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ABSTRACT

The Nancy Grace Roman Space Telescope (Roman) mission is expected to launch in the mid-2020s. Its weak lensing program
is designed to enable unprecedented systematics control in photometric measurements, including shear recovery, point-spread
function (PSF) correction, and photometric calibration. This will enable exquisite weak lensing science and allow us to adjust
to and reliably contribute to the cosmological landscape after the initial years of observations from other concurrent Stage IV
dark energy experiments. This potential requires equally careful planning and requirements validation as the mission prepares
to enter its construction phase. We present a suite of image simulations based on GALSIM that are used to construct a complex,
synthetic Roman weak lensing survey that incorporates realistic input galaxies and stars, relevant detector non-idealities, and
the current reference five-year Roman survey strategy. We present a first study to empirically validate the existing Roman weak
lensing requirements flowdown using a suite of 12 matched image simulations, each representing a different perturbation to the
wavefront or image motion model. These are chosen to induce a range of potential static and low- and high-frequency time-
dependent PSF model errors. We analyze the measured shapes of galaxies from each of these simulations and compare them to
a reference, fiducial simulation to infer the response of the shape measurement to each of these modes in the wavefront model.
We then compare this to existing analytic flowdown requirements, and find general agreement between the empirically derived
response and that predicted by the analytic model.
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1 INTRODUCTION that will require more and better data in all of these probes to resolve.

. . . The Nancy Grace Roman Space Telescope (Roman)**? has been de-
The nature of dark energy, which drives the accelerated expansion signed to take advantage of all of these probes to study dark en-

of the Universe, remains one of the most fundamental mysteries in ergy and test general relativity with unprecedented systematic con-

physics twenty years after its discovery (Riess et al. 1998; Perlmut- trol (S 1 et al. 2015: Ak tal. 2019: D tal. 201
ter et al. 1999; Albrecht et al. 2006; Frieman et al. 2008; Weinberg rol (Spergel et al. 5; Akeson et al. 2019; Dore et al. o

et al. 2013). A number of new experiments have been undertaken
to probe dark energy using a variety of physical phenomena, in-
cluding baryon acoustic oscillations, numbers and masses of galaxy
clusters, galaxy clustering, redshift-space distortions, Type Ia super-
novae, and weak gravitational lensing. Current-generation experi-
ments are limited to some subset of these probes, but have already
begun to expose interesting questions about the soundness of our
standard cosmological model, Lambda-Cold Dark Matter (LCDM),

Weak gravitational lensing is a particularly powerful cosmologi-
cal probe that is sensitive to both the expansion of the Universe and
the growth of large-scale structure (Bartelmann & Schneider 2001;
Mandelbaum 2018). In the past few years, the current generation of
ground-based weak lensing experiments like the Dark Energy Sur-

1 Roman was formerly named the Wide-Field Infrared Survey Telescope
(WFIRST).
* E-mail: michael.troxel @duke.edu 2 http://roman.gsfc.nasa.gov
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vey (DES),® Hyper-Suprime Cam (HSC) survey,* and Kilo-Degree
Survey (KiDS)® have reached levels of precision that rival the previ-
ously best possible cosmological constraints when including a free
dark energy equation of state (Hildebrandt et al. 2018; Troxel et al.
2018; DES Collaboration et al. 2019; Hikage et al. 2019). These sur-
veys have spurred the development of new algorithms and methods
for galaxy shape measurement and weak lensing analysis (e.g., Huff
& Mandelbaum 2017; Sheldon & Huff 2017; Zuntz et al. 2018),
enhancing the potential power of weak lensing to unravel the funda-
mental mysteries we face in cosmology today.

By the planned launch of Roman in the mid-2020s, we will have
final results from the ongoing generation of weak lensing experi-
ments (DES, HSC, and KiDS) and preliminary results from the Dark
Energy Spectroscopic Instrument (DESI),® the Large Synoptic Sur-
vey Telescope (LSST),” and the Euclid mission.® Faced with the un-
known discovery potential of these experiments in the early 2020s,
it is vital to maintain the agility of the Roman mission to respond
with the best possible science, particularly in what is likely to be
a systematics-dominated weak lensing field. The process of quanti-
fying empirically the robustness of the design requirements of the
Roman mission for weak lensing in the current phase of mission
development is a critical task that this paper will partly address. Pre-
cise control of these systematics at the statistical precision offered by
current Roman mission forecasts (Eifler et al. 2020a,b) will enable
Roman to make crucial contributions to the study of new discoveries
made in the early years of LSST and Euclid, and to the resolution of
any remaining disagreements between surveys.

Toward this goal, we describe in this paper a simulation frame-
work designed to enable the empirical study of requirements flow-
ing down from the Roman wide-field imaging survey, in particular
for weak lensing. This simulation pipeline can incorporate a realistic
simulated survey strategy, galaxy properties, and instrument effects
to create a synthetic Roman wide-field imaging survey. We present
in this paper a set of synthetic Roman imaging surveys covering
approximately 6 sq. deg. to full five-year survey depth in one fil-
ter: a fiducial survey and 12 variations incorporating ways in which
the point-spread function (PSF) could be mis-estimated. The simu-
lation incorporates realistic distributions of photometric properties
for galaxies and stars; complex analytic galaxy models; a simulated
observing strategy for a reference five year, 2000 sq. deg. survey;
and realistic detector effects, PSF models, and WCS solutions that
match current Roman design specifications. We use a blending-free
version of this simulation to test the impact on weak lensing science
of these simulated wavefront modeling errors, including static, low-,
and high-frequency biases.

We discuss the Roman weak lensing survey, the current Refer-
ence Survey structure, and the weak lensing requirements process
in Sec. 2. The synthetic survey simulation suite is described gener-
ally in Sec. 3, where we outline the simulated survey strategy, in-
put galaxy and star catalogs, and the GALSIM implementation of
the Roman instrument used to simulate images. We discuss the spe-
cific simulation runs produced for this work to study wavefront error
propagation in Sec. 4 and discuss the resulting biases and how these
compare to the analytic requirements flowdown in Sec. 5. We dis-

http://www.darkenergysurvey.org/
http://hsc.mtk.nao.ac.jp/ssp/
http://kids.strw.leidenuniv.nl
https://www.desi.lbl.gov/
http://www.lsst.org
http://sci.esa.int/euclid
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cuss future plans for using this simulation suite in validating Roman
requirements and algorithm design in Sec. 6 and conclude in Sec. 7.

2 Roman BACKGROUND

We now proceed to describe requirements and the role of this suite
of image simulations in verifying that the requirements flowdown
is correct. We begin with a description of weak lensing in Roman
that emphasizes the issues most closely tied to the image simula-
tions (§2.1), and a high-level review of the requirements process in
a cosmology project (§2.2). There we describe where in this process
we need the mapping between the wavefront error and galaxy ellip-
ticities, de; /0; (where 1, denotes a Zernike mode of the wave-
front error). This mapping was obtained using a simplified analytic
model, calibrated by toy simulations, in the Phase A requirements
flowdown; this approach is described at a high level in §2.3, with
technical details placed in the appendices. In the rest of this paper,
we will use much more advanced image simulations, based on the
GALSIM package, to estimate Oe; /0Y;.

2.1 Roman weak lensing

The Roman weak lensing program has undergone significant evo-
lution over the past decade (Green et al. 2011, 2012; Spergel et al.
2013, 2015; Doré et al. 2018; Akeson et al. 2019), but the basic
philosophy has not changed. The next major advance in cosmology
from weak lensing will require unprecedented control of systematic
errors in photometric measurements (this includes, but is not limited
to, shape measurement and PSF corrections). Roman will make this
measurement with a thermally controlled telescope from beyond low
Earth orbit, where the PSF can be made both stable and small. The
imaging observations will be carried out in multiple filters and will
have a cross-linked observing strategy within each filter to enable
multiple internal cross-checks in the weak lensing signal.

The current Reference Survey in the Roman Science Require-
ments Document (SRD)? envisions shape measurements in 3 filters
(J129, H158, and F184), where the PSF is at least half-Nyquist sam-
pled (i.e., pixel size < A\/D; Nyquist sampling would be \/2D).
Here F184 is the reddest filter on Roman, spanning 1.68-2.00 pm;
it is between ground-based H and K, and was chosen based on the
thermal constraints from the previously existing telescope hardware
that was transferred to the program. Photometric redshift determi-
nation requires bluer filters as well. Roman itself will do a photo-
metric survey in the Y106 filter since there was no ground-based
option that would reach the required depth. Ground-based observa-
tions will be required for the z and bluer filters; the primary option
for collecting these data will be LSST (LSST Science Collabora-
tion et al. 2009; Ivezi¢ et al. 2019). The expected imaging depth is
26.9/26.95/26.9/26.25 mag AB in Y106/J129/H158/F184 (50 point
source; the limiting magnitude for the weak lensing samples is typi-
cally ~ 2 mag shallower and depends on source size). The expected
galaxy number density is 35 galaxies/arcmin? (H158-band, the best
for shape measurement) or 50 galaxies/arcmin? (co-added bands).
The Reference Survey also includes 10% of the time devoted to
medium-deep fields, which have 10x the exposure time over 1%
of the overall survey area, to calibrate the properties of the source
galaxies.

The Reference Survey area is limited to 2000 deg? due to the need

9 Document reference number WFIRST-SYS-REQ-0020
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for internal redundancy (e.g., 2 passes over the sky in each of 4 filters
means each region must be observed 8 times) and the medium-deep
fields, and the need to carry out many other observing programs as
well in a five-year prime mission. This area is less than considered
in some previous studies. Options for larger survey area have been
considered, and could include a wider layer with less redundancy
(e.g., an H158-band survey overlaid with LSST data), an extended
mission (Roman has no consumable cryogens, and carries propellant
for at least 10 years), or both (Eifler et al. 2019). The actual survey
— which may look different from the Reference Survey and be in-
formed by developments in the coming years — will be chosen closer
to launch. However, from the requirements point of view, we focus
on enabling the Reference Survey.

2.2 The requirements process

Every precision cosmology project has a requirements process to
control both its statistical and systematic errors and ensure that the
overall mission can achieve its science objectives. In the case of
Roman, requirements on the Project (e.g., flight hardware and soft-
ware or ground system support) were baselined early in the mission
(the Science Requirements Document was placed under configura-
tion control in 2018), but requirements on science analyses are more
flexible and will be fixed at a later date. The statistical error require-
ments are usually formulated in terms of survey area, depth and
image quality in each filter, cadence (for time-domain programs),
etc.; their relation to the science reach of the mission is handled
by forecasting tools to be described (Eifler et al. 2020a,b). System-
atic error control is much more difficult, and the approach may dif-
fer depending on whether a source of systematic error is observa-
tional or astrophysical. Usually, observational systematics (e.g., PSF
calibration for weak lensing) can be budgeted within the systems
requirements framework of a large project, whereas astrophysical
systematics (e.g., baryonic feedback) are addressed through a com-
bination of nuisance parameters, additional observations, and the-
ory/simulation. These astrophysical systematics are important sci-
ence team responsibilities but are not part of Project requirements
and engineering reviews.

In general, it is important to distinguish between known system-
atic biases in both categories, which can be calibrated and removed
from the data, and uncertainties on that calibration, which cannot
be removed and must either be small enough to ignore or marginal-
ized over in an analysis. In the description of systematic errors here,
we are referring to this residual uncertainty. We focus now on the
approach to observational systematic errors; our focus is on the Ro-
man process, but note that something similar has been done for other
large weak lensing programs such as LSST and Euclid (Euclid Study
Scientist & the Science Advisory Team 2010; Vavrek et al. 2016;
Ivezic & the LSST Science Collaboration 2018; The LSST Dark
Energy Science Collaboration et al. 2018; Claver & the Systems En-
gineering Integrated Project Team 2019).

First, one identifies a data vector that will contain the cosmolog-
ical information. For setting Roman weak lensing requirements, the
data vector is the concatenated list of shear power spectra and cross-
power spectra C across tomographic bins. Other choices, such as
including higher-order statistics, using all 3 X 2-point information,
or working in correlation function space are possible, but given the
tools available at the time of Project start these would have required
additional tool development that did not fit in the schedule.

Second, one identifies an error metric that summarizes the impact
of a systematic error on the data vector. We have chosen the error
metric Z2 = AC - Z7*AC, where AC is the bias on the data

vector and X is the statistics-only covariance matrix. The metric Z
is essentially a metric for the ratio of the systematic to the statistical
error, and this depends on the solid angle 2 covered by the survey
(Z x v/$). One also sets a limit on the maximum allowed error Z;
in our case, we set Z = 0.5 at 2500 deg? (or Z = 1 at 10,000 deg?),
which means that the observational systematic errors are required
to be below 50% of the statistical errors in a 2500 deg? survey and
below 100% of the statistical errors if the survey were to be extended
to 10,000 deg?.

Third, we note that each category of observational systematic er-
ror contributes to Z. In cases where the errors are presumed indepen-
dent, the Z? values can be summed (i.e., Z obeys root-sum-square
or RSS addition), and the “top-level” budget for Z can be broken
down into contributions from different sources. If a source of ob-
servational systematic error is parameterized by a parameter p (e.g.,
overall shear calibration), then a requirement on knowledge of p (pa-
rameterized by the 1o uncertainty Ap) can be obtained by comput-
ing the sensitivity dC/dp and setting

dC
p-I —=Ap )

dC
A
dp

dp

equal to the allocation for Z from that contribution. An important
aspect of this budgeting is that, like a requirements flowdown, it is
hierarchical — a top-level requirement on observational systematics
may contain an allocation for shear calibration (one of several con-
tributions), which itself may contain a branch for PSF size (one of
several contributions), which itself may contain a branch for detector
non-linearity, etc. In the life cycle of a cosmology project, more de-
tail will be filled in first on the branches that have hardware impacts,
and then branches related to algorithms or simulations later on.

The details of our data vector, covariance, and systematics models
are described in Appendix A. The systematic errors in the shear v
are broken down into additive biases (c) and multiplicative biases
(m) in accordance with

(8, z; 0bs) = [1 + m(z)]v(0, z; true) + ¢(0, z). 2)

Appendix A then allocates the systematic budget for Z to resid-
ual uncertainties Ac (in different angular bins) and Am. One chal-
lenge is that the shear biases may be redshift-dependent. Fortunately,
when we start assigning portions of the shear systematic error bud-
get to underlying root causes, we usually know something about
the redshift dependence (for example, most PSF-related errors grow
with redshift because the galaxies get smaller). Therefore, we have
assigned each possible redshift dependence a weighting factor S,
which represents the ratio of what fraction (in an RSS sense) of the
error budget is taken up by a systematic with a given redshift depen-
dence, relative to a systematic that is redshift-independent with the
same maximum amplitude. A redshift-independent systematic has
S = 1; due to covariance between redshift bins, it is possible to
have S > 1.

2.3 Mapping from wavefront error to galaxy ellipticities —
analytic approach

The requirements based on Z are described in terms of shear sys-
tematics, but in order to be useful for engineering, we need to write
a requirement in terms of wavefront errors. The key step to doing
this is to write the derivative of the observed shear .5 With respect
to the wavefront error 1; (where j denotes a Zernike mode). Be-
cause the PSF size and ellipticity are quadratic rather than linear in
the wavefront error, it is necessary to take a quadratic expansion;

MNRAS 000, 1-28 (2019)
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then O7obs,i /015 is linear in the static wavefront error ¢; (Noecker
2010). Our approach is to use symmetries to categorize the possible
quadratic terms, which gives 4 independent coefficients if we take
the first 11 Zernike modes (up through spherical aberration). We
can then use a suite of simple simulations to determine the 4 coeffi-
cients. Then — given a limit on the static wavefront error ||| < 92
nm rms, set to achieve diffraction-limited imaging in J-band — we
can analytically search the space of possible static wavefront errors
and find the maximum possible |Gvobs,: /0, | (units: nm ™). This
worst-case sensitivity can be used to set requirements on knowledge
of the Roman wavefront.

A similar process can be used for changes in the PSF within an
exposure (either line of sight motion, or wavefront jitter — i.e., be-
yond the tip-tilt modes — due to vibrations). The baseline plan for
Roman will be to independently fit the line of sight motion contri-
bution to the PSF in each exposure (Jurling & Content 2012), but
not the wavefront jitter. This implies a requirement on the wavefront
jitter to make its contribution to the PSF negligible. This requires
a computation of the derivative of v,bs With respect to the second
moments of the PSF (units: mas™2); with respect to the variance or
covariance of the wavefront jitter (units: nm~2); or with respect to
the covariance of wavefront jitter and line of sight motion (units:
nm~! mas’l).

In both of these cases, the source of bias in the shear measure-
ment is in practice due to errors in the wavefront model leading to
mis-estimation of the PSF model that is used for convolution of the
galaxy model when fitting the model shape. All of these calculations
are described in detail in Appendix B.

We emphasize that while the time-dependent wavefront error and
line-of-sight motion are two of the most difficult aspects of weak
lensing, they are only a portion of the overall shear measurement er-
ror budget. Some other contributions related to the wavefront could
come from small-scale field dependence of the wavefront due to fig-
ure errors on the fold mirrors (which are closer to an intermediate fo-
cus than a pupil) or flatness of the detectors; chromatic dependence
of the wavefront; and polarization dependence of the wavefront (Lin
et al. 2020). There are also sources associated with the calibration
of the Roman detectors (Mosby et al. 2020), including but not lim-
ited to interpixel capacitance, persistence, count-rate dependent non-
linearity, flat field and dark current uncertainties, and the brighter-
fatter effect. In practice, as we gain additional knowledge of as-built
components, new terms are added (e.g., we are currently working
on adding the vertical trailing pixel effect, e.g., Freudenburg et al.
2020), so there must be margin to cover these new developments in
the top-level error budget for Z (the full budget is being updated and
is beyond the scope of this paper). It is possible to group some of
these terms together and form an intermediate level requirement on
knowledge of the PSF moments, and then have, e.g., time-dependent
wavefront errors as a sub-allocation, as was done for Euclid by Crop-
per et al. (2013). Given the Roman working group structure, with
different groups focused on specific elements (e.g., detectors, filters,
stability of the optical chain) and with the science team representa-
tives in these groups ultimately looking after the shear bias require-
ments, we chose instead to treat all instrument-related systematics
as sub-allocations of the shear bias requirements.

2.4 Limitations of the analytic approach

The analytic approach to estimating the sensitivity to wavefront er-
rors has some advantages: it is simple, maintains a close link to un-
derlying physical principles, enables rapid exploration of the param-
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eter space, and was available at an earlier stage of the project than
the image simulations. However, it has some drawbacks:

o The analytic approach deals with single images, so it does not rep-
resent what happens when images are combined. This is especially
relevant when the input images are undersampled at the native res-
olution of the Roman pixels. (The pixel scale is 110 mas, whereas
Nyquist sampling would be A\/2D = 56, 68, or 80 mas at the aver-
age wavelength of J129, H158, or F184 bands respectively.)

e The analytic approach computes the derivatives 0vobs,i /01, at
one point in the focal plane. Therefore, it does not capture the cor-
relations across the focal plane or tiling patterns; the distribution of
systematic shear in 2-point correlation function space or in power
spectrum space is not captured.

e The analytic approach cannot be extended to include interaction
of PSF errors with other aspects of the data, such as noise, detector
systematics, blending/selection, etc., in the way that is possible with
image simulations.

For these reasons, we have also estimated the mapping from wave-
front error to galaxy ellipticities using pixel-level image simulations
with the GALSIM package. The version of the simulations used here
is highly idealized — for example, the matching to the “truth cata-
log” means that selection/blending effects are not realistically im-
plemented, some detector effects were not implemented, and the in-
put galaxies have artificially prescribed shears and do not come from
a realistic large scale structure distribution. This is useful in the cur-
rent study to enable us to uniquely isolate the impacts of wavefront
errors on shear recover. Nevertheless, GALSIM as a tool is extensi-
ble and could be configured to use a realistic Roman input catalog
for future systematics studies.

3 SIMULATION SUITE

To empirically test weak lensing requirements, methods, and algo-
rithms in Roman, we have designed a synthetic survey suite that,
while not entirely realistic in all object properties, contains suffi-
ciently complex and representative objects so as to enable informa-
tive tests and preliminary algorithm development. This synthetic sur-
vey utilizes several external simulation and data sources, and gen-
erates Roman-like imaging using the GALSIM framework and its
Roman module. The simulation framework is generally capable of
producing a full Roman HLS imaging survey in all filters matching
Cycle 7 specifications.'® The code is publicly available.'* An ex-
ample SCA image is shown in Fig. 1. The fiducial simulation run is
available for download — this public dataset is described in App. C.
This approach to producing (to varying degrees) realistic, syn-
thetic survey realizations is a common approach for weak lensing ex-
periments, both at the catalog level (MacCrann et al. 2018; Korytov
et al. 2019) and the image level (Suchyta et al. 2016; Fenech Conti
et al. 2017; Mandelbaum et al. 2018; Samuroff et al. 2018). These
synthetic surveys can serve as sources of calibration or characteri-
zation, validation, or increasingly as end-to-end integration tests for
measurement and analysis algorithms and pipelines. Our approach
here is similar to the approach being implemented in parallel by the

10 These can be found at https://wfirst.gsfc.nasa.gov/
science/WFIRST_Reference_Information.html. Note that up-
dates to match Phase B payload design have not been incorporated into the
simulation described in this paper, but this is not expected to impact the re-
sults of this paper.

1 nttps://github.com/matroxel/wfirst_imsim
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Figure 1. A simulated ~140s exposure Sensor Chip Array (SCA) image,
chosen for the presence of several large, bright galaxies and stars. Each SCA
(HgCdTe H4RG) has a useable pixel grid of 4088 <4088, with a pixel scale
of 0.11”. A total of 18 SCAs make up the Roman camera. For comparison,
the size of the Hubble Space Telescope Wide Field Camera 3 is shown as
the blue outline. Six diffraction spikes due to the Roman secondary mirror
support struts are clearly visible for most stars.

LSST Dark Energy Science Collaboration (DESC; Korytov et al.
2019; LSST Dark Energy Survey Collaboration et al. 2020), with
comparable levels of morphological complexity for weak lensing al-
gorithm testing, but less complex true object properties. This ap-
proach is described in detail in the following subsections.

3.1 Simulation stages

The simulation is broken into several stages:

Truth catalog generation — A truth catalog is generated from the
simulated input galaxy distribution, photometric galaxy catalog, and
Milky Way simulation. The following true object properties are as-
signed to each simulated galaxy: 1) The sky position in right ascen-
sion (RA) and declination (Dec) from the simulated galaxy distribu-
tion; 2) Photometric properties (consistent Y106/J129/H158/F184
magnitudes, size, and redshift) drawn from a random object in
the photometric galaxy catalog; 3) Intrinsic ellipticity components
drawn from a Gaussian distribution of width 0.27 (truncated at
40.7); 4) A random rotation angle; 5) The ratio of fluxes in each
of the three galaxy components: a) de Vaucouleurs bulge, b) expo-
nential disk, and c¢) random-walk star-forming knots (a maximum
of 25% of the flux assigned to the disk component can exist in
the knots); 6) The gravitational lensing shear applied to the object,
drawn from a discrete list of (e1,e2) € {0,£0.1}. Further details
on the provenance of the galaxy catalogs and Milky Way simulation
can be found in Secs. 3.3 and 3.4, respectively. The true properties
for all objects are saved in a single FITS table that is accessed by the
following stages.

Image generation — In this stage, an empty SCA image is initial-
ized (4088 x 4088 pixels), and a model is built for each galaxy and

star in turn, then drawn into the image. The galaxy models are built
chromatically from the truth parameters for the object, with each
component being assigned a different representative SED of types:
SO (bulge), SBa (disk), and Im (knots), respectively. The assigned
SED is the same for all objects, since after redshifting the spectrum
and applying the appropriate flux and size in each component, the
model is converted to be achromatic in each passband to speed up
the drawing (this is discussed further in Sec. 3.2.2). The intrinsic
ellipticity, random rotation, and gravitational shear is then applied.
We model stars as point sources with the SED of Alpha Lyra. Stars
are also converted to be achromatic before drawing. Both stars and
galaxies are then convolved with the appropriate PSF for the SCA
(constant across the SCA in the fiducial simulation). An example of
the PSF model for an object is shown in Fig. 2, and the PSF model
is discussed in more detail in Sec. 3.2.2. We save images of the true
PSF model both at native pixel scale and oversampled by a factor of
8, in stamps of native pixel size 8 x 8 at the position of each galaxy.

The models are drawn in dynamically-sized square stamps, the
sizes of which are chosen to include at least 99.5% of the flux.
These stamps are then added to the SCA image and saved separately
(if drawing a galaxy) to provide an isolated image of each simu-
lated galaxy to allow for tests of the impact of blending. Objects that
would have a postage stamp that overlaps the SCA image are drawn,
such that light from objects in chip gaps are appropriately drawn
onto the SCA, but we only save postage stamps for objects that have
a centroid that falls on the SCA. We do not save isolated postage
stamps of objects that have a stamp size of greater than 288 X288
pixels, but they are drawn into the images. Finally, each isolated
postage stamp is processed through the steps described in Sec. 3.2.3
to simulate the WFIRST observatory and detectors and written to
disk. This means that blended objects will be modeled differently in
the isolated postage stamp and full SCA images, since some detector
effects are sensitive to the total flux in nearby pixel. When all objects
are added to the full SCA image, it is also processed through these
steps and written to a FITS image file.

MEDS creation — We then compile the output across pointings
of the isolated object stamps into MEDS (Multi-Epoch Data Struc-
ture) files.'? These files concatenate all exposures of unique objects
to allow for fast access for object-by-object data processing (like
shape measurement). Each MEDS file also stores for each object
(and stamp) its original SCA, the object position and the stamp po-
sition within the SCA, the WCS for each stamp, the PSF model
for each object, and other ancillary information and metadata. Each
MEDS file contains all objects within a ngqe = 512 Healpixel'®
(Gorski et al. 2005; Zonca et al. 2019).

Shape measurement — The galaxy shape is measured by jointly
fitting a two-component model, de Vaucouleurs bulge and exponen-
tial disk, across all suitable exposures. Exposures where more than
20% of the pixels are masked (i.e., the centroid falls too close to the
edge of the SCA) are rejected. The model fit has 7 parameters: e 2,
Pz,y, half-light radius, flux, and bulge flux fraction, where e > is
the component of the ellipticity and p.., is the pixel centroid offset.
Both model components are constrained to have the same centroid,
half-light radius, and shape. The minimization is performed using
the NGMIX'* and MOF*® packages (Sheldon 2014). We also mea-
sure the PSF size and shape in the oversampled PSF model images

12 https://github.com/esheldon/meds
13 https://healpix.jpl.nasa.gov

14 https://github.com/esheldon/ngmix
15 nttps://github.com/esheldon/mof
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using an adaptive moments method (Hirata & Seljak 2003). This
stage writes a set of FITS files containing the galaxy and PSF mea-
surement results and relevant truth catalog information.

3.2 GALSIM

The images in the simulation are rendered using the GALSIM soft-
ware package (Rowe et al. 2015). This package has been extensively
tested and has been shown to yield very accurate rendered images
of galaxies and stars. Notably, the image rendering process has been
shown to impart biases in the shapes of galaxies at a level much less
than 10~* for the kinds of objects we are simulating here.

The GALSIM package is mostly generic with respect to the tele-
scope and observational strategy, allowing for a wide variety of op-
tions in performing the simulation. However, it does have a sub-
module (galsim.wfirst) that has a number of WFIRST-specific
implementation details. Some of the code in this module pre-dates
this work (e.g., Kannawadi et al. (2016)), but some of it was devel-
oped specifically for this project, especially updating some of the
details to match Cycle 7 information, and to reflect new information
from laboratory tests of persistence in Roman sensors. The values
used for this project correspond to the galsim.wfirst module
in GALSIM release version 2.2.0.

3.2.1 World coordinate system

The galsim.wfirst module has code to provide an estimate of
the Roman WCS (world coordinate system) for each SCA given
a rotation angle, date, and pointing direction. The WCS gives the
two-dimensional mapping from (z,y) coordinates on the image to
RA and Dec on the sky. The specific orientations and gaps between
the sensors were updated to match Cycle 7 specifications as part of
the development work for this project. We create our scene of ob-
jects, including their surface brightness profiles, in sky coordinates
(RA, Dec). GALSIM automatically accounts for the Jacobian of the
WCS transformation when rendering the surface brightness profiles
on each sensor’s pixels. Details such as the telescope distortion and
variable pixel area are correctly accounted for in this process.

3.2.2 Point-spread function

For the PSF we use a model of the Roman PSF from the
galsim.wfirst module. While this module includes a high-
resolution Cycle 7 estimate of the Roman spider pattern (i.e., the
obscuration of the struts and camera in the pupil plane), we use a
faster, low-resolution approximation, which gets the qualitative fea-
tures correct, but has a slightly different detailed diffraction pattern.
For the purposes of this study, we are insensitive to the differences
between the two spider patterns, so we did not enable the slower,
more accurate option. The PSF uses position-dependent (Zernike)
aberration polynomials (Noll 1976), based on an investigation of
the field-dependent wavefront errors used in the original Cycle 7
documentation. Aberrations between the tabulated positions are es-
timated using bilinear interpolation of the tabulated values. More
details of the PSF model approximation and its implementation are
described in App. E.

The wavelength-dependent features of the PSF, such as the width
of the Airy diffraction pattern, and the wavelength-dependence of
the aberrations, are taken at the effective wavelength of the observa-
tion bandpass. This is an approximation, which leads to an enormous
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Figure 2. PSF model for SCA #1. The top row shows the model in native
pixel scale, while the bottom row is oversampled by a factor of 8. From left to
right: a comparison of the high-resolution (‘true’) model, the low-resolution
model used in the simulation, and the difference of the two models. The color
bars are defined by the range of the high-resolution model. More detail about
the PSF model is given in Sec. 3.2.2. The difference between the low- and
high-resolution PSF models is negligible at the level required for the current
study.

speed up in the rendering time. However, it does omit some interest-
ing and subtle chromatic effects as different parts of a galaxy, with
different effective SEDs, would be convolved by slightly different
effective PSFs. There are plans to improve the implementation of
this aspect of GALSIM, but it cannot currently simulate such effects
efficiently enough for our needs.

There are also plans to enable the use of WebbPSF'® in
galsim.wfirst to leverage the work being done on that project
to simulate the Roman PSE. The WebbPSF model is qualitatively
similar to what we are using from galsim.wfirst, but there are
slight differences. We expect that the WebbPSF model is probably
more accurate, but this will be explored in future work.

3.2.3 Implemented detector effects

Most of the development of GALSIM has been driven by the need to
render simulations of CCD images. The HgCdTe detectors used by
Roman are qualitatively similar, but there are significant differences
in the physics, which lead to differences in some of the simulation
steps. We discuss the implementation of some of these effects in
detail below.

For this work, each image is processed through the following
stages, simulating what physically happens in the detector: 1) the
Poisson background of stray light and thermal emission from the
telescope is generated and a ‘sky’ background image is created that
also undergoes stages 2-9, 2) the impact of reciprocity failure is
added, 3) the electron counts are quantized, 4) dark current is added
to the image, 5) nonlinear response to flux is applied, 6) the effect of
interpixel capacitance is applied, 7) instrument read noise is applied,
8) electron counts are converted to ADU, and 9) the ADU value is
quantized. In this work, we subtract the final background image from
the SCA image, simulating a perfect background subtraction algo-
rithm.

Reciprocity failure (Biesiadzinski et al. 2011) is a non-linear re-
lationship between the voltage response in the detector to the inci-

16 https://webbpsf.readthedocs.io/en/stable/
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dent flux of photons at low light levels. The exact mechanism of
this effect is unknown and hence we lack a good theoretical model.
GALSIM uses a power law

nominal log?ll))
P _ (p ) 3)

Pnominal fOtexp

where prnominal 18 the pixel response (in electrons) that would have
occurred in the absence of reciprocity failure, p is the actual ob-
served response due to reciprocity failure, fo is the base flux rate
(in electrons/sec) at which the nominal gain was calibrated, texp is
the exposure time, and « is taken to be 6.5 x 10~2 for the Roman
Sensors.

A particularly pernicious effect present in the HgCdTe detectors
is known as “persistence” (Smith et al. 2008; Anderson et al. 2014;
McLeod & Smith 2016). In a series of images taken sequentially,
some small fraction of the charge accumulated in earlier exposures
apparently remains in the sensor and appears in later exposures. The
effect lasts for many minutes across multiple reset cycles. Therefore,
for simulating the effect, we need to keep track of the precise order
and time of each observation, and the electron-level (i.e., pre-read-
out) images of multiple prior exposures.

The exact functional form of this effect is not very well under-
stood, although some progress is being made in laboratory tests. The
functional form for this effect was updated during the Cycle 7 up-
dates, and GALSIM now uses a Fermi profile when the deposited
flux is above the half-well level, and linear when below. Above the
half-well level, the functional form is

A(n/n0)* (too0me)
exp(— ";"O) +1

n

“4)

Npersist =

where A, no, a, r, and dn are constants estimated from laboratory
measurements (and stored in the galsim.wfirst module). The
persistence modeling was not available when this project started, and
so is not implemented in the current simulations used in this paper.

In addition to the non-linear pixel response, known as reciprocity
failure, there is also a non-linearity in the conversion of accumu-
lated charge to the measured voltage (Plazas et al. 2017; Biesiadzin-
ski et al. 2011; Etienne et al. 2018). This is a different effect, which
occurs at a different point in the simulation — namely, after the ap-
plication of dark current (Beletic et al. 2008; Piquette et al. 2014;
Zandian et al. 2016) and persistence. GALSIM treats this as a modi-
fication in the effective number of electrons:

n, =ne—6x10""n2 (5)

where n. is the actual number of electrons accumulated and 7. is
the effective number to account for the voltage response nonlinear-
ity. The coefficient 6 x 10~ is appropriate for one of the WFIRST
development detectors measured in the lab (Choi & Hirata 2020).

Inter-pixel capacitance (IPC) (Kannawadi et al. 2016) essentially
amounts to a convolution of the image by a 3 x 3 kernel in pixel
coordinates. However, the timing of the convolution is during the
readout process, which means that some (but not all) of the noise has
already occurred. Thus it cannot be treated as part of the PSF for the
purpose of the simulation. It needs to be applied separately after the
dark current and Poisson shot noise have been applied, but before the
read noise. The IPC coefficients have been measured in the lab for
Roman detectors; the values used in the galsim.wfirst module
come from the Cycle 5 estimates.
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Figure 3. The distribution of simulated galaxies. The mean galaxy density

is 40 arcmin—2.

3.3 Galaxy catalogs

The input galaxy catalog is created using a simulated galaxy distri-
bution on the sky taken from one realization of the Buzzard simula-
tion (DeRose et al. 2019; Wechsler et al. 2019), to introduce realistic
galaxy clustering. Each galaxy is then assigned a random set of pho-
tometric properties matching a galaxy from a sample based on the
Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
(CANDELS) survey that simulates the fiducial Roman weak lens-
ing selection (Hemmati et al. 2019). We imposed selection cuts on
the lensing source galaxies based on the Exposure Time Calculator
(Hirata et al. 2012). The cuts require matched filter S/N ratio > 18
in combined J + H, ellipticity error per component < 0.2 (in the
Bernstein & Jarvis 2002 convention), and resolution factor > 0.4
(again in the Bernstein & Jarvis 2002 convention); note that this re-
sults in a limiting magnitude that depends on galaxy size. These cuts
are also discussed in Hemmati et al. (2019). These selections are
made on the input catalog properties, which improves the efficiency
of the simulation. This prevents us from exploring the impact of se-
lection effects, but this is not important to the current work and we
can use different input galaxy property distributions in future simu-
lation runs.

The galaxy distribution, which has a mean galaxy density of ap-
proximately 40 arcmin~2, is shown in Fig. 3. In Fig. 4, we show
the distributions of size, redshift, and H158 magnitude in the CAN-
DELS sample. We discard less than 1% of the largest objects in
the shape measurement stage, however, due to a maximum postage
stamp size restriction. In general, the input distribution and proper-
ties of galaxies can be easily modified by configuration (i.e., speci-
fying a different input galaxy catalog or a realistic shear field).

3.4 Star catalog

We simulate the positions and magnitudes of input stars in Ro-
man passbands using the galaxy simulation Galaxia'” (Sharma et al.
2011). Galaxia uses an analytic model (Robin et al. 2003) to simu-
late stars in the galaxy that includes a thin and thick disk with warp

17 nttp://galaxia.sourceforge.net
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Figure 4. The true (blue) and recovered (orange) distributions of galaxy half-light radius, redshift, and H158 magnitude for galaxies, with a comparison of
the magnitude distribution of stars (green). The recovered galaxy magnitude and half-light radius are the distributions inferred from the shape measurement
process, while the distribution in redshift simply shows where in redshift objects do not have a valid shape fit — mostly at low redshift, where some large objects
are not used. In general, the measured size and magnitude agree well with the true values. Star magnitudes are currently capped at 14 to avoid visual artifacts in
the drawn images, which has no impact on the current or most plausible weak lensing studies.
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Figure 5. The distribution of simulated stars. The mean stellar density is 2.5

arcmin~2.

and flaring, bulge, and halo components. Stars are simulated to 27th
magnitude in V band, extinction is added, and they are uniformly
translated to Roman bandpasses using the stellar SED of Alpha Lyra
derived from HST CALSPEC as packaged with GALSIM. The star
distribution, which has a mean stellar density of approximately 2.5
arcmin~2, is shown in Fig. 5.

3.5 Survey strategy

We considered a reference HLS observing strategy consisting of 2
passes in each of the 4 HLS imaging filters (plus 4 passes for the
grism). To construct each pass, we take a sequence of n exposures
(2 £ n < 4, depending on the filter/grism choice), with a small
diagonal step after each exposure to cover gaps between the SCAs.
These steps also ensure that in each of the n exposures, an image of
a star or galaxy does not land on the same small chip defect, nor in
the same readout channel of an SCA, and does not interact with its
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persistence image from the previous exposure.'® After these expo-
sures, we do a “field step” along the short axis of the field'® (~ 0.4
degrees), and repeat the exposures. This produces a strip of observed
sky; strips are tiled to cover a region on the sky. Subsequent strips
are observed in opposite directions (i.e., we alternate “up” versus
“down”). The HLS is broken down into 8 such regions (plus deep
fields), each with its own tiling. The H158 filter exposure sequence
that overlaps the patch of sky simulated for this work is shown in
Fig. 6 and the total number of exposures that overlap each simulated
galaxy is shown in Fig. 7.

The two passes over each region of the HLS are on grids that are
rolled relative to each other. This strategy increases the number of
exposures, and more importantly ensures that astronomical sources
observed on one SCA have repeated observations on other SCAs.
This is needed for “ubercalibration” internal to the HLS (e.g., Pad-
manabhan et al. 2008), and will be helpful in developing a correction
in the event that a few SCAs exhibit unusual behaviors (e.g., larger
than normal hysteresis).

The overall survey strategy has to schedule each pass over each re-
gion, while being consistent with the needs of the other surveys and
the observing constraints as well. We developed tools to do this early
in Roman planning, especially since both L2 and geosynchronous
orbits were under consideration, with the latter having complex
Earth and Moon avoidance constraints (Spergel et al. 2015). The
constraints are much more slowly varying at L2, but we still have
the slowly varying Sun avoidance constraint (Roman observes be-
tween 54-126° degrees from the Sun), a roll angle constraint (the
observatory can roll up to £15° from the optimal orientation on the
solar array; this is very important when attempting to tile a large
region of the sky). Moreover there are cutouts for the microlensing

18 Because the same set of offsets is used each time we do a field step, it
is possible for all n images of galaxy G to land on the n persistence arti-
facts from a previous star S. We intend to solve this problem by introducing
some pseudo-randomness in the diagonal step sizes, but this has not yet been
incorporated in survey simulations.

19" We choose the short axis for two reasons. First, the slew times are shorter,
resulting in a more efficient survey. Second, the “arced” layout of the focal
plane means that we can make a strip with smoother edges by stepping on
the short than the long axis; the resulting strips fit together much better when
tiling a curved sky.
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Figure 6. A visualization of the individual pointings of the telescope using
the H158 filter in the five-year simulated Reference Survey that overlap the
region of the sky we are simulating images for (the non-shaded region). There
are a total of 189 pointings in H158 that overlap this region. Each marker is
an individual pointing, whose color represents the focal plane position an-
gle. Each cluster of pointings typically contains 3-4 very small translational
dithers to cover chip gaps. The dither pattern in other filters overlaps in other
directions to produce a more homogeneous coverage than is indicated in this
figure.
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Figure 7. The number of simulated exposures per object (blue) compared to
the number eventually used in the shape measurement (orange). The median
number of exposures per object both simulated and used is six over this part
of the five-year simulated Reference Survey.

seasons and — during the middle of the reference mission — a 30-hour
supernova observing session every 5 days. This results in the need to
cut each pass into shorter segments that can be observed all at once,
in sequence. The strategy described here is an output from an update
of the code used in §3.10 of Spergel et al. (2015).

3.6 Simulation implementation for this study

In this work, we study the impact of how a variety of biases in the
PSF model propagate to shape measurement and the weak lensing
signal. To study this, we produce a set of 13 image simulations that
are identical, including noise, modulo a single PSF model change
relative to the fiducial simulation in each case. The details of these

Table 1. A summary of the 13 simulation runs.

Run name PSF change Mode Notes
FIDUCIAL - - -

Focus g Static -

ASTIG Y5 Static -

CoMA 7 Static -

GRADZ4 [on Static Gradient in focal plane
GRADZ6 e Static Gradient in focal plane
PISTON P4 Static Random per SCA
TILT P4 Static Rand. gradient per SCA
ISOJITTER Gaussian  High-Freq. Isotropic
ANIJITTER Gaussian ~ High-Freq. Anisotropic
RANJITTER  Gaussian ~ High-Freq. 15% of pointings
0Oscz4 (o Low-Freq. Time-dependent
0OsczZ7 7 Low-Freq. Time-dependent

changes and their impacts are described in more detail in Secs. 4
and 5. Shape measurement is then performed on the images with
some PSF model bias, but using the fiducial PSF model for convo-
lution in the galaxy shape fitter, to simulate an unknown wavefront
error.

Several simplifications are employed relative to the generic syn-
thetic survey generation described in Sec. 3.1 to accommodate the
computational load of the many realizations of the survey we are
producing.

o We simulate objects in a 2.5x2.5 deg? patch of the sky.

e We only simulate pointings targeted for the H158 filter. Since we
are not simulating chromatic effects, the specific filter choice does
not make a large difference in our results.

e We use a lower-resolution version of the PSF, which significantly
speeds up the convolution. The impact of this approximation on the
PSF model, in both native and oversampled pixels, can be seen in
Fig. 2, but is not important for this work.

e To better isolate the effects of PSF errors, we only utilize the iso-
lated object postage stamps in shape measurement.

e We do not simulate objects with photometry that would fall out-
side the fiducial weak lensing selection criteria.

e We do not implement a shear calibration scheme like metacali-
bration (Sheldon & Huff 2017), since we only care about changes
to the recovered shape between simulation runs. Work on applying
a method like metacalibration to these simulations is ongoing.

We simulate a total of 907,170 unique galaxies and 56,128 unique
stars across 189 pointings in each of the runs. The number of expo-
sures per galaxy and the distribution of PSF properties are shown in
Figs. 7 and 8.

4 WAVEFRONT MODEL ERRORS

In this paper, we focus on empirical tests of weak lensing require-
ments for wavefront model control (i.e., the PSF) in Roman. These
are used to empirically derive the relationship between recovered
shear and wavefront error modes de; /9;, which allows us to vali-
date earlier Phase A analytic estimates of the requirements flowdown
for Roman. In the absence of shear biases, or when comparing be-
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Figure 9. The difference in the measured (obs) shape relative to the true
sheared intrinsic shape of the galaxies in the fiducial simulation. The inferred
multiplicative and additive shear bias is discussed in Sec. 5.

tween runs that should have identical intrinsic shear biases, de; /9v;
is equivalent to Ovobs,i /OY;.

We simulate 13 identical 2.5x2.5 deg? Reference Survey cutouts:
a fiducial survey that represents perfect knowledge of the PSF and
12 iterations to simulate various types of errors in the PSF recon-
struction. These are split into three types of errors in the wavefront
model: 1) static biases in the model, which are constant as a function
of time, 2) high-frequency biases in the model, which correspond to
rapidly changing conditions compared to the timescale of a single
exposure, and 3) low-frequency biases in the model, which change
over the lifetime of the mission, but can be considered static over
the timescale of a single exposure. In each static and low-frequency
mode, the (rms) amplitude of the wavefront bias corresponds to
0.005 wavelengths (a fiducial wavelength is taken to be 1293 nm),
which is equivalent to approximately 6.5 nm. These PSF changes are
summarized in Table 1.

We emphasize that the purpose of these simulations is to measure
the sensitivity (i.e., partial derivatives) of the shear biases m; and
c; with respect to the PSF parameters. We want to do this with an
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area that is much less than the Reference Survey area; we choose
a change in wavefront Aq) that is considerably greater than the ex-
pected requirement so that the partial derivative is not swamped by
noise. Similar considerations apply to the pointing jitter.

4.1 Static biases

We simulate seven static sources of bias in the PSF model. Three
of these simulations include a coherent change in the PSF model
Zernike coefficients, where the fiducial value is changed by 0.005
wavelengths in each of defocus ¥4 (FOCUS), oblique astigmatism
s (ASTIG), and vertical coma 17 (COMA). Two simulations in-
clude a coherent gradient in the defocus 14 (GRADZ4) and vertical
astigmatism ¢ (GRADZ6) across the focal plane with equivalent
rms of 0.005 wavelengths. For speed, these are simulated such that
the PSF is constant within a single SCA. Finally, two simulations ap-
proximate errors in the mounting of the SCAs: 1) a random vertical
mounting offset of up to 0.005 wavelengths is assigned to each SCA
(P1STON), and 2) a random tilt in the = or y direction is assigned to
each SCA (TILT), with equivalent rms of up to 0.005 wavelengths.
These are modeled as changes in the 4 coefficient, with the PSF be-
ing evaluated based on the object z—y position within the SCA (i.e.,
each object is assigned a different PSF consistent with this random
tilt of the SCA). Potential correlated biases in the WCS model due
to these changes are ignored in this work, but should be considered
in future studies of the WCS model recovery.

4.2 High-frequency biases

Three high-frequency resonant modes are simulated to represent
residual vibrations of the telescope after orienting to a new point-
ing. These are represented by an additional convolution of the im-
age with a Gaussian PSF. We simulate three cases: 1) an isotropic
(about the pointing axis) vibration (ISOJITTER), 2) an anisotropic
vibration (ANIJITTER), and 3) only applying this anisotropic vibra-
tion to a random 15% of pointings (RANJITTER). The additional

2

second moments are conserved, which means 0.0, = 05, =

15% mas?. For ANIJITTER and RANJITTER, we applied a shear

er = 82;9;’ = 0.3, with Zernike amplitude change in this case

dyp = 6% — 95 = 297 mas?. In the case of [SOJITTER, 8, = 0y,
which leads to dip = 62 + 95 = 450 mas?.




A Synthetic Roman High-Latitude Imaging Survey 11

. Ranjitter .

T 6
oo LR
B llll!ﬁ2
i R
. e al-
» ENETE il

OscZ7
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Gradients across the focal plane or chips are visible for all static PSF model
biases, while the mean difference is particularly large for the anisotropic jit-
ter case, where the large mean e difference corresponds to the direction of
anisotropy in the Gaussian smearing.

4.3 Low-frequency biases

Two low-frequency biases are simulated to represent thermal drift
throughout the lifetime of the mission. Thermal perturbations prop-
agate into 14 (0OSCZ4) and ¥z (OSCZ7) modes. We generate a ran-
dom time-dependent function f(¢) with rms amplitude 0.005 wave-
lengths following a given power spectrum to quantify the perturba-
tion of the Zernike coefficients over time. The power spectrum of
thermal drift noise is taken to be a Lorenzian function

A
PO = T

with normalization factor A. The rms variance of f(t) can be ex-
pressed as
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Figure 11. The binned mean difference of measured ez compared to the
FIDUCIAL run in the focal plane. Each color bar is in units of 1 x 1074,
There are visible gradients for most cases of static PSF model biases.

which leads to A = 2. vy = 51—~ 3.14 x 10~ Hz, with a time
constant 7 = 1 hr. This timescale is typical of thermal variations
that have been seen in integrated modeling (e.g. Spergel et al. 2015);
we plan to use actual integrated modeling outputs for the reference
observing scenario in a future version of this study.

5 RESULTS

Each simulation is analyzed in an identical way, except that shape
measurement for each simulation assumes the FIDUCIAL PSF model
is the true model, which simulates the impact of misestimating the
PSF model and introduces varying levels of bias. All estimates of
the multiplicative and additive bias will be explored relative to the
FIDUCIAL simulation run, since we have not employed an absolute
calibration scheme. This is justified to first order, since we are only
interested in the relative impacts of the PSF model biases. We find
that 3% of objects are not included in the shape measurement stage
in the FIDUCTAL simulation, due to being too large/bright or because
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too large a fraction of all cutouts are masked (fall off the edge of an
SCA) — see Sec. 3.1 for more details on these selections.

Since the simulated objects have already been pre-selected as ob-
jects that should pass the fiducial Roman weak lensing selection, we
are able to successfully recover a shape fit for more than 99% of
the remaining objects — a total of 871,841 galaxies. We do not make
an additional selection on objects that would pass the fiducial Ro-
man shape selection based on measured properties, since we expect
all objects to be within this selection if we were to simulate all re-
maining pointings in other bandpasses. The recovered multiplicative
shear bias is only approximately 2% smaller and the mean shear is
unchanged if we make this selection, which removes an additional
35% of objects, almost exclusively due to the signal-to-noise cut.

We present results for the non-FIDUCIAL simulations only for ob-
jects that lie in the intersection of successful shape measurement be-
tween each simulation and the FIDUCIAL simulation, to allow for
1-1 comparison of the shapes and cancellation of shape noise and
sources of photon noise, which are identical in each simulation. We
neglect the impact of selection biases here, since the intersection cri-
teria excludes on average only 0.3% of objects.

5.1 Summary statistics

The bias in an ensemble shear measurement is typically character-
ized in the weak limit by

P = (14 mi)ef™ + ¢;. (8)

We find the following multiplicative and additive biases in the FIDU-
CIAL simulation:

7.56 £ 0.19) x 10~°
9.40 £ 0.19) x 102
(1.20 £0.17) x 107°

= (—1.57£0.16) x 10>,

(_
(_

mi
ma
C1
C2

In some cases, biases are instead parameterized in terms of the PSF
leakage as €55 = (1 + m;)et™® + a;elSF + ¢;. The constraints
on m used to interpret requirements in this paper are unchanged
in either parameterization. The difference in measured shape versus
true input shape (intrinsic shape and shear) is shown in Fig. 9.

For each simulation, we compare the recovered shear to the FIDU-
CIAL simulation in several ways. First, we calculate how the inferred
values of m and c change from the FIDUCIAL result, which is shown
in Table 2. More importantly, we are interested in how the inferred
shear changes as a function of the induced wavefront error. This al-
lows us to draw a direct connection to the analytic requirements pre-
dictions. We show this shear response relative to the wavefront error
in Table 3. Finally, we are ultimately interested in how these biases
will propagate to the shear correlation function — that is, how any
coherent scale dependence of the effects will impact cosmology.

We can study the difference in the measured ellipticity relative to
the FIDUCIAL simulation in both focal plane and sky coordinates.
The mean ellipticity difference binned in the focal plane is shown in
Figs. 10 and 11, for e; and ez, respectively. We observe coherent,
and sometimes large, biases in the mean ellipticity across the focal
plane or individual chips for all static wavefront errors. The time-
dependent wavefront errors are generally less pronounced, except in
the case of a non-random anisotropic jitter which produces a very
strong, coherent bias in ey, the direction of the anisotropy in the
smearing.
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Table 2. Additive and multiplicative bias parameter changes in each version
of the simulation relative to the FIDUCIAL simulation. Note that the wave-
front errors injected into these simulations (6.5 nm rms) are much greater
than the stability requirements; the variation simulations are designed to mea-
sure the partial derivatives of the shear biases with respect to each contribu-
tion to the PSF.

Runname Ami x 103 Amg x 103 Ney x 104 Aca x 10%
Focus 4.654+0.24 4.36+£0.23 —5574+024 —15.87+0.30
Astig —0.234+024 090+0.21 —29.1440.30 —0.55+0.20
Coma ~1.3340.26 —1.474+021 —6.664+0.26 0.2240.34
GradZ4  —2.634+0.27 —2.52+0.23 —0.51+£0.21  6.71 £0.42
GradZ6 0.2240.23 —0.224023 14.724+0.62  0.44+£0.23
Piston —13.6+50 —15.0+53 —3.70+£0.31 —7.514+0.34
Tilt —38.0+80 —36.6+80 —0.40£0.38 0.73+£0.38
Isolitter ~ —40.84+8.6 —39.54+85  0.2440.84 0.43 £ 0.91
AniJiter ~ —11.4+1.1 —11.54+1.0 43.27+0.85 —0.13+0.86
RanJitter ——12.8 +4.4 —12.6+4.1  7.50 +0.64 0.33+£0.43
OscZ4 —72+31 —6.5+3.1 0.89 £ 0.31 2.15 £ 0.49
OscZ7 —12.14+6.8 —11.44+6.3 —0.0840.31 —0.1740.44

Fig. 12 shows the two-point correlation function &4 of the ellip-
ticity difference in sky coordinates, where

&+ = (AerAey) £ (AexAey). )

Ae; and Aey are the tangential and cross components, respec-
tively, of the ellipticity difference relative to the fiducial simulation
along the projected separation vector between each pair of galaxies
on the sky. As expected for a wavefront error, the £_ correlation of
the differences are all consistent with zero. Like the mean shear in
the focal plane, all static wavefront error cases lead to significantly
non-zero & at varying magnitudes. The time-dependent errors have
&+ consistent with zero, except for the non-random anisotropic jitter
case, which shows the largest impact in £+ of any case as additional
smear only applies to e; component. The non-random anisotropic
jitter, and the static focus and astigmatism errors, all produce a
nearly constant &4 correlation with angular scale, showing that the
results are dominated by uniformly distributed e, e2.

5.2 Comparison of analytic to numerical results

The partial derivatives |Oe/dv| of the ellipticity with respect to
wavefront should be less than ||Al|||4|| (where A is the analyti-
cally derived matrix defined in Eq. B11 of Appendix B), which is
8.98 x 10 *nm™" for the H158-band (this is an RSS of the two
ellipticity components). For the partial derivatives of the ellipticity
with respect to the second moments of the jitter pattern, |de/dv|
should be less than Ky (where Kpyg is the analytically derived
sensitivity to jitter; see Eqs. B19,B20 of Appendix B), which is
1.38 x 1075 mas ™2 for the H158-band. In the numerical results pre-
sented in Table 3, the largest partial derivatives are 4.5 x 10~* nm™*
(for wavefront errors) and 1.45 x 10~° mas ™2 (for jitter). For the
wavefront drift case, this is consistent with the analytic expectations.
For the anisotropic jitter case, the sensitivity |0e/0%| determined
from the simulations is 5 &= 2% larger than the analytic bound (we
would expect a sensitivity equal to the analytic bound since the Ani-
Jitter run is the worst-case jitter pattern: the anisotropy is in the ey
component for every exposure). The 5 &= 2% difference may simply
represent the approximations made in the analytic calculation (e.g.,
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Table 3. The changes of ellipticity with respect to changes in line of sight
motion for jitter cases and wavefront error for the other modes.

Run name Qe /Oy X 104 ez /O X 104 Units

Focus —0.87 4 0.032 —2.540.031 nm~1!
Astig —4.54£0.031 —0.10£0.030  nm~!
Coma —1.0 £ 0.032 0.0304+0.032  nm~!
GradZ4  —0.089 % 0.030 1.0 £ 0.029 nm—1!
GradZ6 2.240.029 0.044 +£0.028  nm~!
Piston —0.560 + 0.048 —1.240.048 nm~?!
Tilt —0.036 + 0.063 0.10 + 0.063 nm~?!
IsoJitter ~ 0.0004 & 0.0024  0.0006 & 0.0023  mas~?2
AniJitter  0.145 £ 0.003 —0.0014-0.003 mas™2
RanJitter ~ 0.0246 & 0.0016 0.00087 & 0.00159 mas—?2
OscZ4 0.13 £ 0.039 0.30 £ 0.039 nm—1!
0scZ7 —0.0194£0.045 —0.044 £0.044 nm~!

no treatment of undersampling/image combination, a different shape
measurement algorithm, etc.).

A similar comparison is possible for the 2-point correlation func-
tions £4 () of the ellipticity changes Ae. Since we put in a wave-
front change of 6.5 nm rms, the analytic prediction is that these cor-
relation functions should be

£4(0) < (8.98 x 10 "nm ™' x 6.5nm)> = 3.4 x 10°°. (10)

As seen in Fig. 12, this inequality is indeed satisfied. A similar result
can be written for the jitter cases. The most stressing case is the
Anilitter case, which has (92 — 62) = 297 mas® and hence should
satisty

£4(0) < (1.38x107 " mas™ > x 297 mas®)® = 1.68x107°; (11)

The Anilitter panel in Fig. 12 shows a numerical result that is
very close to this. The central values of &4 (6) range from (1.79-
1.95)x10~°, which are slightly larger than the analytical estimate,
although the 1o error bars include 1.68 x 1075. If this is not a statis-
tical fluctuation, it is likely due to the same simplifying approxima-
tions in the analytic calculation as described above for |9e/d%)|. In
either case, the numerical calculation gives a result that is near the
analytically estimated upper bound.

6 FUTURE DEVELOPMENT PLANS

The simulation framework described here is a substantial step for-
ward in the development of a significant synthetic Roman imaging
survey, which incorporates a realistic set of photometric properties
and distributions of galaxies and stars, complex morphological prop-
erties for galaxies, and most known detector non-idealities present
in HgCdTe H4RG detectors. There are many advances that are still
necessary, however, many of which are currently in progress. These
include increased simulation volume for more precise end-to-end
tests, increased fidelity in the simulation of the data accumulation
processes within the detector simulation, and more realistic input
galaxy and star information. Together, they will enable more precise
and advanced tests of algorithm development and pipeline integra-
tion testing for the Roman weak lensing program.

In terms of advances in detector physics simulation within
galsim.wfirst, galsim.wfirst now includes a model for

Focus Astig
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Figure 12. The correlation function £ of the ellipticity difference between
each run, indicated by the label for each panel, and the FIDUCIAL run. Neg-
ative points are shown as crosses. The £_ values are all consistent with zero,
and are not shown.

the persistence effect in the detectors based on measurements from
preliminary engineering detectors that will be implemented in fu-
ture versions of the survey simulation. The current simulations do
not include an implementation for the brighter-fatter effect. GAL-
SIM has an implementation of this for silicon CCDs, but not for the
HgCdTe detectors used by Roman. It is possible that using the CCD
implementation would be sufficiently accurate for future simulation
runs, but this needs to be further investigated. We now also have the
engineering data to implement measured realizations of the corre-
lated noise fields derived from detector flats and darks. One signifi-
cant difference relative to how data will be taken with the WFIRST
SCAs is the lack of ‘up the ramp’ information as charge accumu-
lates within the SCA. In practice, we will have access to several lin-
ear combinations of intermediate read-outs from the SCAs, which is
not currently implemented. Other plans for galsim.wfirst are
also discussed in Sec. 3. These improvements will enable us to use
GALSIM to update our knowledge requirements for detector effects
(beyond the analytic estimates used during the formulation phase of
the mission).

On the mock galaxy catalog side, we have produced test runs
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where we interface our weak lensing survey simulation pipeline for
WFIRST with the existing LSST DESC Data Challenge 2 (DC2)
mock galaxy catalog (Korytov et al. 2019), CosmoDC2, to produce
WFIRST imaging over the same simulated universe as is currently
being used for DESC image simulations (LSST Dark Energy Survey
Collaboration et al. 2020). The result of this work will be described
in a future paper. CosmoDC?2 provides a deeper mock catalog than
is currently being used, with synthetic spectra provided for each ob-
ject to enable fully chromatic studies of weak lensing shape recov-
ery. With planned improvements to the recovery of the near-infrared
colors for objects in CosmoDC2, this will also enable a powerful
joint-simulation with matched imaging as expected for both LSST
and Roman. These matched simulations will enable a range of joint-
processing tests at the pixel level to test combinations of ground-
based imaging from LSST with space-based imaging from Roman.

While the current synthetic survey volume used in this paper is
relatively small, due to the necessity of simulating it many times,
we plan the production of much larger public simulations in the near
future. This will include many of the improvements described above,
including multi-band imaging across tens of square degrees at full
Roman five-year Reference Survey depth matched to LSST imaging
from DESC.

7 CONCLUSION

The Roman observatory will be an exquisite tool for the study of
cosmology using weak gravitational lensing. Launching in the mid
2020s, it can harness a unique combination of agility in potential sur-
vey design, coupled with a unique range of capabilities and power, to
clarify new discoveries and resolve disagreements between the Stage
IV surveys that precede it in the early 2020s. To ensure we are able to
take full advantage of the potential of Roman, we must develop the
necessary tools to both validate instrument requirements and their
flowdown from weak lensing cosmology and to enable pixel-level
algorithm development and ultimate integration testing of our mea-
surement pipelines.

In this paper, we have described a simulation framework to pro-
duce a realistic, synthetic Roman imaging survey populated with
suitably complex objects that can serve these functions at the cur-
rent level of necessary realism. This framework combines a simu-
lated five-year Reference Survey, an appropriate mock galaxy and
star population that would be observed by Roman, and a simulation
of most relevant properties of the HgCdTe H4RG detectors to be
integrated into the Roman camera. We present a set of 13 matched
2.5x2.5 deg® image simulations to full depth of the reference five-
year survey, each with the wavefront model perturbed in some way.
These perturbations can be classified into three broad categories:
static, high-, and low-frequency. We study the galaxy shape recovery
in these simulations to empirically measure the relative bias in weak
gravitational lensing shear estimates due to these errors in wavefront
reconstruction, in order to compare to what is anticipated from the
analytical requirements flowdown that was previously developed for
Roman.

We present quantitative comparisons of the change in the recov-
ered ellipticity due to these various errors in the wavefront model rel-
ative to the fiducial simulation. These are presented in terms of both
mean shear as a function of focal plane position and the correlation
function £+ of the ellipticity difference as a function of angular sep-
aration on the sky. Finally, we derive the response of the change in
ellipticity relative to the wavefront model error mode, which we use
to evaluate differences relative to previous analytical requirements
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forecasts. We find general agreement with the analytic requirements
flowdown, though note that the empirical measurement of the bias
induced in the non-random anisotropic jitter case is typically larger
than predicted by the analytic flowdown. We do not consider this
to be a significant concern for continued reference to the baseline,
analytic requirements flowdown used by the mission, as these dif-
ferences are at the 1-2¢ level, depending on the type of comparison,
and thus generally consistent with the analytically predicted upper
bound of the effect.

We have outlined in Sec. 6 several future expansions to the valida-
tion framework described in this paper for the Roman weak lensing
analysis. These include updates to methodology, the incorporation
of new flight-candidate detector measurements, and improvements
in the fidelity of the image simulations to represent the full range of
both properties of objects that will be observed by Roman and the
full range of non-idealities in the detector systems. As the Roman
mission approaches its construction phase, we expect these simula-
tions to also begin to play a substantial role as the basis for integra-
tion tests of measurement pipeline development over the next several
years.
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APPENDIX A: OVERVIEW OF WEAK LENSING
SYSTEMATICS BUDGETING

This appendix describes the requirements flowdown and error bud-
geting for the weak lensing program on the Roman mission, and
documents the detailed rationale behind the summary requirements
listed in the Roman SRD. This kind of error budgeting has been per-
formed elsewhere in the literature (Paulin-Henriksson et al. 2008;
Massey et al. 2013), but this document focuses on the error terms rel-
evant to Roman. For example, the PSFs are based on an obstructed
pupil with low-order aberrations rather than using generic formu-
lae involving second moments (some such formulae, including those
used in the Joint Dark Energy Mission and WFIRST Interim Design
Reference Mission studies, were for Gaussians).

We set most systematics requirements for this mission on the ba-
sis of having systematic errors sub-dominant to statistical errors in
the weak lensing shear power spectra or cross-power spectra (or any
linear combinations thereof). Exceptions to this policy are consid-
ered in cases where meeting the original systematic budget becomes
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a cost or complexity driver, or is not possible. Most measurement
biases — including those considered in this paper — fall into the “ad-
ditive” or “multiplicative” forms (see §A1) and will be treated ac-
cording to the formalism therein.

Al Additive and multiplicative biases

The cosmic shear measurement is sensitive to two major types of
measurement errors. Additive bias or “spurious shear” c is a shear
signal that is detected even when none is present. Multiplicative bias
or “calibration bias” m is an incorrect response to a real shear, e.g. a
shear +y is present in the sky but the measurement yields 1.01~. Nor-
mally, we think of additive biases as resulting from mis-estimation
of the PSF ellipticity (or its variation across the sky), whereas mul-
tiplicative biases result from mis-estimation of the size of the PSF.
However, detector nonlinearities, approximations used in the data
processing/analysis pipelines, and uncertainties about the distribu-
tion of galaxy morphologies in the sky can also contribute to both
types of biases. The E-mode shear cross-power spectrum between
two redshift bins z; and z; is modified in the presence of these bi-
ases:

Cy " (obs) = (1+ma)(1+m;)C; "™ (true) + C; 77, (Al)

where we write m; = m/(z;) as a shorthand for the bias in bin 7. To
linear order in the biases, the correction to the power spectrum can
be written as

AC;F = "% (obs) — C; V7 (true)

= (mi +my;)C; "7 + O (A2)

If m is spatially variable, there is an additional contribution (e.g.
Kitching et al. 2012, 2016):

2 p!

AGH = / % Cil "™ cos* (2p0p),  (A3)
where dm; is the fluctuation in multiplicative bias of bin ¢, and g 4/
is the angle between the indicated wave vectors. This is second or-
der in the m-biases, so we expect it to be small compared to the
first order contribution in Eq. (A2), which comes from the spatially
averaged part of the multiplicative bias. We will briefly discuss this
spatially variable contribution again in §A2.3.

A2 Setting requirements

The power spectra are arranged into a vector C with a covariance
matrix 3. For the weak lensing power spectrum, with N, redshift
bins and NN, angular scale bins, there are N;N.(N. + 1)/2 power
spectra C;""“; hence C is a vector of length N, N. (N +1)/2, and
¥ is a matrix of size N¢N.(N. 4+ 1)/2 x N¢N.(N. + 1)/2. A
contaminant that changes the power spectrum by AC can have its
significance assessed by

Z =+vAC -X1AC, (Ad)

which is the number of os at which one could distinguish the cor-
rect power spectrum from the contaminated power spectrum. Note
that as the survey area (2 is increased, Z will increase as o< QY 2
and hence contaminants AC must be reduced to keep them below
statistical errors. If Z = 1, then the power spectrum is biased at the
same level as the statistical errors. We use Z as a metric for contam-
inants, rather than e.g. biases in (wo, w,)-space, for generality: if
Z < 1 then the bias due to AC in any cosmological parameter from
the combination of the Roman weak lensing power spectrum with
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any other data set(s) from Roman or other experiments is < 1o;
whereas if one based the analysis on biases in (wo,wq) then we
would need a separate requirement derived from every cosmological
analysis planned on Roman weak lensing data. Using Z as a metric
also enables us to write requirements that do not depend on other
cosmological probes (e.g. the Roman weak lensing systematic er-
ror budget does not change if we discover a new way to reduce the
scatter in the SN Ia Hubble diagram), which will help to ensure the
stability of our requirements going forward.

Technically the above discussion applies only to the E-mode of
spurious shear; we have not set a specific requirement on the B-
mode, which contains no cosmological information to linear order
and is used as a null test. For the latter reason, we set a require-
ment on the B-mode that is equal to the requirement on the E-
mode, so that the B-mode null test will pass if requirements are
met. We also note that the weak lensing analysis includes a range
of angular scales, min,tot < £ < fmax,tot; requirements apply to
sources of systematic error that affect these scales, i.e. are “in-band”
for the weak lensing measurement. The “in-band” qualifier is crit-
ical: as an example, pixelization errors can cause shape measure-
ment errors in galaxies that depend on whether the galaxy lands on
a pixel center, corner, vertical edge, or horizontal edge. For some
shape measurement methods, this error may dramatically exceed
the additive systematic error budget, but it is concentrated at very
small angular scales (multiples of 27 divided by the pixel scale P,
or 27r/P = 1.2 x 107). Our requirements are set on the portion of
this power that is within (or mixes into) the band limit, ¢ < £max tot
due to e.g. edge effects, selection effects, etc.

Equation (A4) still does not completely define a requirement,
since we have not described the redshift or scale dependence of the
spurious shear in question. Neither dependence is expected to be
trivial: errors in PSF models have a greater impact on shape mea-
surements for higher redshift galaxies, since they tend to be smaller;
and the angular power spectrum of PSF model errors should be non-
white in a survey strategy that “marches” across the sky, even if
heavily cross-linked (there may also be a characteristic scale at the
size of the field; for example, a repeating error at the ~ 0.8 x 0.4°
size of the Roman field has reciprocal lattice frequencies at £ = 450
and 900, so a large scale error in the instrument PSF model that
is “tessellated” as we tile the sky will appear at these frequencies
or multiples thereof). At first, we considered assuming a particular
scale and redshift dependence for the errors, but in order to be con-
servative we would have to assume the worst combination of angular
and redshift dependences. Many of our large sources of systematic
error, such as PSF ellipticity due to astigmatism, have predictable
dependences (e.g. the systematic error induced in galaxy shears is of
the same sign in all redshift bins) that are far from the worst case,
and this could lead to over-conservatism in the requirements. There-
fore we need a more nuanced approach to the requirements, where
the allowed amplitude of each term in the error budget is informed
by the structure of the correlations it produces.

Our approach to this problem is to write a script that accepts a spe-
cific angular and redshift dependence (“template”) for a systematic
error, and returns the amplitude Ao of the systematic error at which
we would have Z = 1 (i.e. a 1o bias on the most-contaminated
direction in power spectrum space). For cases where the template
is not known (or where we have not done the analysis), the script
is capable of searching the space of templates and finding the most
conservative choice, i.e. the choice that leads to the smallest value
of Ag. The combined results enable us to build an error tree, where
the overall top-level systematics requirement (a limit on Z) can be
flowed down to upper limits on each source of systematic error. Fi-



A Synthetic Roman High-Latitude Imaging Survey 17

nally, some portions of the systematic error budget sum in quadra-
ture (“root-sum-square” or RSS addition) and others linearly; in this
document, we carefully account for which is which.

A2.1 Data vector and covariance model

We build our data vector for the shear power spectra and cross-
spectra. We recognize that weak lensing analyses have shifted to
“3 x 2-point” data vectors containing shear-shear, galaxy-shear, and
galaxy-galaxy correlations, and by the time of Roman the list of
standard observables may be even longer. However, for setting re-
quirements on shape measurement, shear-shear provides the most
demanding use case, and so for simplicity here we only consider
shear-shear.

We use for our data vector the N¢N. (N, + 1)/2 power spec-
tra and cross-spectra. Each ¢ is treated separately, so there are
Ni¢ = fmax,tot — fmin,tot angular bins; we use fmin,tot = 10 and
Crmax,tot = 3161, thereby covering 2.5 orders of magnitude in scale.
Roman provides little cosmological constraining power at the larger
scales due both to the finite size of its survey and due to the large
cosmic variance of the lowest multipoles. The smallest scales are
generally not used in cosmic shear analyses because the baryonic ef-
fects are severe (e.g. Zentner et al. (2008, 2013)). We use N, = 15
redshift slices, as shown in Table A1, which are chosen by the Ex-
posure Time Calculator (Hirata et al. 2012) v17, with the Phase B
exposure times (5 x 140.25 s in H158-band). In order to ensure that
Roman would not become systematics-limited in an extended mis-
sion, we set the top-level requirement on systematics to Z = 1 for a
survey of area 2 = 10* deg2 (3.05 sr).

The power spectra were obtained from CLASS (Blas et al.
2011) using the fiducial cosmology from the Planck 2015
“TT,TE,EE+lowP+lensing+ext” results (Ade et al. 2016). The shape
noise contribution was added to construct C*** according to

tot,z;,2; 27,25 72
CZ e :C/’ T+ rms&;j, (AS)

n;

where 7; is the mean effective number density in galaxies per stera-
dian in redshift slice ¢, and ~rms is the shape noise expressed as an
equivalent RMS shear per component; we take vyms = 0.22.

We approximate 3 using the usual Gaussian covariance matrix
formula,

S[CH, Cpkm =
Sorr [Ozot,zi,zk Czohzj yZm + Czot,zi,zm szazjazk}
(% + 1) f. sky '

where fay = €/(47). The non-Gaussian contributions to the er-
ror covariance matrix are turned off, because since the FOMSWG
(Albrecht et al. 2009) there has been an ongoing program of using
nonlinear transformations on the data to remove them (e.g. Neyrinck
et al. (2009); Seo et al. (2011)) and we do not want applications of
these novel statistics to Roman data to run into systematic error lim-
its. We also do not include astrophysical systematic errors in 3; we
envision instead that they will be treated with nuisance parameters
in the analysis. Another advantage of this is that the covariance ma-
trix X is block diagonal in ¢-space (it is formally 375720 x 375720
without /-binning), which makes computations possible on a ma-
chine with limited memory. Indeed, in the Gaussian case one may
write

(A6)

AC-Z'AC =
204+ 1) fs i ot— m ot—
S CEE Dy S~ ACH (05 ACE (€ iy (AT)
£ 2 ijkm

Table Al. The effective number density in each redshift bin, in units of
galaxies/arcmin?, used for setting requirements. These are per bin, i.e. are
dnesr/dz X Az.

z Neff z Neff z Neff
0.10+0.10 3.62 | 1.10£0.10 3.75|2.10£0.10 1.21
0.30£0.10 2.12 | 1.30£0.10 3.17 | 2.30£0.10 0.95
0.50+0.10 3.05 | 1.50£0.10 2.52|2.50+£0.10 0.82
0.70+£0.10 590 | 1.70£0.10 1.45|2.70£0.10 0.68
0.90+0.10 2.79 | 1.90+0.10 1.68 |2.90£0.10 0.19

where the matrix inverses are N, X N,.

A2.2 Implementation: additive systematics

Each additive systematic error is taken to have an angular depen-
dence given by some template 7¢, and a redshift dependence given
by a set of weights w; = w(z;). That is, there is a reference ad-
ditive shear c,of, with the additive shear in redshift bin ¢ given by
¢(zi) = wicrer. For example, a systematic error independent of red-
shift bin would be specified with w; = 1 for all . The reference
signal is taken to have a power spectrum proportional to the tem-
plate: C’éc ref — A(Q)T ¢, and the template is normalized so that c,ef has
variance 1 per component (from in-band fluctuations):

£max,tot 20+ 1
Y, L=t (A8)

£=Lmin,tot
The additive cross-power spectrum is then
Circj 2
Cé 7= Aowiijg, (A9)

and the total RMS per component of the spurious shear in bin 7 is
A0|w1|

The additive systematic errors can have various scale depen-
dences. We therefore consider a suite of Nyana disjoint angular tem-
plates that cover the shape measurement band. Each template satis-
fies the normalization rule, Eq. (A8), and has £(¢ + 1)1, /(27) =
constant:

—1
200 4+ 1 4

W +1) Le+1)

Lmax (o)

7\ =

2 =Lyin (o)

1 Krnin(a) S Z S gmax(a)
X , = 0, -~-Nband — 1.
0 otherwise

(A10)

The current bands are displayed in Table A2. Each band « is allowed
a contribution to the total error Z (). Since there are no statistical
correlations between different ¢s in the covariance matrix X, the
Z(a) can be quadrature-summed (see Eq. A4). However, additive
systematic error is positive in the sense that it adds rather than sub-
tracts power; thus the power spectrum error vectors AC from two
sources of additive systematic error contributing to the same angular
bin are not orthogonal and the Z’s should be added linearly. Another
way to think of this is that since Z is proportional to the square of the
RMS shear, Z A%, quadrature-summation of the additive shear is
equivalent to linear summation of the Z-values.

The allocations for each bin Z(a) were initially set to
1/0.25/Npand, so that in an RSS sense 25% of the systematic er-
ror budget is allocated to additive shear; with 4 bands this implies
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Table A2. The requirements for additive and multiplicative systematic errors. There are Np,nq = 4 additive error bands ranging over a total signal band from
Lmin,tot = 10 t0 fmax tot = 3161. The fraction of the error budget allocated to each band is also indicated, as are the maximum allowed redshift-independent

spurious shear (A52%(

o), RMS per component), and the maximum scaling factors for redshift dependence, Smax,+ (@) and Smax,+ (). There is only one row

for the multiplicative errors, since the implementation does not contain an £ dependence; we quote a requirement on the post-calibration shear multiplicative

uncertainty ofl2t

m,req’t"
Band & | £iin (@) £fmax(a) Allocation Z () Sys. err. req’t. Smax,+ ()  Smax,+ ()
AG* (@) or oy g
Additive errors

0 31 99 0.2596 7.000 x 10~° 8.489 2.782

1 100 315 0.2539 9.900 x 10~° 5.628 2.041

2 316 999 0.2575 1.400 x 10~* 3.569 1.509

3 1000 3161 0.2538 1.900 x 104 2.119 1.149

Multiplicative errors
mult 0.4600 3.200 x 10~ 2.186 1.140

Z(o) = 0.25 (i.e., 6.25% of the error budget in an RSS sense) for
each band. There have been some updates of the exposure times,
throughputs, and number densities since the SRD requirements were
set (December 2016); we have kept the requirements the same, and
updated the Z-values, so the latter do not exactly equal 0.25.

The construction of Z-values for each angular band and each ad-
ditive systematic is mathematically sufficient to build the error bud-
get. However, they can be difficult to conceptualize. Therefore, we
introduce some equivalent notation to describe the weak lensing er-
ror budget. For each angular template, we introduce a limiting am-
plitude A8**(a), defined to be the amplitude Ao at which we would
saturate the requirement on Z(«) for bin « in the case of a redshift-
independent systematic w; = 1Vi. That is, if the additive system-
atics did not depend on redshift, we could tolerate a total additive
systematic shear of Af** (RMS per component) in band «.. We also
introduce a scaling factor S[w, o] for a systematic error

Z («) for thisw;

Slw,a] = Z(a) forallw; =1

(A11)

that depends on the redshift dependence w;. An additive systematic
error that is independent of redshift will have S = 1. A systematic
that is “made worse” by its redshift dependence will have S > 1, and
a systematic that is “made less serious” by its redshift dependence
will have S < 1. The requirement that the (linear) sum of Zs not
exceed Z () thus translates into

Y. A x Sw,a] < [A5™ (@))%,

systematics

(A12)

where A(«) is the RMS additive shear per component due to that
systematic.

In most cases, we will take the “reference” additive shear to be
the additive shear in the most contaminated redshift slice; in this
case, w; = 1 for that slice, and |w;| < 1 for the others. Under
such circumstances, we can determine a worst-case scaling factor
Shmax,+ (), which is the largest value of S{w, ] for any weights
satisfying the above inequality. We may also determine a worst-
case scaling factor Smax,+ (a) conditioned on 0 < w; < 1, i.e. for
sources of additive shear that have the same sign in all redshift bins.
The search within these spaces is simplified by the fact that —accord-
ing to Eq. (A7) — the contribution to S[w, /] considering only a sin-
gle value of ¢ reduces to a semi-positive-definite quadratic function
of w (it is proportional to w' C}**~'w, where C}{°* is N. x N.).
Therefore the worst-case weights {wi}f-vzzl always occur at the cor-
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ners of the allowed cube in N,-dimensional w-space, and we can
simply search the 2™V= corners by brute force.

A2.3 Implementation: multiplicative systematics

The implementation for the spatial mean part of the multiplicative
systematic errors is simpler, since one can work directly with the m;;.
Once again, we may write m; = mw;, where m is the multiplicative
error in the worst bin (largest absolute value) and w; = 1 for that
bin, and |w;| < 1 for all bins; the w; thus represents the redshift
dependence of the multiplicative error. Once again, we may define
a scaling factor S[w, mult] for multiplicative biases analogous to
Eq. (A1l):

Z?(mult) for this w;

Slw, mult] = Z2(mult) for all w; = 1

(A13)

this time, we define this with the Z? rather than Z so that RSS addi-
tion will apply to independent multiplicative errors:

> o x Shw,mult] < [oiteq],

systematics

(A14)

where afnatreq,t is the requirement on knowledge of m. Fundamen-

tally, the square present here but not in Eq. (Al1l) arises because
multiplicative biases in the power spectrum are proportional to m
but additive biases in the power spectrum are proportional to 2.

The worst-case scaling factors Smax,+ (mult) (conditioned on
0 < w; < 1) and Smax,+ (mult) (allowing either sign) can be de-
fined analogously. In this case, since AC is linear in the m; and
hence wj, it is actually S%[w, mult] that is a semi-positive-definite
quadratic function of w instead of S, but the technique of searching
the corners by brute force still applies.

Once again, we initially set Z(mult) = 0.5, allocating 25% of
the systematic error in an RSS sense to multiplicative systematics;
due to changes in the model since the SRD was first written, the
allocation is no longer exactly 25%. The resulting limits are quoted
in Table A2.

One may also consider the spatially varying multiplicative sys-
tematics, which contribute to the power spectrum via Eq. (A3). As
noted in §A1, we expected this contribution to be small. As a simple
test, we tried assessing a redshift-independent multiplicative bias,
with the scale dependence ¢(¢ 4+ 1)Cy*™ = constant over the range
8 < ¢ < 1442 (i.e., from one wavelength over the survey region
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to a half-wavelength across an SCA), and with total variance o2, =
>-0(204+1)C7"™ /(47). The resulting contribution to the error bud-
getis Z2 = 0.016(0:m/0.01)*. We also tried using a Kronecker
delta scale dependence, C;"™ = 47wc2, 60, /(2¢ + 1); by searching
over all the ¢y in the range from 8 < £y < 1442, we found the worst
contribution to the error budget to be Z% = 0.020(0:,/0.01)* if
£y = 16. This represents an upper bound to Z? for a given &,,.2° It
is thus clear that the requirements on spatially varying multiplicative
systematics will be much looser than those on the spatially varying
additive systematics, and hence it is the latter that will drive PSF and
wavefront stability requirements. The allocation in terms of accept-
able Z? for spatially varying multiplicative systematics the overall
Roman error budget is under discussion.?!

A3 Flow-down to PSF requirements

In order to translate a requirement on additive bias ¢ or multiplicative
bias m into requirements on lower-level quantities, we need to know
how a given effect — e.g. an error in the PSF model — affects the
shear measurement. We focus here on the additive biases, which are
of interest for this paper; the multiplicative biases can be treated in
the same formalism and we comment on how to do this at the end.

We need to compute Ovobs(2:)/0X, where Yobs is the measured
shear in a region (and in redshift slice ¢) and X is any quantity on
which we want to set a knowledge requirement. The spurious shear
in bin ¢ is taken to be

a'Yobs(Zi)
¢ =c(z) = TAX’
where AX = Xirue — Xmodel 18 the error in knowledge of X. In
the context of the additive systematic errors, the ratios of the par-
tial derivatives O7obs(z:)/0X set the redshift slice dependence: if
i(max) is the redshift bin with the largest derivative (in absolute
value) then

(A15)

B%bs (Zl ) /8X
. 870135 (Z'L(max) )/8X (A16)
and the reference additive shear is Cref = Ci(max)-

In principle the coefficients O7obs(zi)/0X depend on the base
model for the PSF, the population of galaxies, and the shape mea-
surement algorithm. Multiple algorithms should be used for Roman,
but a final selection has not been made (given how rapidly the field
is maturing, such a choice now would be premature). However, all
practical methods of measuring shear have some basic properties in
common — if e.g. the true PSF has greater e; than the model (i.e. is
elongated in the z-direction), then the inferred shear in that region
of the sky will also have greater c;, and this effect will be greater for
larger PSFs or smaller galaxies. In setting requirements, we there-
fore chose a simple, easily understood model. This model is not,
and does not need to be, an accurate description of Roman shape
measurement at the fewx 10~ accuracy. Rather, it needs to give
us estimates of Oyobs(z:)/0X early in the development of Roman,
with the understanding that we will not update the optical stability

20 To see why, let & = (2¢ + 1)Cy*™/(4mo2,) so that £ > 0 and
> ¢ & = 1. Then since Z 2 is a positive semi-definite function of the crm,
itis a convex function of the Cg’””, and Jensen’s inequality (?, §3.1.8) shows
that Z2 <> 0 &e Zf, where Z?O is the value of Z?2 with the Kronecker delta
scale dependence, £y = dy¢,,. It follows that Z 2 is less than or equal to the
maximum of the Z?O.

21 We thank the anonymous referee for encouraging us to think about this
more carefully.

requirements every time we have a better model for the distribu-
tion of galaxy morphologies. The very simplest choice would be to
work with Gaussian PSFs and galaxies; however, our previous expe-
rience has been that the non-Gaussian tails of both PSFs and galaxies
matter, and furthermore when we discuss the Zernike description of
wavefront errors we have predictions for how various combinations
of modes affect the ellipticities of different isophotes of the PSF.
Therefore, we go one step beyond the Gaussian approximation and
include in our analytic flow-down model:

e Our galaxies are taken to have an exponential profile, feirc(x) o<
e 1-07834IxI/Tert \where ryoq is the half-light radius. It can option-
ally be sheared by applying a finite shear - to arrive at the galaxy
().

e The PSF is the Fourier transform of an annular pupil with aberra-
tions appearing as contributions to the phase. The resulting “optical”
PSF is then convolved with a detector response that includes a tophat
and charge diffusion. For HgCdTe detectors, we take the charge dif-
fusion length to be 2.94 um rms per axis (Barron et al. 2007).22
Other effects that are likely significant for Roman analyses, such as
inter-pixel capacitance, the brighter-fatter effect, or polarization, are
not included. We turned the spider off. The main effect of the spider
is the production of 12 diffraction spikes, but it is the core of the PSF
that matters most for shape measurement and has the greatest change
as one adjusts the Zernike coefficients. The spider further leads to an
asymmetric pupil, i.e. with odd-order modes in the decomposition of
the amplitude, but this has no appreciable effects on the relation of
ellipticity to low-order Zernike modes.

e We use as our measure of ellipticity the 2-component ellipticity
er of the observed image I = f x P (where f is the galaxy, P is
the PSF, and x denotes convolution). The ellipticity is determined
according to the adaptive moment algorithm of Bernstein & Jarvis
(2002), §3.1.

The observed 2-component ellipticity er of the galaxy is related
to the shear by a 2 X 2 responsivity matrix

_ Oeri
R

which we have decomposed into an isotropic part R and a traceless
matrix R*"'*° characterizing the anisotropic part of the responsivity.

The inverse of the responsivity matrix relates a bias in the galaxy
ellipticities to a bias in the shear:

= Rdij + R

Ri; aniso (A17)

2

Cc; = Z[R_l}zj 886;; AX

(A18)

j=1
Since the isotropic part of the responsivity dominates except for ex-
treme PSF ellipticity, anisotropic noise correlations, etc., we take the
isotropic part and write

ovs.i(zr) _ <R71%>, (A19)

0X 0X

22 This was measured on an H2RG. At the time we had to fix this for Phase
A requirements flow-down, we did not have a measurement on the H4RG.
We now know the charge diffusion for Roman detectors is smaller than this
number (Mosby et al. 2020), but it makes a small enough difference that we
have not re-done the requirements flowdown.

23 Tt is known that an odd-order mode in the phase can mix with other asym-
metric phase modes to produce PSF ellipticity, e.g. if one introduces a large
trefoil ¢ then the ellipticity develops a linear term in coma, proportional to
tc* (Noecker 2010). However, an amplitude feature with 3-fold or other odd
symmetry, such as the spider, does not lead to such an effect.

MNRAS 000, 1-28 (2019)
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where the average is taken over the source galaxies in that redshift
bin. The various partial derivatives are easily computed as finite dif-
ferences of the galaxy simulation and ellipticity measurement pro-
cess.

As this model is intended to be simple, the average is taken only
over the distribution of source sizes r.g — we do not include the
intrinsic source ellipticity or a distribution of Sersi¢ indices.

The main difference that occurs with the multiplicative systematic
errors is that when one changes the PSF size, one must look at the
change in responsivity, i.e., m = dInR/9X.

APPENDIX B: REQUIREMENTS ON WAVEFRONT
STABILITY FOR THE PSF CALIBRATION

The determination of the PSF in imaging mode will be based on an
empirical (principal components or more advanced version thereof)
approach (these methods have a long history in weak lensing — see,
e.g., Jarvis & Jain 2004; Jee et al. 2007 — but a large amount of work
will be required to adapt them to Roman), or on physical fitting of the
optical model (Jurling & Content 2012) with empirical corrections.
Central to both of these approaches is that we must limit the number
of possible principal components in the data by limiting the number
of properties of the PSF that vary from one image to another. The
Roman approach is to keep the PSF stable during an exposure so
that no parameters are needed to describe time dependence of the
PSF during an exposure. We make one exception to this policy for
image motion, since at the Roman weak lensing level of precision
this is unavoidable. Thus the requirement is for the optics + image
motion PSF to be the convolution of the optics PSF with a kernel
coming from the image motion, with small residuals. Here “small”
means that the residual error must fit within the overall error budget
for PSF (or shear) errors.

We note that since Roman detectors can be read non-destructively,
and 6 sub-exposures will be sent to the ground, that one could imag-
ine building a time-dependent PSF from these sub-exposures. We
have chosen not to set a looser requirement based on this expecta-
tion, since we plan to calibrate detector non-linearity using the con-
sistency of the sub-exposures; this approach does not work if the
PSF is varying in an uncontrolled way.

Requirements are derived for the two major sources of wavefront
change: slow drifts induced by, e.g. thermal variations (§B1), and
jitter induced by e.g. vibrations from the reaction wheels (§B2).

B1 Wavefront drift
Bl.1 Flowdown methodology

In general, we suppose that there is a vector of parameters p that de-
termines the PSF in each exposure (including its field dependence).
Some of these are associated with the equilibrium wavefront — this
is the subject of this section — whereas others are associated with
image motion, jitter, detector properties, etc. The amplitudes 1); (0)
of each Zernike component of the wavefront error — which depend
on field position @ — are functions of these parameters, and will each
have their own time dependence ;(0;t). This induces a time de-
pendence in the PSF G(x;6;t), and hence in the observed shear
Yobs for an object.

We may write the amplitudes ; at a given position as a vector
1 of length Nzern, Where Nzern is the number of Zernike coeffi-
cients kept. We normalize the Zernike modes to unit RMS, so that
|p(0)| is the RMS wavefront error at position . That is, we write
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the wavefront error at pupil position 7 and field position @ as

P(n;0) =

1 m=20
ZZ\/n—i—lwnm(B)Rx(p)X V2 cosmep m>0 ,
n=2om V2 sin me m <0
(B

where p is the radius of the pupil position normalized to 1 at the
edge, and ¢ is the polar angle in the pupil plane, m is summed over
integers with the same parity as n (both odd or both even) and |m/| <
n (so that there are n+1 terms in the m-sum), and R).' is the Zernike
polynomial with normalization R!"(1) = 1. The factor of v/n + 1
and (sometimes) v/2 guarantee the unit normalization of the RMS
over the unit disc.

If the wavefront is drifting over time, then to first order in the drift
rate we may write

¥i(0;t) = i (05 t0) + i () (t — to), (B2)

where t is the central epoch chosen and f%At <t—tyg < %At‘
Again to linear order in t — ¢, the PSF that is determined by a least-
squares fit with uniform weighting in time will have an expectation
value that is G(x; 0;to). There is then a corresponding error in the
shear in a given redshift bin zj:

crilt) = a%b;iljfz’“)zz}j(e)(t —to), (B3)
J

where in this equation k denotes a redshift bin and ¢ denotes a com-
ponent. Taking just the most strongly affected (in the sense of |c|)
redshift bin to start as the reference, we see that

Yobs,ref,i || |
[erer ()] < ‘% [$(O)I[t — tol, (B4)
V;
where || || denotes an operator norm (i.e. the maximum singular

value of the 2 X Nzern matrix). The variance of ¢ per component
(i.e. divided by 2) is

1 1 [|| 0Yobs,ret,s
AQE* . 2<7 obs,ref,z
2<'C“”—2[H o

1
12

|¢<e)|} (t = t)2); (BS)

the last expectation value is -5 At? with the average taken over a

uniform interval, leading to

A< L H 8"}/obs,rcf,i
T V24 0,

Thus from a requirement on A, a determination of the matrix
Oobs,ref,i/0;, and an interval of time At, we can set a require-
ment on the wavefront drift rate |’1,b| The matrix 9Yobs,ref,i/OV;
depends on the static aberration pattern and its determination is de-
scribed below. The interval At for PSF fitting is a free parameter,
and the wavefront drift rate requirement is tighter if At is increased.
This must be traded against the statistical error in the PSF solution,
where the target precision is easier to achieve if the time baseline At
used in fitting the model is increased.

()| At. (B6)

B1.2 Sensitivity matrix

From Eq. (B6), we see that a key step is to compute the sensitivity
matrix 9Yobs,ret,i/0%;. Unfortunately, this matrix depends on the
specific combination of static wavefront errors, because g rof 1
not a linear function of ). Indeed, due to symmetries the possible
form of 7y, e is Testricted, with the result that Ovobs,ref,i/0%;
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may be suppressed at zero wavefront error (¢ = 0) and be much
larger in the realistic case where 1 # 0 (e.g., Noecker 2010). We do
not know a priori what the static wavefront error will be — we have
set a requirement of |¢p| < 92nm, but until we have the as-built
observatory we do not know how this will be distributed among
the Zernikes. We address this by expanding the sensitivity matrix
Oobs,ref,i/O; to linear order in P, which means we need Yobs ref,s
Taylor expanded to quadratic order in %) around ¢ = 0. A conse-
quence of this is that if the static wavefront error ) is larger, then
the sensitivity matrix is also larger and the stability requirements are
tighter. Then we search the entire space of possible wavefront errors
1) — bounded by the top-level requirement that |¢»| < 92nm - to
find the place where the operator norm is maximized.

The fact that the PSF inverts (i.e. preserves ellipticity and hence
spurious shear) under ¥ — —1) implies that 7, .. iS an even
function of 1) (this statement remains true even for an asymmetric
pupil, due e.g. to the spider). For a circularly symmetric pupil (i.e.,
an annular pupil, so allowing for a secondary obstruction, but not
accounting for the offset of the secondary obstruction when using
an off-axis portion of the field, nor for the spider arms), we find the
further restrictions that

Yobs,ref 1 =Crat2022 + Csathaoihaz + Ccc(¢§1 - 1/13,71)

+ Cet(Y31933 + P3_11P3_3) + ... B7)
and
Yobs,ref 2 =Crath2092-2 + Csaa0th2—2 + 2CccP311P3-1
+ Cet(Y31903-3 — P3_1133) + ..., (B8)

where we have taken the lowest-order aberrations (focus, astigma-
tism, coma, trefoil, and spherical) as these dominate the wavefront
stability budget. With the wavefront error vector written in this or-

der, ¥ = (120522, ¥2—2;1¥31,1¥3-1; P33, ¥3_3;Pa0), We find a

sensitivity matrix

r T
a’Yobs,ref,'L

T
M= L Oy
Crat22 Cratpa—2
Cratp20 + Csathao 0
0 Cratp20 + Csathao

2Ccc)31 + Cetthas
—2CccP3—1 + Certhz—3

2Ccctp3—1 + Cetp3—3
2Ccc31 — Cetthas

Cetsn —Cetp3—1
Cethz—1 Cethsn
Csa¢22 Csaw2—2

(B9)

(we show the transpose here for ease of display; the operator norm
is the same). The real pupil is not circularly symmetric, however as
noted above v, .o T€Mains an even function of ) even for a pupil
of general asymmetry; thus IM remains an odd function of %) and
the leading term is the linear term. The consequence of asymmetry
of the pupil is that the coefficients in Eq. (B9) may be slightly dif-
ferent in different directions, e.g., in J-band in the z = 1.0 — 1.2
bin, using the full pupil for SCA #1, we find that the top row of
MT is (8.2731h22 + 0.002th2_2,0.002¢20 + 8.289¢)9_2) um ™2,
versus 8.337(1p22, 1b2—2) um ™2 for the circularly symmetric (annu-
lar) pupil. This corresponds to a difference in sensitivity of 0.2%
(8.273 vs. 8.289) between the two astigmatism modes, and a 0.8%
(8.273 vs. 8.337) change in sensitivity relative to the annular pupil

case. This in principle changes our requirements by 0.8% (or 0.9%,
which is the maximum over any of the bands and redshift bins); in
practice, given the necessary margin factors, it does not make sense
to track stability requirements at the < 1% level. This statement
about the sensitivity holds even though the annular pupil is miss-
ing some important features of the real PSF (particularly diffraction
spikes).

We want a limit on the maximum singular value of Eq. (B9), sub-
ject to a limit on |2p|. To do so, let us first consider writing the singu-
lar value decomposition M = UDV T, where U is a 2 x 2 orthogo-
nal matrix, D has 2 diagonal non-negative entries in non-increasing
order (D11 > Da22) and is otherwise zeroes (and has dimension
2 X Nzern), and V is Nzern X Nzern. Here U is simply a rotation of
the shear derivative, and due to circular symmetry can be set to the
identity by rotating the entire aberration pattern. Thus without loss
of generality we can consider cases where U is the identity, and then

a obs,re: 2
vl = | 3 (Pt} = T Aw < ATl @1o)

J
where we used the fact that M is a linear function of ¢ and defined
the matrix A to be the matrix of derivatives of the first row of M:

0 Cr 0 0 0 0 0 0
Cfa 0 0 0 0 0 0 Csa
0 0 0 0 0 0 0 0
A_| 0 0 020 0 Ca 0 0 |
0 0 0 0 -2C 0 Cuq 0
0 0 0 Cu 0 0 0 0
0 0 0 0 Co 0O 0 0
0 Cwa 0 O 0 0 0 0
(B11)

which has norm

IIAH:maX{ C3, +Ci,, |Cccl+m}. (B12)

(There are both even-aberration and odd-aberration sectors of this
matrix; the operator norm is determined by whichever has greater
leverage on the spurious shear. In most cases, the even sector — the
first term — is dominant.) We show the derived coefficients in Ta-
ble B1.

We are not quite done because we have not specified the redshift
or scale dependence of this systematic. Since C, is usually dom-
inant, we adopt its redshift dependence to determine the weights
w(z;), with the last bin as the reference bin because it is the most
heavily contaminated — the galaxies are smallest in that bin and
the C-coefficients are largest. However, the weights w(z;) obtained
from C'; (the next largest coefficient) are only slightly different.

We find that in J129, H158, and F184 bands, the operator norms
are ||[A]| = 1.14 x 107%, 9.76 x 1075, and 8.46 x 107° nm™2,
respectively. Using the J129-band limit, which has the worst to-
tal contamination, we find a limit on the total wavefront error of
|$(0)| < 92nm, we find

A< S A$(O)]A =214 x 10~ an " x 12;(0)(]?12)

The current wavefront drift sub-allocation is that At = 1 expo-
sure (140 s) and |4(0)|A¢ < 0.37 nm, which produces a spurious
shear of 7.91 x 10™°, RMS per component. However the S-factor

MNRAS 000, 1-28 (2019)
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for the focus x astigmatism mode is 0.5488 in the worst angular bin,
so the implied spurious shear is ASY? = 5.86 x 107°. The re-
quirements in Table A2 give a top-level error of 2.65 x 10™*; 4.9%
of the additive shear systematic error budget, in an RSS sense, is
currently being taken up by wavefront drift. For a sub-allocation of
1 nm (instead of 0.37 nm), this would be 36% of the additive shear
systematic error budget.

B2 Wavefront jitter

The wavefront jitter is handled by a similar calculation to the wave-
front drift. The principal difference is that we are now interested
in the spurious shear from a PSF that is the superposition of many
instantaneous PSFs with different wavefronts. Moreover, the PSFs
can have different line-of-sight positions, so instead of simply con-
sidering the covariance matrix of the Zernike amplitudes, we must
also consider the line-of-sight motion (parameterized by 6, and 6,).
The spurious shear thus depends on the full covariance matrix of the
Zernike amplitudes ?» and the line-of-sight motion . Of this co-
variance matrix, the “line-of-sight block” Cov (8, @) corresponds to
simple image motion, and is not related to wavefront jitter. The PSF
modeling procedure for Roman will explicitly allow for image mo-
tion to be fit separately in each exposure (Jurling & Content 2012),
so the presence of Cov(@,0) does not represent a bias in fitting
the PSFE. On the other hand, the blocks Cov (8, %) and Cov(t, 1)
involve the wavefront jitter, and their effects on 7y}, o must be
treated here. (Due to the large number of parameters, we cannot fit a
full covariance matrix of all the Zernikes in each exposure.)
We can then write the matrix of second derivatives:

Yobs,i (Zk) = “Yobs, 'L(Zk)lno wi jitter

+ Z K25 WEE (24)Cov(0a, ;)

+z ZKYLFEWFE K)Cov(iy, ). (Bl4)

The matrix KWFE-WFE describing how much small high-frequency
vibrations of the wavefront impact the shear, has a dependence
on redshift bin zx, shear component ¢, and the Zernike modes j
and 5. The matrix K¥5WFE describes the effects of correlations
between LOS motion and wavefront jitter. Although not strictly
necessary for an analysis of wavefront jitter, we do also com-
pute the sensitivity to line-of-sight motion, which implies a term
KEOSTOS () Cov (64, 05) in Eq. (B14).

The matrix K in principle varies with the wavefront error, but
since it is a second derivative it is nonzero even for zero aberrations.
One option is to take this leading term (i.e. K evaluated at ¢ =
0) to set requirements. Another would be to also include the linear
dependences on 1); this would be necessary if we were to separately
write requirements on the individual Zernike modes, since due to
symmetries some entries in K are exactly zero in the unaberrated
case, but we do not expect this to be necessary when setting overall
limits on wavefront jitter (we verify this explicitly below).

Following the methodology of §B1.2, and again exploiting the
symmetries of the problem and suppressing the zj index, we find
that at ¢ = 0, the terms involving the covariance of line-of-sight
motion and wavefront jitter are

0 0 0 Ko 0 Ke¢ 0 O

000 0 -Keeo 0O Ko O
(B15)

LOS,WFE __
Kla]
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and
LOSWFE _ 0 0 0 0 Ko 0 Ko: 0
2aj - s
! 0 00 Kee 0O —Kgo 0 0
(B16)

where the two rows are a = 1, 2 and the eight columns are the low-
order Zernikes. Similarly, for the wavefront jitter variance, we have

0 Kfpu 0O O 0 0 0 O
Kia 00 0 0 0 0 K
0 0 0 O 0 0 0 O
FOWEBWEE _ 0 0 02K.. O K& O O
1 0 00 0 —2Ke 0 Ke 0
0 0 0 K 0 0 0 O
0 00 0 Kse 0 0 O
0 K0 O 0 0 0 O
(B17)
and
0 0Kype O 0 0 0 O
000 O 0 0 0 O
K¢{#0 0 0 0 0 0 K
KWFEWFE _ 000 0 2K.. 0 Ka O
i 000 2K.e 0 —Key O O
000 O —Ks O O0 O
000 Ko O 0 0 O
0 0Ksa O 0 0 0 O
(B18)
Finally, for the line-of-sight-motion only, we have
K{ﬁs ,LOS _ Koo 0 (B19)
0 —Kopo
and
grostos _ [0 Koo ) (B20)
Koo 0

Image simulations are required to determine the specific values of
Koc, Kot, Kfa, Ksa, Kce, and K.;. These depend on the galaxy
sizes, and hence indirectly on redshift slice zx. The coefficients in
the “worst” redshift slice are shown in Table B1.

Once again, the maximum value of the apparent shear induced by
wavefront error can be determined from the eigenvalues of the K
matrices, the RMS wavefront jitter, and the line of sight motion per
axis. We note that the RMS wavefront jitter is

Owfe—jitter = E Va“/%
v J

and that covariances between WFE jitter and LOS jitter are limited
by the rule that the covariance matrix be positive-definite (in partic-
ular, the correlation coefficients cannot exceed 1). This implies the

(B21)
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limits
> K () Cov(8a, 1)
aj
S \/m Olos—jitterOwfe—jitter (B22)
and
1
5 2 KR k) Cov (v, v
Ji’
1
< 5 max ( K?a + K2, | Kee| + m) U?erfjittera
(B23)

where g1os—jitter 1S the RMS line-of-sight jitter per axis, i.e. we set
Cov(0a,0) = Os_jisterdab. (Note that only the jitter contributes
here: the controlled motion of the line of sight does not correlate
with the wavefront jitter since it is not in the same frequency band.)
The sum of Egs. (B22) and (B23) represents a bound on the RMS
spurious shear in the y; component (a similar bound applies to 72).

We also computed K for the case of the full pupil (including spi-
der) and one realization of the static wavefront error at the center of
SCA #1. ?* In this case, the sparseness pattern of K changes, and
Eq. (B22) changes by replacing /Kj_ + K2, with the maximum
singular value of Klf(? SSWEFE - Over the 3 bands J, H, and F184),
and the 15 redshift bins, we found a maximum change of 1.9% in
the coefficient of Eq. (B22) for the +; component, and 3.1% for
the 2 component; in all cases, the sensitivity actually went down.
We therefore conclude that for the purposes of setting requirements,
computing K by expansion around the unaberrated annular pupil
was a sufficient approximation.

The RMS spurious shear per component in J-band, weighted by
the worst scaling factor S = 0.672 (which accounts for redshift
dependence), is then

Yrms V SNind S 6.85 x 1076 nm71 ma571 Olos—jitterOwfe—jitter
+4.67%x 10 °nm2 (B24)

2
O wfe—jitter-

This should be compared to the requirement of 2.65 x 10~*. The
line-of-sight jitter is required to be olos—jitter = 12 mas rms per
axis, and the observing strategy has two passes at epochs separated
by many months so we take Ning = 2. From Eq. (B24), we find that
the entire error budget would be taken up for owe—jitter = 3.76 nm
rms. If Owfe—jitter = 1 Nm rms, then 'yrmSSI/Q =6.14 X 1075, and
5.4% of the error budget is used (in an RSS sense).

APPENDIX C: SIMULATION DATA ACCESS

The simulated data for the FIDUCIAL run used in this paper form a
2.5%2.5 deg?, full-depth synthetic Roman Reference Survey in the
H158-band, which is suitable for a variety of uses in testing algo-
rithms to apply to Roman weak lensing data. The simulated dataset
will be available for download via a public shared Globus endpoint
following publication of this paper. This endpoint directory includes
the following sub-directories:

e IMAGES: A set of FITS images for each SCA in each pointing.

24 nttps://roman.gsfc.nasa.gov/science/Roman_
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e MEDS: A set of MEDS files that contain cutouts of each object
in each exposure, which do not include any neighboring galaxy light.
These MEDS files were used for the analysis in this paper.

e TRUTH: A FITS catalog of true object properties and a FITS
catalog containing information about where each object appeared
in each SCA in each pointing. The true centroid of the object in
SCA pixel coordinates is offset by 0.5 pixels in x and y relative
to the positions recorded in the second FITS catalog, which must
be corrected when doing precision operations with the images like
shape measurement. This correction is not needed if using the pre-
made MEDS files.

APPENDIX D: PERFORMANCE STATISTICS

Each stage of the image simulation suite can be trivially parallelized.
Disk I/0 is not a practical issue in the image generation when run-
ning at scale across 4-5k jobs. Within each image generation job
(simulation of a complete SCA), the drawing of each object is cur-
rently also trivially parallelized across available threads. This will
likely change as the simulation of the detectors becomes more re-
alistic, though. In both modes, the image generation stage achieves
about 95% CPU utilization. Stages that process the image output
into different data formats are less efficient, and the generation of
the MEDS files is generally limited by disk I/O and remote data
transfer. Typical timing (per thread), memory usage, and resulting
data sizes are provided in Table D1. The total data volume is 66GB
of FITS images, 412GB of MEDS files, and <1GB of catalog data,
for a total of about 478GB. These values will scale approximately
linearly with the area of sky simulated and the density of objects.

APPENDIX E: PSF MODEL APPROXIMATION

For this set of image simulations, we have saved the PSF model
at the position of galaxies in two resolutions: the native pixel scale
and at a pixel scale that is smaller by a factor of 8§ to enable unbi-
ased measurements of the PSF model size and ellipticity, which is
undersampled in the native pixel resolution. Measurements of PSF
properties use this oversampled PSF model image. The motivation
for choosing a pixel grid of 8 x 8 pixels and an oversampling factor
of 8 was to recover the true model ellipticity (e; and e2) and size (1)
to better than 0.1%. We show in Fig. E1 the fractional difference in
the PSF size and shape measured with various oversampling factors
relative to a ‘true’, high-resolution PSF image. This choice has no
impact on the measurement of galaxy shapes as implemented in this
paper. Measurements of PSF ellipticity and size are performed us-
ing an adaptive moments method (e.g., Hirata & Seljak (2003)). In
all cases we compare results from a fast approximation of the PSF
model used in these simulations, which is shown in Fig. 2, and not
the PSF derived from the real pupil plane image. Future studies do
include PSF models inferred from down-sampled versions of the full
pupil plane image, which are more accurate.

This fast approximation to the true PSF model uses six radially-
oriented struts to create a generic pupil plane image with the struts
and a central obscuration. The resolution of this image is set such
that the pixelization effects are significantly smaller than the strut
width, so should be negligible. Since the 6 struts in the Roman pupil
plane are all at slightly different angles, this leads to 12 diffraction
spikes, rather than 6, so visually the “approximate struts” PSF (with
only 6 spikes) is noticeably different from the correct appearance
outside of the PSF core. In addition, a bug in how the PSF model
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Table B1. The coefficients of spurious shear at 1) = 0, appearing in Eqs. (B7-B12) for the top half of the table (wavefront drift) and Eqs. (B15-B23) for the
bottom half (wavefront jitter). Coefficients are shown for the worst (most contaminated) redshift bin. This redshift bin and the S-factor are shown in the two
right-most columns for the J129 band (which is always the most sensitive to wavefront jitter because it has the shortest wavelength). The S-factor is shown
for the worst angular bin, which is always the smallest scales (3.0 < logyy# < 3.5). The C and K coefficients are the same for the “even” aberrations but

different for the “odd” aberrations.

Band: | J129 HI158 F184 Worst z-bin  Worst S-factor
Wavefront drift coefficients
Ctq | 1060 922 806 | 1075 mas~! nm~1 2.8-3.0 0.549
Cee | 236 203 18110 %mas~'nm~!| 28-3.0 0.612
Cet | 623 541 471|107 %mas™'nm~! | 28-3.0 0.558
Csa | 414 321 25910 %mas™'nm~!| 2.8-3.0 0.672
IIA] | 11.38 9.76 8.46 | 106 mas™! nm~!
Wavefront jitter coefficients
Ko 769 616 483|107 %mas—! nm—! 2.8-3.0 0.592
Kp: | 329 378 4.08 |10 % mas~!nm~! 1.8-2.0 0.438
Kyp, | 1060 922  8.06 1076 nm—2 2.8-3.0 0.549
Kee | 352 276 223 10=6 nm—2 2.8-3.0 0.648
Kee | 552 474 410 1076 nm—2 2.8-3.0 0.568
Ksq | 414 321 259 1076 nm—2 2.8-3.0 0.672
Kgg | 14.32 13.77 13.34 10~ 6 mas—2 2.8-3.0 0.504
Table D1. Performance information for the major image simulation suite "
stages. Each tile is 0.013 deg? on the sky. Each image contains about 2255 Y101 -
galaxies and 140 stars. For the image simulation created in this paper, with S % r .
an area of 6.25 deg?, these numbers correspond to a total CPU time cost per E) . .

. . N . . 103 * []
simulation realization of about 7,500 CPU hours for image generation and S n
9,000 CPU hours total. The time required for shape measurement is expected < K]
to decrease by at least an order of magnitude, since the current measurement _5 1073 . e 2 R
algorithm employed is very slow by current standards, but most of the CPU E . e .
cost is still in generating the images, which is unlikely to be reduced in the e 10-7 2 .
future. = T (arcsec?)

. . 0 1 2 3 4
Benchmark Image generation MEDS creation Shape Model oversampling factor (2")
(per SCA image) (per tile ) measurement
CPU time 180 min. 10-15 min. 5 sec. Figure E1. The fractional error in the recovered PSF ellipticity (e; and
Memory 2-4GB 1-2GB <1GB e2) and size (1) for various factors of PSF model pixel scale oversampling
factors of 1, 2, 4, 8, and 16 relative to the native Roman pixel scale, in cutouts
Data size 25MB 1GB <1MB

rotates with the observatory roll angle was discovered prior to pub-
lication, which will be corrected in future simulations. This acts to
enhance any biases observed in this suite of simulations, due to the
PSF model not averaging as much as it should across multiple expo-
sures, but otherwise does not change the primary conclusions.

APPENDIX F: ERROR METRICS FOR SETTING
REQUIREMENTS

In this paper, we have set requirements using the error metric Z,
which is based on the error in the data vector (length Ngats) relative
to its covariance matrix (see §2.2). This is one of several possible
choices. There have also been suggestions to choose an error metric
more directly related to the cosmological parameters, since these
rather than the data vector are the ultimate science result from the
mission. There are several ways to implement this idea. Examples
are:
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of size 8 X 8 native pixels. The fractional error is measured relative to a ‘true’
PSF model, which is represented by a cutout of native pixel size 64 X 64
pixels with a resolution that is oversampled by a factor of 32. Results both
with (square) and without (circle) the pixel convolution are included. The
points are artificially offset horizontally for clarity.

e A similar error metric, r, defined in the space of cosmological
\/ A0 - Z5'AG, where Zg is
the cosmological parameter covariance matrix, and A is the bias
in the cosmological parameters. This metric asks not about the data
vector, but whether the bias in the cosmological parameters is within
the 1o, 20, etc. error ellipsoid. If this is done, one presumably fits
not just the cosmological parameters to the data vector, but also a set
of nuisance parameters v (length Nyuis).

e One might use a similar error metric, but only care about some
of the cosmological parameters — e.g., the LSST DESC Science Re-
quirements Document uses the space (wo, wq ) (The LSST Dark En-
ergy Science Collaboration et al. 2018), and Massey et al. (2013)
considers the bias on the single parameter w (in which case the er-

parameters 6 (length Neosmo): 7 =
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ror metric is “bias divided by sigma” or /7). This is mathematically
the same problem as using Zcosmo, but one treats other parameters
such as (2, or og as nuisance parameters. Euclid Collaboration et al.
(2020) presents “bias over sigma” for wo and w, separately, which
can be thought of as two versions of the r metric but each in a dif-
ferent 1-dimensional space.

e One could instead treat a systematic error in the data vector as an
effective increase in its covariance matrix 3: 3 — 3 + AC ACT,
where AC is the bias in the data vector. (One thinks of this as a
“systematics contribution to the data covariance.”) Then one can ask
by what factor the ellipsoid volume in cosmological parameter space
is increased: faeg = \/|X6,new|/|X0,01a|. Note that if the cosmo-
logical parameter space is (wo, wq) (and other parameters are taken
as nuisance parameters), this is equivalent to the degradation factor
in Dark Energy Task Force Figure of Merit (Albrecht et al. 2000).

The error metrics Z and r satisfy Z, r > 0, whereas fqeg > 1, with
equality holding for no degradation.

Our objective in this appendix is to explore the mathematical
properties of these different metrics (Z, r, and fqcg), and their ro-
bustness under different circumstances. Do these error metrics add
linearly, by RSS addition, or in some other way? What happens
when we introduce a new nuisance parameter (which may be as-
trophysical)? What if we shorten the data vector with a scale cut
(which is really a special case of adding nuisance parameters)? What
if we combine Roman weak lensing with an external data set? The
Z metric — while it is the most conservative and leads to the tightest
requirements — has the advantage of obeying straightforward rules
under these operations, which make it well-suited to error budgeting
when these tighter requirements can be met. The other metrics might
still be considered as a fall-back option under some circumstances if
the Z metric cannot reasonably be met, or at the requirements ver-
ification stage if one is focused on a particular set of analyses (e.g.
Euclid Collaboration et al. 2020).

We note that the fqeg error metric treats the systematic error in
a probabilistic sense, whereas the others as written treat the error as
deterministic but unknown. If we take the probabilistic point of view
instead for Z or r, we should instead consider the RMS error met-
1ics, Zems = (Z2)Y? or rems = (r2)'/2. This approach is particu-
larly useful in error budgeting when adding systematic contributions
that are “independent” (indeed, only in the probabilistic point of
view does considering systematics to be “independent” make sense).

The major results from this appendix are shown in Table F1. Some
aspects of these error metrics have been considered before. Section
4.1 of Massey et al. (2013) discusses at length the determinstic vs.
probabilistic interpretation of r. Appendix B2 of The LSST Dark
Energy Science Collaboration et al. (2018) has a discussion of the
comparison of Z and r.

In this appendix, we use the symbol A > 0 to denote that the
symmetric matrix A is positive definite (or A > 0 to indicate semi-
positive definite) and A > B to denote that A — B is positive
definite. We limit our analysis to the Fisher matrix approximation,
where the covariance matrix does not depend on the data vector,
and the derivatives of the theory data vector with respect to the pa-
rameters are constants. We make extensive use of the fact that all
of these error metrics are invariant under general invertible linear
transformations of the data vector, GL(Ngata ), and of the cosmolog-
ical parameter space, GL(Ncosmo ). Note that these are general linear
transformations, not just rotations. Many results here are easiest to
understand and prove using particular choices of basis. For example,
general linear transformations allow one to use a basis where X is
the Nata X Ngata identity matrix In,,, .

F1 Relations among the error metrics

Here we show that Z is in some sense the “most conservative” of
the error metrics, followed by r, and then fqeg. This is essentially
because Z counts all systematic errors in the data vector, whereas
r counts only those that have a projection onto the cosmological
parameters. Finally, fqeg treats systematic errors as a contribution to
the covariance and hence allows them to be marginalized out.

F1.1 Comparison of Z and r

Let’s suppose that the cosmological parameters that we fit, 6,
have some dependence on the data vector C: there is a Jacobian,
R = 960/0C (matrix dimension: Neosmo X Ndatas With Neosmo <
Ndata)~ Then

S = RIRT, (F1)
and so
r? = ACTRT(REZR") 'RAC. (F2)

If we go to a basis where ¥ = Iy, ., and do a singular value
decomposition of R = UDVT, where U and V are orthog-
onal and D has Ncosmo diagonal entries, then we find r? =
S Neosmo(VTAC)Z, whereas 72 = Y Ndata(VTAC)Z. This
shows that

zZ<r. (F3)

It follows that this relation holds in the probabilistic sense as well,
Zrms < Trms.

F1.2 Comparison of Zcosmo and faeg

We now consider fqeg. First, let’s consider what happens without
nuisance parameters. If J is the Ngata X Ncosmo matrix of partial
derivatives of the theory data vector with respect to the parameters
0C¢n /06, with a partition, then standard Fisher matrix formulae tell
us that the covariance matrix of the cosmological+nuisance parame-
ters, 3¢ is given by

o= (F4)

If 3 is increased by the addition of a systematics contribution, 3 —
3 + A, then

B ITE-1]|
Jaes = \/|JT(E TAS)-1J| )

This equation simplifies if we do a general linear transformation on
the data vector to make 3 = Iy, . This does not uniquely define
the choice of basis for the data vector space; we may further do a
singular value decomposition of J = UDV'™, and then do a rotation
in data vector space to set V. = I, .., a rotation in cosmological
parameter space to set U = In,,,,, and a rescaling of the ¢th basis
vector in cosmological parameter space by D;; to set D to 1’s down
the diagonal. This makes J equal to 1’s down the diagonal and 0’s
elsewhere. In this basis, we have

facs = {det[(Ingun + AZ) Uneomo ok} 5 (F6)

where the subscript “Ncosmo block™ means that we take the upper-
left Neosmo X Neosmo block of the Ngata X Ngata matrix.
Now we want a bound on fqeg in terms of 7. In the basis we have
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Table F1. The rules governing the systematic error metrics considered here: Z, which is the size of the systematic error relative to the statistical error in the
data vector; 7, which is the size of the systematic error relative to the statistical error in the cosmological parameter vector; and fdeg, which is the increase
in volume in parameter space when the systematic error is included in the covariance matrix. For Z and r, one may consider the systematic error in either a
deterministic sense or a probabilistic sense (in which case we take the RMS). Table entries include “No rule” if there is no rule for addition, “N/A” for not
applicable, “Triangle ineq.” for triangle inequality addition, “RSS” for RSS addition, and “<RSS” when RSS addition provides an upper bound.

Error metric Data vector

space norms

Cosmological parameter Volume ratio

space norms

Z Zrms T Trms f deg
. 2 Ncosmo /2
Relations Z<r Zrms < Trms fdeg S (1 + NC(T)s o>
Addition of errors (deterministic) Triangle ineq. N/A Triangle ineq.  N/A No rule
Addition of errors (probabilistic, N/A RSS N/A RSS No rule
independent)

Adding nuisance parameter No effect No effect No rule No rule No rule
Combining independent data sets (A+B):

— general Triangle ineq. <RSS No rule No rule No rule

— if no common nuisance pars Triangle ine <RSS Triangle ine <RSS f (A+B)  ¢(A) f (B)

pars. g q. — g q. = deg — Jdeg /deg
(equality only if fé:g = c({]:g? =1

chosen here, the error on the parameters is related to the error in the
data vector by

A0 =J"='0) I AC, (F7)
so AQ; = AC; for 1 <4 < Neosmo and then
Ncosmo Ncosmo
r? = Z AO? = Z AC? = Tr[AX] Neemo block-  (F8)
i=1 i=1

(Every step in this equality is valid in either a deterministic or prob-
abilistic sense; in the latter case, the left-hand side becomes 72,,.) It
follows trivially from the block inversion formula that for a positive
definite matrix, the determinant of the block of an inverse is greater
than or equal to the determinant of the inverse of the block. There-
fore, if {\;} g are the eigenvalues of [AX] N, block, then

Necosmo Ncosmo

faee < | J] (04 X) and = > A (F9)
=1 i=1

We may write the formula for fqe, in the form

Ncosmo
2In faeg = In(1+\i), (F10)
i=1
where the last term has a strictly negative second derivative. This
means that for a fixed Zfi“fsm" Ai = 7'2, the maximum value
of 2In fyee is obtained when all of the \; are the same: A\; =
72 / Neosmo. Therefore, we have

(F11)

Ncosmo

7,,2 Necosmo /2
fdeg S (1 + ) .

This relation still applies if we have nuisance parameters, since
inclusion of a nuisance parameter can be thought of as a modification
t03: X — X + 02(0Ch/0p)(0Cen/0p) ™.

F2 Addition of error terms

A common problem in error budgeting is addition of error terms —
when there are two or more sources of error that must be included in
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the budget, how should they be added? And what can we say when
those two sources of error are independent?

This problem is simplest for Z and r, because they are the ordi-
nary vector lengths of AC in RNdata and A@ in RVeesme respec-
tively, if we use the bases where 3 and 3¢ are the identity. There-
fore they satisfy the “usual” rules of error addition:

o If we take the deterministic point of view, then Z and r obey the
triangle inequality: if there is one source of error (“A”) that produces
a bias in the data vector AC™) and another that produces a bias
A(C(B), then always the error metrics satisfy ZWFB) < Zz(A) 4
z®),

o If we take the probabilistic point of view, then Z;ms and 7ms obey
root-sum-square (RSS) addition with two independent contributions
AandB: Znd ™% = Z8)% + ZB)2.

In contrast, fqee does not obey any simple error addition rule. A
simple counterexample to any proposed inequality can be found with
Necosmo = 1, Ngata = 2, and matrices in the language of §F1.2:

1 1 0
J = and X = , (F12)
0 0 1

with systematic error contributions A and B:

and AC® = [ % ). (FI13

AC™ =

We take these contributions to be additions to the data covari-
ance matrix: 3 gets an extra contribution of AC™ACWT,
ACBACE®T of ACWACHT L ACBACBIT, Treating
the combination of A and B by adding their contributions to the co-
variance matrix is a direct consequence of supposing them to be in-
dependent. However, in this case one can evaluate Eq. (F5) and find
the degradation factors:

A B 1+a%+ 52
fies = fies =\| 1357 (F14)

FEOFB) = /14 202, (F15)

whereas
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It is clear that in this case, by making « large enough, we can make
f AFB) a5 large as we want; but then at fixed o, by making [ large

deg
enough, we can make fégg) and féeBg as close to 1 as we want. In
other words, using the fqeg metric, two systematic error contribu-
tions A and B, which are individually arbitrarily small can combine
to make an arbitrarily large contribution A+B.

This means that if one builds an error budget using fqes as a
metric, one must repeat the full Fisher matrix analysis each time
a new term is added and cannot rely on each contribution to the er-
ror budget staying within an “allocation” (e.g., stating fqeg < 1.02
or < 2% loss of figure of merit for a particular systematic). Keep-
ing this level of coordination across different contributions to error
budgets is a challenge in a large interdisciplinary team, but it can be
considered particularly in cases where error budgets based on r or
Z become cost, schedule, or engineering risk drivers.

F3 Introduction of new nuisance parameters

We now consider what happens when new nuisance parameters are
added. This is simplest in the case of Z: since it is built entirely in
data vector space, Z does not depend on how the data vector is used
and is unaffected when nuisance parameters are added.

It turns out that no simple rule occurs for r. To see this, let’s
consider the simple case of 1 cosmological parameter € and 1 nui-
sance parameter v. We also approximate the theory data vector as
a linear function of the parameters over the range of interest, i.e.,
9C:n/0(0,v) constant. The x? surface for these parameters will
generally be of the form

X’ = ( 0 v )A —2(bgf + byv) +¢,  (F16)

v

where A is the 2 X 2 inverse covariance matrix, and b is a vector. A
change in the data vector will lead to a change in Ab, the slope (it
does not affect A if the derivatives are constant, and we do not care
about Ac). The bias in the parameters if we include the nuisance
parameter is

o)
w | = ATTAb, (F17)
14
)
A9(+) _ Auu Ab@ + AGV Abu (FIS)

A99 AIIU - AZV

If the nuisance parameter is not added, then we look at the x? surface
with v fixed to 0, in which case the bias in 0 is
Abgy

A9 = Tor (F19)

The corresponding values of 2 = A2 /Var(6) are:

(+)2 _ (Auu Ab@ + AGV Abl/)2
" N Auu (AGOAVL/ - Agu) (FZO)
and
2
r(2 = (%41):9) . (F21)

It is now apparent that there is no inequality relating ) to r(:
as long as Ag, # 0, any value of the ordered pair (Abg, Ay, Abg +
Ag, Ab,) € R? is possible, and therefore knowledge of ) by
itself provides no constraint on () and vice versa. So the r error

metric may go up, go down, or stay the same when nuisance param-
eters are added.

Finally, we show that there is also no inequality relating f(g:g)

(with a nuisance parameter) to fdC ) (without it). Let us consider
the same example above with 1 cosmologlcal parameter and a sin-
gle nuisance parameter. The degradation factor with and without the
extra nuisance parameter is

old old old old
o | ARVAY —[AZOP /A
¢ (AGe™ ADS™ — (A2 AL
and
)= (F23)
deg

where A or AW js the old (without degradation) or new
(with degradation) inverse covariance matrix. These matrices are
given by

A(old) and A(new)

=Jx 17 =J(Z4+AcAch) 1T,
(F24)

where J is the Ngata X 2 matrix of partial derivatives of the data

vector. For the sake of constructing an example that shows there is

no inequality relating f(+) to fdCg , we take Nqata = 2 and J to be

deg
the identity. If we take 3 to be the 2 x 2 identity and AC = (o §)7,
then
+_ 1402452
£ =V1+a2 and f{) =,/ o 29
We can see that any configuration with 1 < f ) < fi (ﬂ can be

obtained by choosing « (to get the desired fd+)) and then S (to get

the desired féeg) ). However, if alternatively we taken

1
s = ] and ac=|[" (F26)
p 1 0
with [p| < 1, then
1— 2+ 2
F) =192 and f) = 19_7/)27, (F27)

This time, we can choose any configuration with 1 < f, dH < f deg

by choosmg v (to get the desired fé:g)

fde - )- Between these two examples, we see that there is no relation

between fé:g) and fde

nuisance parameter.

) and then p (to get the desired

. © any behaviour is possible when we add a

F4 Combination with external data sets

Finally, we consider combinations with an external data set. In the
context of Roman weak lensing, this might be another experiment
(e.g., cosmic microwave background) or within Roman (e.g., the su-
pernova survey). We assume that the data vector for this external
data set is independent.

The Z metric undergoes RSS addition between data sets, i.e., if
we have data sets A and B, then Z?(A + B) = Z%(A) + Z*(B),
because the covariance matrix 3 of the combined data set A+B is
block diagonal. This is true both for the deterministic version of the
metric and the probabilistic version, Z;ms.
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What happens to the r and f4ee metrics is more complicated. If
there are shared nuisance parameters between the experiments, then
in general there is no rule on how Zcosmo and fqeg change when an
external data set is added, because one could consider the limiting
case where the external data set effectively fixes a nuisance parame-
ter, and then one has the situation described in §F3. We note that if
faeg is defined in terms of (wo, wq) space, and other cosmological
parameters such as {2, and Hy are treated as nuisance parameters,
then almost all practical cases of combined data sets will have shared
nuisance parameters.

If there are no shared nuisance parameters, then it is possible to
say more about 7 and fqeg. Let’s consider r first. When two data sets
A and B are combined, and we have Gaussian likelihoods, the bias
in parameters in the combined data set is

AO(A+B) — [E(QA)_l + E(BB)—I]—l[E(GA)AO(A) + E(GB>A9(B)]

(F28)
and the covariance matrix is [25 ~' + 2 =111, Then

PAHE2 _ AgAITHN () =1 | 53(B)—1)—153 (M) A g(4)
B)T B A)—1

+A0P TP sy
A)T (A A)—-1

+206W M s

+ 2P tnBPAe®
B)—17—1s:(B B
+32P s A0,
(F29)
Since EEJA) b [E(QA)*1 + 2(9B>71]71, we know that the first term
is < AO(A>TE‘(9A)’1A0(A) = A2 Similarly, the second term is
< (B2 The Cauchy-Schwarz inequality then shows that the third

term is less than or equal to twice the geometric mean of the first
two, i.e., < 278 (B) "Sq ti follows that 7 obeys linear addition:

rATE) < p(A) 4 p(B), (F30)

If one treats the systematic errors in the two data sets as independent
in the probabilistic sense, then when taking an average the third term
drops out and r,ms obeys RSS addition (with an inequality):

rimd B2 < (B2 4 r (B2, (F31)

rms

We may also consider fqeg; for two independent probes A and B
and no common nuisance parameters, we have

det(F(A,0ld) F(B,old)
FR = \/ et + ) (F32)

det(F(A,new) + F(B,new)) ’

where “old” and “new” indicate the Fisher matrices without and with
the systematic, respectively (and after the nuisance parameters have
been marginalized out). We can understand what happens if we turn
this into an integral:

In f(A+B) 1 /1
deg 2 o
with x = 0 corresponding to the “new” Fisher matrix, x = 1 corre-
sponding to the old:
F® (z) = 2FA0Y 4 (1 — g)FAmew) (F34)

Since FAnew) < plAeld) "we have dF ™) () /dx > 0. The inte-
gral in Eq. (F33) then represents the degradation of parameter con-
straint volume as we introduce the systematic. Then the derivative
of a log determinant satisfies

% Indet[F™ (z) + F®)(z)] dz, (F33)

1 /1 _
i = g [ m{EVE@ e+ F @)
) ®)(y
X {dF (@) dF }}dw (F35)
dx
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Now for any A > O and B > D > 0, we may write A =
S Neosme yu™ and then Tr(BA) = ZNCTS“‘O u’Bu. It follows
that Tr(BA) > Tr(DA) (w1th equality only for A = 0). Applying
this to [F®) (z) + F®) ()] 7! < [F)(z)]~! and similarly for B,
we show that

1 L dF®)
g < 5 [ {EOE L

N

dx
1 ! (B) _1dF<B)($)
+§/ (P @) gy
= Inf) +nf). (F36)

(Equality holds only when dF® Jdx = dF®) = 0.) We see that
for no shared nuisance parameters,

A+B A) (B
Tiow " < FieaFiens (F37)
with equality only in the case where the systernatic has no effect on
the Fisher matrices, i.e., when fé?gB) = fée fé}:’g) =1.

A particular example showing that this inequality cannot be
strengthened is in the space of 2 cosmological parameters:

FlAold) _ 0 F(Bold) _ e 0
0 e/’ 01 )’
(A,new) OC_Q 0 (B,new) € 0
F = , and F*™ =
0 e 0 B
(F38)
with o, 8 > 1. By taking the limit of ¢ — 0, we see that f A, a,

B A+B
F8) = Boand £ = ap.

This paper has been typeset from a TX/IATgX file prepared by the author.
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