PublisherSupplementary Materials
ORCID:
AuthorORCID
Narita, Kai0000-0002-3867-8234
Kobayashi, Equo0000-0001-8043-5044
Alternate Title:Effects of Incorporating Β-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity
Additional Information:© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Received: 22 December 2020; Revised: 21 January 2021; Accepted: 25 January 2021; Published: 28 January 2021. The authors would like to thank M. Ueda and K. Kawamura in Tokyo Institute of Technology for providing the SPS machine. They also acknowledge Y. Takayama in Tokyo Institute of Technology for helping fractographic observation by SEM. They also would like to thank V. Lambert for proofreading the manuscript. Author Contributions: Conceptualization, K.N. and E.K.; methodology, K.N.; investigation, K.N.; resources, E.K. and T.S.; writing—original draft preparation, K.N.; writing—review and editing, K.N., E.K., and S.H.; supervision, E.K. and T.S.; project administration, E.K.; funding acquisition, E.K. and T.S. All authors have read and agreed to the published version of the manuscript. This work was financially supported by Light Metal Educational Foundation, Inc. The funding source does not involve study design. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: The data presented in this study are available on request from the corresponding author. The authors declare no conflict of interest.
Funders:
Funding AgencyGrant Number
Light Metal Educational Foundation, Inc.UNSPECIFIED
Subject Keywords:Mg-based composites; β-tricalcium phosphate; degradation behaviors; mechanical integrity; microgalvanic corrosion
Issue or Number:2
DOI:10.3390/met11020227
Record Number:CaltechAUTHORS:20210128-123721179
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20210128-123721179
Official Citation:Narita, K.; Hiromoto, S.; Kobayashi, E.; Sato, T. Effects of Incorporating B-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity. Metals 2021, 11, 227. DOI: https://doi.org/10.3390/met11020227
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:107787
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:28 Jan 2021 22:23
Last Modified:16 Nov 2021 19:06

Repository Staff Only: item control page