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Dynamics of Flexoelectric
Materials: Subsonic, Intersonic,
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Mach Cone Formation
Motivated by recent, unexpected, experimental observations of “intersonic” rupture growth
in which both shear and dilatational Mach fronts were observed at the tips of dynamic fric-
tional ruptures propagating at rupture speeds below the dilatational wave speed of the sur-
rounding solid, and we formulate the general dynamic flexoelectric problem and we
investigate its plane strain/plane polarization specialization. The coupling of the mechan-
ical problem is analogous to a problem of Toupin–Mindlin gradient elasticity, where two
micromechanical characteristic lengths and two microinertial lengths emerge as a combi-
nation of the mechanical, dielectric, and flexoelectric constants. The solution of the rupture
growth problem allows us to provide an explanation of the experimental results. This
becomes possible since flexoelectricity predicts a new aspect that was not observed in the
classical analysis: subsonic super shear and supersonic crack tip (or rupture) motions
are not related exclusively with the problem being elliptic or hyperbolic, respectively.
This is due to the influence of the microinertial lengths, which, in addition to the ratios
of the rupture to the wave speeds, also affect the slopes of the Mach cones. Moreover,
we are able to explain the experimental paradox of the observation of double Mach cone
pairs at the tips of supershear, but subsonic, frictional, ruptures in poly-methyl-methacrty-
late (PMMA) by demonstrating that both dilatational and shear Mach cones could appear
in flexoelectric solids at rupture speeds below the material dilatation wave speed, something
that is impossible from the classical elasticity analysis and is due to the dispersive nature of
the present problem. Our analysis is of relevance to the dynamic deformation and fracture
of both synthetic and naturally occurring flexoelectric materials and systems, with implica-
tions to both engineering and earthquake source mechanics. [DOI: 10.1115/1.4046634]

Keywords: flexoelectricity, dynamic elasticity, crack/rupture propagation, Mach shock
fronts, length scales, ellipticity/hyperbolicity, constitutive modeling of materials,
micromechanics

1 Introduction
Flexoelectricity is the ability of materials to convert mechanical

strain gradients to electric polarization and vice versa. This
implies that dielectric materials and ferroelectrics in their paraelec-
tric phase, under inhomogeneous mechanical strain, can produce
polarization, and so they can classify as flexoelectrics (see for
example, Refs. [1–3]). Many rocks that exist within the earth’s
crust and mantle exhibit flexoelectricity, often combined with pie-
zoelectricity (in case of anisotropy). Excellent recent perspective
of this unusual electromechanical coupling with emphasis on appli-
cations to energy harvesting, microelectromechanical systems,
nanotechnology, and biology can be found in Ref. [4] as well as
in other review articles such as in Refs. [5,6], to mention but a
few. Materials in which flexoelectricity has been observed include
ribbons of graphene, boron nitride and carbon nitride, biological
membranes, and polymers such as plexiglass (poly-methyl-methac-
rylate (PMMA)), paraffin, and polystyrene (see, for example, Refs.
[7–9]). Of particular interest in this work is crystalline materials
such as salt, strodium titanate, barium titanate, ice, sulfur, red
phosphorous, cesium iodide, semiconductors, and many more
complex oxide ceramics such as peroviskites [6,10–12], alkali
halides [13], and magnesium oxide [14]. Although the focus is on
the flexoelectric behavior, we should mention that the general

influence of the electron density distribution even for centrosym-
metric materials with metallic bonding was indicated early on by
Weiner [15]. Weiner showed that unless the electron density distri-
bution deforms according to affine transformations, the Cauchy
symmetries that characterize classical elasticity could be violated
giving nonsymmetric stress tensors. The dielectric loss in polymers
and ionic crystals, at moderate temperatures, can be correlated with
the internal friction and is associated with some side molecular or
ionic motion (β-relaxation). Therefore, in these materials, mechan-
ical visoelasticity has been shown to be analogous to the dielectric
relaxation, see, for example, Ref. [16].
Several models of flexoelectricity have been proposed so far

ranging from atomistic [17,18] to continuum approaches [19,20]
followed by a vast number of approximate analytic and numerical
solutions. However, many of the proposed solutions are approxi-
mate in the sense that they neglect the inverse flexoelectric effect,
often tagged as pseudopiezoelectric or as surface-piezoelectric solu-
tions. This, in effect, means that the gradient of polarization must be
included in the formulation, as was suggested by Mindlin [21]. The
first systematic attempt in this direction can be found in the work of
Sahin and Dost [22].
Turning attention on dynamic flexoelectricity, only limited

amount of results can be found—see, for example, Refs. [22,23].
We would like to note at this point the lack of material data
related to flexoelectricity and to emphasize the possible experimen-
tal problems that might stem from nonincluding the inverse flexo-
electric effect in the analysis.
The flexoelectric effect is in general weaker than the piezoelectric

effect and attempts to enhance it in manufactured solids by tailoring
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their microstructure can be found in several works that include
composites or specific shapes of porosity (see Ref. [4] and refer-
ences therein). At small scales, however, the flexoelectric effect is
indeed important, which makes it paramount in the vicinity of
defects in all dielectrics due to the strong strain inhomogeneities
encountered, for example, at crack tips and dislocation cores. A
first attempt to model such defects can be found in the work of
Mao and Purohit [24] who presented a static analysis of cracks
and dislocations by introducing a strain gradient elasticity method-
ology, however, neglecting the inverse flexoelectric effect (i.e., the
polarization gradient).
Regarding the importance of dynamics, it should be noted that

there are many practical cases where stress wave- and shock
wave-induced loading enhances the flexoelectric response and
influences materials and device reliability. As only one example,
the protection of electric devises and high-pressure diagnostic
equipment from spurious electrical effects, when mechanically
shocked under operation (e.g., impact from accidental drop, explo-
sion), brings about the dramatic drop of electric resistivity of many
dielectrics subjected to mechanical shock conditions. One can see,
for example, the early works of Brich et al. and Joigneau and Thai-
vervin [25,26], where it was found experimentally that electric
voltage appeared due to mechanically induced polarization, propor-
tional to the shock pressure, corresponding to the entrance and exit
of the shock fronts. At the shock front, the strain gradient is very
high; therefore, the flexoelectric phenomenon could account for
such electric resistivity observations. At a vastly different length
scale, such phenomena are also to be expected in Seismology and
Earthquake Source Mechanics [27], as dynamic shear ruptures
propagating along faults are long known to be the key mechanism
of generating earthquakes [28].
The recent experimental discovery of super shear dynamic rup-

tures, whose speeds exceed the shear wave speed [28–33], has
once again brought to the forefront the connection between shock
wave fronts and the flexoelectric response and has inspired the
present study. Indeed, such shear ruptures, like frictional earthquake
ruptures, propagate along week planes and have been shown to be
able to exceed characteristic material wave speeds. The laboratory
experiments, typically conducted in specimens made of polymers
such as Homalite-100, have revealed the existence of Mach line
structures originating at their dynamically moving rupture tips as
expected by classical elasticity when characteristic wave speeds
are exceeded by the ruptures. Such structures, which originate at
the dynamically moving rupture tips, propagate almost unattenuated
away from the fracture or the frictional fault planes, while sweeping
the solid, and feature very large strain rates along their length and
very high local strain gradients across them [33]. As we discuss in
the present paper, these gradients are expected to greatly enchase
the ferroelectric effect and to produce local phenomena observable
by detailed and dynamic experimental measurements of mechanical
field quantities and their gradients near the growing rupture fronts.
Regarding “real earthquakes,” the experimental discovery of super-
shear ruptures in the lab has motivated field seismologist to look
closer at field evidence for large-magnitude earthquakes propagating
at the supershear speed, and as a result, the reporting of such events,
formerly thought to be rare, have significantly multiplied (e.g., Refs.
[34–38]). Given that supershear rupture is indeed a possibility during
large real earthquakes and that many crustal rock types (much like
some of the polymers used in the experiments) are also thought
to be flexoelectric, the existence of the anticipated Mach lines at
the rupture tips is expected to promote especially strong flexoelectric
effects during supershear natural earthquakes and are thus of great
relevance to the present study.
Indeed, the most recent dynamic frictional shear rupture experi-

ments by Gori et al. [39] have provided yet the strongest motivation
for the present analysis. Some of the experiments reported in that
study was different than our earlier ones in two respects. First, they
were conducted using specimens of PMMA. Second, they used a
new, ultra-fast, diagnostic technique [40,41,33] capable of recording
full-field maps of all components of displacement, strain, and strain

rate near the propagating rupture in real time. This method, called
dynamic digital image correlation (DIC), has been used in conjunc-
tion with ultra-high-speed photography to accurately visualize strain
discontinuities (such as those associated with Mach lines), more
accurately than ever before [33]. The experiments of Gori et al.
revealed ruptures propagating at speeds way above the dynamic
shear wave speed but just below the dynamic dilatational wave
speed of PMMA. According to the classical elasticity theory, this
would imply the existence of only one set of Mach lines (shear
strain discontinuities) emitted from the rupture tip since only the
shear wave speed was exceeded. Instead, the measurement revealed
two distinct sets ofMach lines (one featuring shear and the other dila-
tational strain jumps). This is an observation, which is clearly incon-
sistent with classical elasticity predictions, and its explanation
necessitates invoking a more complex constitutive description of
the solid hosting the rupture. This description could be, for
example, a flexoelectric constitutive law of the type used in the anal-
ysis of moving screw dislocations that has recently been considered
by Giannakopoulos and Th [42] or a viscoelastic constitutive
description as discussed and proposed byGori et al. Giannakopoulos
and Th have concentrated on the antiplane problem, i.e., the screw
dislocation problem moving with the constant speed. Their analysis
showed similar interplay of the dynamics of the screw dislocation
motion with the general shear waves that will be treated in this
work: possible appearance of shear Mach lines under rupture
speeds that are less than the characteristic shear wave speed.
Motivated by the above experimental observations, we first pose

here the general 3D dynamic problem of dynamic, flexoelectricity,
and also specialize it in two dimensions. We then investigate the
in-plane, steady-state ruptures in flexoelectric solids and explore the
unusual Mach line phenomena that occur as the rupture tip speeds
are increased and exceed, characteristic wave speeds of the solid.
The starting point for explaining the experimental observations is
solving the dynamic in-plane crack problem of an elastic dielectric
solid that includes the effect of polarization gradient and flexoelec-
tricity due to strain gradient. Here, flexoelectricity is considered to
be the only source of strain gradient effects since most amorphous
materials (such as PMMA) have very small purely elastic nonlocal
lengths [43]. We show that the coupling of the mechanical problem
is analogous to a problem of Toupin–Mindlin gradient elasticity
where two micromechanical characteristic lengths and two microi-
nertial length emerge as a combination of the mechanical, dielectric,
and flexoelectric constants. The microstructural lengths connect to
the (well known in the context of gradient elasticity) displacement
curvature. The microinertial lengths are less referenced (and hardly
considered in metrology) essentially introduce a nonclassic kinetic
energy term that connects to the microrotations of the matter. More-
over, the nonclassical boundary conditions related to the dynamic
gradient elasticity are naturally related to the dielectric boundary
conditions. As a result, regarding the mechanical response, the
dynamic flexoelectric problem reduces to a dynamic gradient elas-
ticity problem.
The solution of the reduced, in-plane, rupture growth problem

allows us to directly connect with the unexpected experimental
observations of dual (shear and dilatational Mach lines) for super-
shear but still subsonic rupture growth. This becomes possible
since flexoelectricity predicts a new aspect that was not observed
in the classic analysis: subsonic supershear and supersonic
rupture tip motions are not related exclusively with the problem
being elliptic or hyperbolic, respectively. This has to do with the
influence of the emerging microinertial lengths, which also affect
the slope of the Mach cones. Moreover, dilatational Mach cones
could appear at rupture speeds below the material dilatation wave
speed, something that is impossible from the classical elasticity
analysis and is due to the dispersive nature of present problem.

2 Continuum Flexoelectricity
We examine a homogeneous linear flexoelectric solid (being

dielectric at the same time) with an energy density due to elastic
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deformation and electric polarization, which depends on the strain
gradients. Reverse flexoelectricity implies that the gradient of the
polarization produces strain and should be included in the energy
density. The elastic strain energy due to strain gradient effects
will not be considered, and the kinetic strain energy will not
include microrotational effects. These assumptions mean that
there are no a priori internal length scales as implied in nonlocal
elastic theories. However, we will show that the coupling of the
mechanical and the electrical problem gives rise to microstructural
and microinertial lengths resulting from the coupling.
In what follows, consider the flexoelectric problem with key

unknowns, the material displacement vector ui (m), the material
polarization vector Pi (C/m

2), and the electric potential Φ (Nm/
C). These are functions of the (right-handed) Cartesian coordinates
x1, x2, and x3 and the time t. The linear internal energy density func-
tion that includes deformation and polarization is given as follows
[19,21,23]:

W =
1
2
aijPiPj +

1
2
bijklP j,iPl,k +

1
2
cijklεijεkl + eijklP j,iεkl

+ fijklPiεkl,j + b0ijP j,i

⎡
⎣

⎤
⎦ (1)

The mechanical linear strain is related to the displacement vector
as ɛij= (ui,j+ uj,i)/2. Pi,j is the gradient of the polarization vector Pi,
and ɛij,k are the gradients of the strains. Repeated indices imply sum-
mation from 1 to 3 and ( ),i= ∂/∂xi. The compatibility equations are
identical to classic linear elasticity. The form of the energy density
function (1) omits an extra term that ensures thermodynamic stabi-
lity of the total energy (1/2gijklmn ui,jk ul,mn). This term represents the
contribution of purely elastic nonlocal effects.
It has been found however (see erratum in Ref. [19]) that, for

most problems, excluding this contribution is generally small,
although, if flexoelectricity is incorporated, it is required to guaran-
tee thermodynamic stability. For some problems, this omission (or
inclusion) of this term may be important especially where the stabi-
lity is an issue.
The material constants are as follows: the elastic constant ten-

sor cijkl (N/m
2), the flexoelectric coefficient tensor fijkl (Nm/C),

the reciprocal dielectric susceptibility tensor aij (Nm2/C2), the
inverse flexoelectric coefficient tensor eijkl (Nm/C), and the gradient
polarization coupling tensor bijkl (Nm

4/C2). The symmetries of the
above constants have been addressed in Ref. [44]. The constants
b0ij are related to the surface energy per unit area Ts = (nib0ijPj)/2
with ni being the unit normal vector pointing outside the flexoelec-
tric body [21].
The Maxwell electric self-field is Ei = −Φ,i (N/C). The total elec-

tric enthalpy is as follows:

�H =W −
1
2
ε0Φ,iΦ,i +Φ,iP,i (2)

where ɛ0≈ 8.854 × 10−12 C2/N/m2 is the dielectric permittivity of
vacuum (assumed to surround the body) [45].
The kinetic energy density is as follows:

T =
1
2
ρu̇3u̇3 (3)

where ρ is the material mass density and u̇i = ∂ui/∂t is the material
velocity vector. If ρ= 0, the problem reduces to the static case.
Accordingly, the constitutive equations are written as follows:

(1) Cauchy (symmetric) stress tensor:

σij =
∂W
∂εij

= cijklεkl + eklijPl,k (4)

(2) Dipolar stress tensor:

τijk =
∂W
∂ε jk,i

= flijkPl (5)

(3) Effective local electric force:

�Ek = −
∂U
∂Pk

= −(akjPj + fklijεij,l) (6)

(4) Polarization gradient force:

Eij =
∂W
∂Pj,i

= bijklPl,k + eijklεkl + b0ij (7)

We will concentrate in the isotropic response [23], and in this
case, the material tensors become

aij = aδij (8)

cijkl = c12δijδkl + c44(δikδ jl + δ jkδil) (9)

fijkl = f12δijδkl + f44(δikδ jl + δ jkδil) (10)

eijkl = e12δijδkl + e44(δikδ jl + δ jkδil) (11)

bijkl = b12δijδkl + b44(δikδ jl + δ jkδil) + b77(δikδ jl − δ jkδil) (12)

b0ij = b0δij (13)

where δij= 0 is Kronecker’s delta (identity tensor). All material con-
stants are positive definite and bounded. The dielectric susceptibil-
ity χ relates to the dielectric constant of vacuum ɛ0 as 1/a= χɛ0. The
classic elastic dielectric case is obtained if fijkl= 0 and eijkl= 0,
whereas the classic elastic case requires additionally aij= 0 and
b0ij = 0. If only fijkl= 0, we recover the formulation of Mindlin
[21,46] for a dielectric solid with polarization gradient.
Using Hamilton’s principle (least action), which is minimization

of the total electric enthalpy with respect to ui and Pi in the whole
body volume V and arbitrary time interval 0, t1,∫t2

0

∫
V
δ(�H − T)dVdt = 0 (14)

we obtain the Euler conditions for all the material points of the body
(in the presence of body forces Xi (N/m

3) and initial electric field E0
i

(N/C):

(1) Conservation of linear momentum:

σ ji,j − τkji,jk + Xi = ρüi (15)

(2) Conservation of electric field:

�Ej + Eij,i −Φ,j + E0
j = 0 (16)

(3) Maxwell equations inside the body:

−ε0Φ,ii + Pi,i = 0 (17)

(4) Maxwell equations outside the body become:

∇2Φ =Φ,11 +Φ,22 +Φ,33 = 0 (18)

The corresponding, work conjugate, boundary conditions are
summarized in Table 1. The electric boundary conditions can be
materialized with appropriate steady-state currents applied by
surface conductors [47].
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The initial conditions are as follows:

ui(x, 0) = u0i (x)
u̇i(x, 0) = u̇0i (x)
Pi(x, 0) = P0

i (x)
(19)

where u0i is the initial displacement vector, u̇0i is the initial velocity
vector, and P0

i is the initial polarization vector. The initial fields are
considered to be known and are often taken to be zero.
Furthermore, assuming zero body forces and initial electric field

(Xi = 0, E0
i = 0), we transform Eqs. (15) and (16) into Navier-type

of equations:

c44∇2ui + (c12 + c44)∇i(∇kuk) + (e44 − f12)∇2Pi

+ (e12 + e44 − 2f44)∇i(∇kP)k = ρüi
(20)

(e44 − f12)∇2ui + (d12 + d44 − 2f44)∇i(∇kuk) + (b44 + b77)∇2Pi

+ (b12 + b44 − b77)∇i(∇kP)k − aPi −Φ,i = 0 (21)

where ∇2 = ∇k∇k = ∂2/∂x21 + ∂2/∂x22 + ∂2/∂x23 is the Laplacian
operator and ∇4 = ∇2∇2 is the biharmonic operator. Note that, if
fijkl= 0, eijkl= 0, and aij= 0, we obtain from Eq. (20) the classic elas-
todynamic equations and Eq. (21) is identically zero.
We now focus in the general solution of Eqs. (20) and (21)

together with Eq. (17). In the Appendix, we show that the complete
solution can be formulated as a Helmholtz decomposition of both
the displacement and the polarization vectors as follows:

u = ∇ϕ +∇ ×H, ∇ ·H = 0 (22)

P = ∇χ +∇ ×K, ∇ ·K = 0 (23)

where ∇ is the gradient operator, ϕ(x, t) and χ(x, t) are scalar func-
tions, whereas H(x, t) and K(x, t) are vector functions that are solu-
tions of

∇2ϕ − ℓ2p∇
4ϕ =

1
c2p

(ϕ̈ − h2p∇
2ϕ̈) (24)

∇2H − ℓ2s∇
4H =

1
c2s

(Ḧ − h2s∇
2Ḧ) (25)

∇2χ − ℓ2p∇
4χ =

1
c2p

e11 − f11
a + ε−10

∇2ϕ̈

( )
(26)

∇2K − ℓ2s∇
4K =

1
c2s

e44 − f44
a

∇2Ḧ
( )

(27)

where the characteristic dilatation and shear speeds appear as in the
classic elastodynamics

cp =
				
c11
ρ

√
=

											
c12 + 2c44

ρ

√
=

							
λ + 2μ

ρ

√
=

																		
E(1 − ν)

ρ(1 + ν)(1 − 2ν)

√

cs =
				
c44
ρ

√
=

		
μ

ρ

√
=

										
E

2ρ(1 + ν)

√
< cp

(28)

where E and ν are the Young’s modulus and the Poisson’s ratio,
respectively, and (λ, μ) are the Lame constants. Moreover, in the
above equations, four lengths appear, defined by

{μ, a, f12, f44, e44, b44 + b77, μ(b44 + b77) − e244} > 0

ℓ2s =
b44 + b77

a
−
(e44 − f12)

2

μa
≥ 0

h2s =
(b44 + b77)

a
≥ ℓ2s ≥ 0

(29)

{b11 = b12 + 2b44, a, f11 = f12 + 2f44, f44, (λ + 2μ)b11 − e211} > 0

ℓ2p =
b11

a + ε−10
−

(e44 − f12)
2

(λ + 2μ)(a + ε−10 )
≥ 0

h2p =
b11

a + ε−10
≥ ℓ2p ≥ 0 (30)

Thus, we obtain two “microstructural”–related lengths (ℓp, ℓs)
and two “microinertial”–related lengths (hp, hs). Note that the pos-
itiveness of the lengths stems from the assumed convexity of the
energy density. Gradient dielectricity also yields the internal
lengths (ℓp, ℓs) and (hp, hs) [46], while flexoelectricity leads to
higher microstructural lengths, compared to gradient dielectricity.
Typical material constants for PMMA were estimated and are
given in Table 2 and are obtained from Refs. [9,48–53]. Note that
the mechanical response is similar to the Mindlin’s model of
linear elastic solids with microstructure [54].
The material constants of Table 2 suggest microstructural lengths

ℓp= 2.9 nm and ℓs= 4.521 nm and microinertial lengths hp=
3.2075 nm and hs= 4.535 nm according to Eqs. (29) and (30),
respectively.
The present work focuses on the mechanical response, solving

Eqs. (24) for ϕ(x, t) and (25) for H(x, t). Once the displacement
vector is found, the polarization vector can be found from the solu-
tion of Eq. (26) for χ(x, t) and Eq. (27) for K(x, t). We further note
that polarization exhibits a size effect similar to the size effect of the
mechanical displacement. Finally, electric potential can be obtained
from the polarization vector from the solution of Eqs. (17) and (18).
Note that, as in the classic elastodynamics, the present Helmholtz
decomposition approach cannot be simply reduced to the static
case, by omitting the acceleration terms [55].

Table 2 Typical material constants of PMMA

Constant Value Units

μ(c44) 2.215 GPa
c11 9.585 GPa
/e44− f12/ 7.015 Nm/C=V
/e11− f11/ 56.12 Nm/C=V
b11 1.807 × 10−6 Nm4/C2

b44 (assumed) 1.807 × 10−6 Nm4/C2

b77 (assumed) 1.807 × 10−6 Nm4/C2

a 6.275 × 1010 Nm2/C2

ϵ0 8.85400 × 10−12 C2/(Nm2)
ρ 1180 kg/m3

Table 1 Mutually exclusive boundary conditions for the
flexoelectric problem

Essential boundary
conditions Dynamic boundary conditions

Pi niEij

Φ ni(−ε0[[Φ,i]] + Pi) = 0
Dui ri = τkjinknj
ui ti = σijnj − τkji,knj + (Dlnl)njnkτkji − Dj(τkjink)

Notes: ni is the unit normal vector pointing outside the body, D≡ nk∂/∂xk is
the normal to the surface derivative, Dj≡ (δjk− njnk)∂/∂xk is the tangential to
the surface derivative, and [[ ]] = ( )+−( )− is the jump from outside of the
body (+) to the inside of the body (−).
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3 The Plane Strain/Plane Polarization Problem
Section 2 is now particularized to the plain strain problem (paral-

lel to the x3= 0 plane), where (in the absence of body forces and
initial electric field) the displacement field is as follows:

u1(x1, x2, t) =
∂ϕ
∂x1

−
∂H3

∂x2

u2(x1, x2, t) =
∂ϕ
∂x2

−
∂H3

∂x1

u3(x1, x2, t) = 0

(31)

with unknown potentials ϕ(x1, x2, t) and H3(x1, x2, t).
Accordingly, the polarization vector is as follows:

P1(x1, x2, t) =
∂χ
∂x1

−
∂K3

∂x2

P2(x1, x2, t) =
∂χ
∂x2

−
∂K3

∂x1

P3(x1, x2, t) = 0

(32)

with unknown potentials χ(x1, x2, t) and K3(x1, x2, t).
The electric potential is Φ=Φ(x1, x2, t).
The mechanical dynamic Eqs. (24) and (25) become

∇2ϕ − ℓ2p∇
4ϕ =

1
c2p

(ϕ̈ − h2p∇
2ϕ̈) (33)

∇2H3 − ℓ2s∇
4H3 =

1
c2s

(Ḧ3 − h2s∇
2Ḧ3) (34)

The polarization equations (26) and (27) become

∇2χ − ℓ2p∇
4χ =

1
c2p

e11 − f11
a + ε−10

∇2ϕ̈

( )
(35)

∇2K3 − ℓ2s∇
4K3 =

1
c2s

e44 − f44
a

∇2Ḧ3

( )
(36)

In the above equations, ∇2 = ∂2/∂x21 + ∂2/∂x22 is the two-
dimensional Laplacian operator, and ∇4 = ∇2∇2 = ∂4/∂x41 +
2∂4/∂x21∂x

2
1 + ∂4/∂x42 is the two-dimensional biharmonic operator.

When all microstructural and microinertial lengths are zero, Eqs.
(33) and (34) reduce to the plane stress classical elastodynamic
equations [56].

4 Uniformly Moving Rupture Tip
A single moving rupture tip with constant rupture speed Vr along

the x1 axis can be examined by making the standard steady-state
coordinate transformation (simplifying the notation as, see Fig. 1):

ξ = x1 + Vrt, η = x2 (37)

The moving coordinate system (ξ, η) is attached on the moving
rupture tip.
Then, the equilibrium Eqs. (33) and (34) are reduced to

1 −
V2
r

c2p

( )
∂2ϕ

∂ξ2
+
∂2ϕ
∂η2

− ℓ2p 1 −
V2
r h

2
p

ℓ2pc
2
p

( )
∂4ϕ

∂ξ4
+ 2 1 −

V2
r h

2
p

2ℓ2pc
2
p

( )
∂4ϕ

∂ξ2∂η2
+
∂4ϕ
∂η4

( )

= 0 (38)

1 −
V2
r

c2s

( )
∂2H3

∂ξ2
+
∂2H3

∂η2

− ℓ2p 1 −
V2
r h

2
s

ℓ2s c
2
s

( )
∂4H3

∂ξ4
+ 2 1 −

V2
r h

2
s

2ℓ2s c
2
s

( )
∂4H3

∂ξ2∂η2
+
∂4H3

∂η4

( )
= 0

(39)

Also, the polarization equations (35) and (36) become

∂2χ

∂ξ2
+
∂2χ
∂η2

− ℓ2p
∂4χ

∂ξ4
+ 2

∂4χ

∂ξ2∂η2
+
∂4χ
∂η4

( )

=
V2
r (e11 − f11)

c2p(a + ε−10 )

∂2ϕ

∂ξ2
+
∂2ϕ
∂η2

( )
(40)

∂2K3

∂ξ2
+
∂2K3

∂η2
− ℓ2p

∂4K3

∂ξ4
+ 2

∂4K3

∂ξ2∂η2
+
∂4K3

∂η4

( )

=
V2
r (e11 − f11)

c2p(a + ε−10 )

∂2H3

∂ξ2
+
∂2H3

∂η2

( )
(41)

Equations (37) and (41) should be solved for χ(ξ, η) and K3(ξ, η),
respectively, after solving Eqs. (38) and (39) with respect to ϕ(ξ, η)
(dilatational waves) and H3(ξ, η) (shear waves).
In order to retain ellipticity of the equilibrium equations, we must

have h2s V
2
r /(ℓ

2
s c

2
s ) < 1 and h2pV

2
r /(ℓ

2
pc

2
p) < 1 [57,58]. Otherwise, the

problem is hyperbolic and Mach lines are expected, even when
the rupture tip motion is subsonic (Vr/cs < 1 and/or Vr/cp< 1).
Thus, the parameterization of the problem is synopsized in Fig. 2.
For each type of wave (dilatational or shear), three regions
appear: the elliptic (always subsonic), the hyperbolic, and the inter-
mediate (always supersonic) region. The intermediate regions in the
flexoelectric case are out of reach, since hs/ℓs≥ 1 and hp/ℓp≥ 1. The
intermediate regions in the flexoelectric case are out of reach, since
hs/ℓs≥ 1 and hp/ℓp≥ 1. Note, however, that although the elliptic
region is also subsonic, the hyperbolic region is not necessarily
supersonic.

5 Pressure and Shear Results for the Hyperbolic Case
In this section, we will examine the hyperbolic case,

h2s V
2
r /(ℓ

2
s c

2
s ) ≥ 1 and h2pV

2
r /(ℓ

2
pc

2
p) ≥ 1, together with the conditions

hs/ℓs≥ 1 and hp/ℓp≥ 1, as indicated in Fig. 2.Note, however, that this
case cover both an intersonic rupture tip motion (cp/cs > Vr/cs>1)
and a supersonic shear rupture tip motion. We will investigate the
mechanical response as described by Eqs. (38) and (39).
Group theory may be handy at this point, selecting the spiral

group (see, for example, Ref. [59] that accepts a “wave”-like

Fig. 1 The steady-state moving coordinate system (ξ, η) with a
rupture tip positioned at the center of the system. The crack tip
is moving with the constant rupture speed Vr.
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coordinate). Invariance of the sequence of second and fourth deriv-
atives with respect to the coordinates ξ and η leads to an exponential
representation of the solution for the displacement. We first inves-
tigated the shear wave (39). If we seek solution with respect to a
new variable:

�η = ξ ± η

										
h2s V

2
r

ℓ2s c
2
s

− 1

√
(42)

we obtain the invariance lnH3 = �H3(�η). Taking into account the
partial differential Eq. (39), we find that

d2 �H3

d�η2
+

d �H3

d�η

( )2
[ ]

h2s V
2
r

ℓ2s c
2
s

−
V2
r

c2s

[ ]
= 0 (43)

Now, if hs/ℓs = 1, Eq. (43) is true for any function �H3(�η) and the
problem reduces to the classic case. Otherwise,

�H3(�η) = ai + ln [�η + bi] (44)

where ai and bi are constants that can be adjusted to fit the boundary
conditions along η= 0+.
Assuming h2s V

2
r /(ℓ

2
s c

2
s ) > 1, Mach-like lines will develop, ema-

nating from the rupture tip, making an angle βs with the ξ line, as
shown in Fig. 3:

sin βs =
ℓs

hs

cs
Vr

(45)

The classic supersonic shear solution predicts sin βclassics = cs/Vr

and so βs ≤ βclassics . Therefore, Mach cones can appear for subsonic
cases, as long as h2s V

2
r /(ℓ

2
s c

2
s ) > 1, with slopes that are smaller than

the classic ones. Note that as we approach the elliptic region,
h2s V

2
r /(ℓ

2
s c

2
s ) � 1, the angle βs→ π/2, which is the limit case of the

elliptic region.
Now, let us investigate the dilatation wave (38). If we seek solu-

tion with respect to a new variable:

�η = ξ ± η

										
h2pV

2
r

ℓ2pc
2
p

− 1

√
(46)

we obtain the invariance lnϕ = �φ(�η). Taking into account the partial
differential equation (38), we find that

d2�φ

d�η2
+

d�φ

d�η

( )2
[ ]

h2pV
2
r

ℓ2pc
2
p

−
V2
r

c2p

[ ]
= 0 (47)

Now, if hp/ℓp = 1, Eq. (47) is true for any function �φ(�η), and the
problem reduces to the classic case. Otherwise,

�φ(�η) = ai + ln [�η + bi] (48)

where ai and bi are constants that can be adjusted to fit the boundary
conditions along η= 0+.
Assuming h2pV

2
r /(ℓ

2
pc

2
p) > 1, additional Mach-like lines will

develop (even if Vr< cp). They are emanating from the rupture
tip, making an angle βp with the ξ line, as shown in Fig. 3:

sin βp =
ℓp

hp

cp
Vr

(49)

Fig. 2 Parameterization of the problem according to its three key parameters: V/cs and cp/cs (as in the clas-
sical case), hp/ℓp and hs/ℓs (arise from the couple stress formulation and indicates dispersion effects). The
particular example for PMMA [39] is also shown as a star.

Fig. 3 Solution for the supershear (Vr/cs>1), but subsonic (Vr/cp
<1), rupture motion in the hyperbolic regime h2

pV
2
r /(ℓℓℓℓℓ

2
pc

2
p)> 1.

Two sets of characteristic lines (Mach cone pairs) appear at
angles sin βs= ℓscs/(hsVr) and sin βp= ℓpcp/(hpVr).
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The classic supersonic dilatation solution predicts sin βclassicp =
cp/Vr and so βp ≤ βclassicp . Therefore, Mach cones can appear for
subsonic cases, as long as h2pV

2
r /(ℓ

2
pc

2
p) > 1, with slopes that are

smaller than the classic ones. Note that as we approach the elliptic
region, h2pV

2
r /(ℓ

2
pc

2
p) � 1, the angle βp→ π/2, which is the limit case

of this regime.

6 Explaining an Experimental Paradox
The recent experiments of Gori et al. investigated the dynamic

growth of ultra-fast, shear, ruptures propagating along the interface
of two PMMA plates held together, in frictional contact, under
remotely applied compression and shear loads. The material of
the plates was PMMA, a strongly flexoelectric polymer. These
experiments were designed to mimic earthquake rupture growth
along, strike-slip, geological faults. They represent the latest
version of a class of dynamic rupture investigations, which were
first introduced in the late nineties by Rosakis and his coworkers
under the name of “laboratory earthquakes.” The earlier versions
of the “laboratory earthquake” setup involved the use of dynamic
photoelasticity (a technique-sensitive shear but insensitive to dilata-
tional deformation fields), and the experiments were conducted
using plates of a photoelastic polymer, Hommalate-100. The
latest experiments of Gori et al. utilized a new material, PMMA,
as well as high-speed DIC, a diagnostic technique, capable of
recording full-field maps of all components of displacement,
strain, and strain rate near the propagating rupture in real time
and at framing rates in excess of 1 milion frames per second
[40,41]. The fortuitous use of a new (strongly flexoelectric) mate-
rial, whose flexoelectric behavior has been studied independently
as well as a more advanced diagnostic method capable of visualiz-
ing both shear and dilatational discontinuities, has resulted in the
unexpected observation of dual sets (both shear and dilatational)
of Mach lines emitted from the rupture tips that were propagating
close, but well below, the dynamic dilatational wave speed of
PMMA. The dual set of Mach lines, which were revealed in the
PMMA experiments, is conceptually very similar to that schemati-
cally shown in Fig. 3 on the basis of our theoretical analysis.
In these experiments, βp = 86 deg and βs = 32 deg. The rupture

speed, which was independently measured from the rupture length
versus time record, was found to be rather constant and was given
by Vr/cs= 1.92 (while cp/cs= 2.08) and was super shear but clearly
subsonic. Obviously, in such a case, classical elastodynamics pre-
dicts only one set of Mach lines associated with jumps in shear
strains and cannot explain the existence of the second set of
dilatation-type Mach lines for such a supershear but clearly subso-
nic rupture. The present theory, however, provides an explanation
of such a behavior. Indeed, if one used Eqs. (45) and (49) for esti-
mating the angles of the shear and the dilatational Mach line pairs,
respectively, one can retrieve both of the measured angles by simply
inputting the measured normalized rupture speed and by assuming
the micro length ratios to be equal to of hp/ℓp= 1.09 and hs/ℓs= 1.0,
respectively. Indeed, this seems to be a very good prediction given
the fact that the widely accepted electromechanical properties for
PMMA from the open literature, listed in Table 2, predict hp/ℓp=
1.11 and hs/ℓs= 1.00.
It should also be noted that once the microscale ratios are esti-

mated by the measured rupture speed and Mach line angles, one
can determine and mark the experimental conditions in the
context of Fig. 2 where regions of ellipticity and hyperbolicity are
identified. On the one hand, the PMMA experiments (identified
here with stars) clearly lie in regions where the governing equations,
for both the shear and the dilatational potentials, are hyperbolic
(regions where characteristics exist), and thus, the present theory
accurately predicts the existence of dual sets of Mach lines.
On the other hand, it is clear from that figure that if one considers
only the position of the star relative to the vertical axis, classical
elastodynamics would predict the development of only one pair

of, shear, Mach lines and would be inconsistent with the
experiments

7 Conclusions
In thiswork,we have examined the dynamicflexoelectric problem

and solved it for ruptures moving with the constant speed. The flexo-
electric material was stated as a dielectric solid that incorporates gra-
dients of electric polarization and flexoelectricity due to strain
gradients. The coupling of the mechanical with the electrical
problemwas condensed in a single mechanical problemwith the dis-
placement as prime unknown. The displacementwas dissociated into
the dilatation-related and the shear-related parts. In doing so, for each
displacement part, two naturally emerging lengths (a microstructural
and a microinertial one) appear explicitly in the problem. These four
lengths are due to the interplay of the shear modulus, the dielectric
constants, and the flexoelectric parameters.
Turning to the hyperbolic conditions, our analysis suggests that

the slope of the Mach cones also depend on the microstructural as
well as the microinertial lengths. Indeed, the slope of the Mach
cones is smaller compared to that predicted by classical elasticity.
Due to the existence of higher partial derivatives in the governing
equations, hyperbolicity may occur at rupture speeds below one
or both of the characteristic speeds (subsonic motion), and this is
due to the existence of two microinertial lengths that must be
higher than the two microstructural lengths.
The analysis indicated that the problem depends on four param-

eters: the two ratio of the rupture speed to the two wave speeds as in
the classical elastodynamic (nondispersive) case and the two ratios
of the microinertia to the microstructural lengths (one ratio for shear
and one for dilatation), which introduces dispersion characteristics
that are not present in the classical case. These parameters were
found to break up the supersonic and the subsonic regions introduc-
ing intermediate regions inaccessible by classical elastodynamics.
By using our theoretical results, we are able to explain recent,

unexpected, experimental observations of “intersonic” frictional
rupture growth in PMMA (a strong flexoelectric solid). In these
experiments, which were designed to mimic the earthquake
rupture growth along frictional faults, both shear and dilatational
Mach fronts were observed to form at the tips of dynamic frictional
ruptures propagating at speeds above the shear wave speed but
below the dilatational wave speed of the surrounding solid. Further-
more, for these experiments, we are able to predict the measured
inclination angles of both the shear and the dilatational Mach
lines by using independently measured values of the microstructural
and microinertial lengths, available in the open literature.
The results are important for understanding the dynamic defor-

mation and fracture/rupture of all dielectrics such as some geo-
materials, ceramics, ice, perovskites, and polymers that exhibit
strong flexoelectric effect, often uncoupled from piezoelectricity
(centrosymmetric materials). Their success in predicting measure
behavior in dynamic frictional rupture experiments (Laboratory
Earthquakes) also highlights their possible relevance to earthquake
source mechanics and earthquake seismology.
Finally, the results also apply to fast rupture that may be modeled

in the context of couple stress elasticity. In such cases, the origin of
the microstructural and microinertial lengths is very different than
that the one proposed in this work. Indeed, atomistic calculations
have managed to evaluate the strain gradient elastic tensors.
However, little work has been done regarding the calculations of
the microinertial lengths, and much remains to be done in this direc-
tion. Transient dynamic analysis is necessary to unveil the details of
the dispersive nature of the dynamic problem.

Appendix: The Completeness of the Helmholtz-Type
Decomposition
Following Sternberg [55], we give a short proof (Duhamel-type)

for the completeness of the decomposition (22) and (23) that leads
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to Eqs. (24)–(27). We start from the Navier-type of equations (20)
and (21), together with Eq. (16). Take the gradient on Eqs. (21) and
(16) and eliminate the electric potential Φ to obtain

(e44 − f12)∇ · ∇2u + (e12 + e44 − 2f44)∇2∇ · u
+ (b44 + b77)∇ ·∇2P + (b12 + b44 − b77)∇2∇ · P
− (a + ε−10 )∇2∇ · P = 0

(A1)

Take the gradient on Eq. (20) and replace the decomposition (22)
and (23), with ∇ · u = ∇2ϕ and ∇ · P = ∇2χ and obtain

(e11 − f11)∇4ϕ + b11∇4χ − (a + ε−10 )∇2χ = 0 (A2)

c11∇4ϕ + (e11 − f11)∇4χ = ρ∇2ϕ̈ (A3)

Note that the relations ()11= ()12+ 2()44 have been used for the
material parameters.
Apply the Laplacian operator to Eqs. (A2) and (A3) and obtain

(e11 − f11)∇6ϕ + b11∇6χ − (a + ε−10 )∇4χ = 0 (A4)

c11∇6ϕ + (e11 − f11)∇6χ = ρ∇4ϕ̈ (A5)

Eliminate χ from Eq. (A4), using Eq. (A5), we obtain

−
c11b11 − (e11 − f11)

2

c11(a + ε−10 )
∇6ϕ + ∇4ϕ =

ρ

c11
∇2ϕ̈ −

ρ

c11

b11
(a + ε−10 )

∇4ϕ̈

(A6)

Using Eq. (A4) with (A3), we obtain

−
c11b11 − (e11 − f11)

2

c11(a + ε−10 )
∇4χ +∇2χ =

ρ

c11

(e11 − f11)

(a + ε−10 )
∇2ϕ̈ (A7)

Next, we apply curl operator on Eqs. (20) and (21) and apply the
decomposition (22) and (23). Noting that ∇ × u = −∇2H and
∇ × P = −∇2K, we obtain:

(e44 − f12)∇4H + (b44 + b77)∇4K − a∇2K = 0 (A8)

c44∇4H + (e44 − f12)∇4K = ρ∇2Ḧ (A9)

Take the Laplacian of Eqs. (A8) and (A9) and eliminate K to
obtain:

−
c44(b44 + b77) − (e44 − f12)

2

c44a
∇6H + ∇4H =

ρ

c44
∇2Ḧ

−
ρ

c44

(b44 + b77)
a

∇4Ḧ (A10)

From (A8) and (A9), we obtain

−
c44(b44 + b77) − (e44 − f12)

2

c44a
∇4K +∇2K =

ρ

c44

(b44 − f12)
a

∇4Ḧ

(A11)

Finally, the electric potential Φ can be found from χ using

−ε0∇
2Φ + (e11 − f11)∇2χ = 0 (A12)

Note that Eqs. (A6) and (A10) can be used for the static case, if
ρ= 0 (see Maraganti et al. [19]).
From Eqs. (A6) and (A10), we can obtain

−
c11b11 − (e11 − f11)

2

c11(a + ε−10 )
∇4ϕ + ∇2ϕ −

ρ

c11
ϕ̈ +

ρ

c11

b11
(a + ε−10 )

∇2ϕ̈ = �a

(A13)

−
c44(b44 + b77) − (e44 − f12)

2

c44a
∇4H + ∇2H −

ρ

c44
Ḧ

+
ρ

c44

(b44 + b77)
a

∇2Ḧ = �b (A14)

The new functions �a(x, t) and �b(x, t) are harmonic:

∇2�a = 0∇2�b = 0 (A15)

Define �A(x, t) and �B(x, t) as follows:

ρ

c11
�̈A −

ρ

c11
h2p∇

2 �̈A = �a (A16)

ρ

c44
�̈B −

ρ

c44
h2s∇

2 �̈B = �b (A17)

which are also harmonic

∇2�A = 0 ∇2�B = 0 ∇ · �B = 0 (A18)

Define now the new functions ϕ1(x, t) = ϕ + �A and
H1(x, t) =H + �B. It can be shown that

−
c11b11− (e11− f11)

2

c11(a+ ε−10 )
∇4ϕ1+∇2ϕ1−

ρ

c11
ϕ̈1+

ρ

c11

b11
(a+ ε−10 )

∇2ϕ̈1=0

(A19)

−
c44(b44+b77)− (e44− f12)

2

c44a
∇4H1+∇2H1−

ρ

c44
Ḧ1

+
ρ

c44

(b44+b77)
a

∇2Ḧ1=0 (A20)

Now, take u=∇ϕ1+∇×H1+u* and u*=−∇�A−∇× �B. Using
the identity ∇2�B=∇∇ · �B−∇×∇× �B, we obtain

∇ ·u*=0, ∇×u*=�0 (A21)

Then, there exist a (harmonic) function ϕ2(x, t) such that

u*=∇ϕ2, ∇2ϕ2=0 (A22)

Thus,

u=∇ϕ1+∇ϕ2+∇×H1 (A23)

Inserting Eq. (A23) in the original equations (A20), (A21), and
(A16) and taking P=∇χ+∇χ1+∇×K with ∇2χ1=0 and
∇ ·K=0, we obtain ∇ϕ̈2=0. Therefore, ϕ2= α(t)+ tβ(x)+ g(x)
with ∇2β=0 and ∇2γ=0. Define u=∇ϕ3+∇×H1 with ∇ ·
H1(�x, t)=0 and P=∇χ2+∇×K with χ2= χ+ χ1 and then

−
c11b11− (e11− f11)

2

c11(a+ ε−10 )
∇4χ2+∇2χ2=

ρ

c11

(e11− f11)

(a+ ε−10 )
∇2ϕ̈3 (A24)

−
c44(b44+b77)− (e44− f12)

2

c44a
∇4K+∇2K

=
ρ

c44

(b44− f12)
a

∇4Ḧ1 (A25)

This concludes the completeness theorem.
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