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A dispersion relation is derived and analyzed for the case where the equilibrium veloeity of an
incompressible, nonresistive, eylindrical plasma has a spiral motion along magnetic field lines. The
symmetric hydromagnetic equations are used to derive the plasma hydromagnetic pressure. The
dispersion relation is found by matching plasma and outer-region hydromagnetic pressures across a
sharp-moving interface. The zeros of the dispersion relation are obtained by a sequence of mappings
between three complex planes. The presence of flow introduces overstable modes. For m = 0 the
time-divergences are removed by flow. For m = 1 the divergences are enhanced by flow such that the
growth rates and oscillation frequencies increase linearly with the flow velocity. The smaller is the
wavelength of the disturbance in the 2 direction, the larger are the overstable eigenvalues.

L. INTRODUCTION

HE criteria for the stability of an infinite

cylindrical plasma have been determined by
Kruskal and Tuck,” Rosenbluth,®> and Roberts,’
among others. All these analyses considered the
plasma to be at rest in the equilibrium state. Kruskal
and Tuck derived a dispersion relation, or character-
istic eigenvalue equation, from a normal mode
analysis and demonstrated that large longitudinal
magnetic fields can remove sausage (m = 0) in-
stabilities. Spiral (m = 1) instabilities of long
wavelength (in the z direction) ecannot be removed,
since the strength of the longitudinal field required
varies directly as the wavelength which is to be
stabilized. Rosenbluth showed that a perfect con-
ductor, external but close to the plasma, will remove
this large wavelength instability.

The dispersion relation for an incompressible
cylindrical plasma with an equilibrium velocity
field is derived below. This relation is obtained by
matching the complete stress tensor across a per-
turbed boundary which separates regions of different
media and magnetic fields. The differential equation
which characterizes the plasma is derived from the
Elsasser* symmetric hydromagnetic equations.

The presence of flow causes oscillatory instabilities
{complex eigenvalues). It will be shown that flow
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removes sausage (m = 0) instabilities while it en-
hances spiral (m = 1) instabilities. The latter effect
is due to the centrifugal forces acting on the deformed
eylinder.

Recently, Trehan® incorporated the effects of a
finite plasma velocity into a stability-normal-mode
analysis. However, the boundary conditions were
treated in a manner which restricts the applicability
of the results to certain special cases. In Sec. IX, it
is shown that his boundary condition implicitly
links the strength of the longitudinal magnetic
fields with that of the velocity fields. This accounts
for his conclusion that a spirally deformed plasma
is stable when the flow parameter is large.

II. EQUATIONS FOR THE HYDROMAGNETIC
APPROXIMATION

A, Differential Equations

The hydromagnetic equations for a compressible
medium can be written as®

d.p + V-(oV) =0, 2.1
3.(sV) + V- (pVV) = —=Vp + jxB, (2.2)
D.(pp™") = 0, (2.3)

where
D, =9, +V.V, 2.4)

and where we have made the standard hydro-
magnetic approximations, namely”: (1) the pressure
tensor is diagonal with equal elements p; (2) the
electric volume force oE, is negligible in comparison

5 8. K. Trehan, Astrophys. J. 128, 475 (1959).

8 See reference cited in footnote 1, Eqs. 1, 2, and 8.

" The conditions under which these approximations are
valid are given in Sec. 2 of I. B. Bernstein, E. A, Frieman,
M. D. Kruskal, and R. M. Kulsrud, Proc. Roy. Soe. (London)
A244, 17 (1958).
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HYDROMAGNETIC STABILITY OF PLASMA

with the magnetic volume force; (3) displacement
currents are negligible; (4) the thermal conductivity
and the electrical resistivity are assumed to vanish;
and (5) an adiabatic condition approximates the
energy Eq. (2.3). For a perfectly conducting medium

the Ohm’s law equation reduces to
E-+ VxB = 0. (2.5)

Maxwell’s equations (neglecting displacement cur-
rents) complete the set:

V-B =0, (2.6)
V % B = uj, (2.7
V x E = —9,B. 2.8)

When dealing with problems in which the veclocity
fields are of comparable magnitude to the magnetic
fields, a transformed set of equations introduced by
Elsasser® is more convenient to deal with. For an
incompressible fluid (p = p, = const) one adds and
subtracts the momentum conservation Eq. (2.2)
with the curl of Ohm’s Law (2.5) and obtains
the symmetric’ hydromagnetic equations

9.Q. + V-(Q.Q.) = —Vm,
atQ+ -+ V'(Q—~Q+) = -~ V.

The corresponding mass-flux continuity equation

2.9)
(2.10)

is
V-Q. =10, (2.11)
where
Q. =VV, (2.12)
The normalized hydromagnetic pressure 7 is defined
as
m = (1/p)(p + B*/2po), (2.13)

and the magnetic field has been normalized as
Vi = B/(uop,) . (2.14)

These equations are symmetric with respect to the
interchange (—) < ().

8 These equations were also presented independently by
8. Lundquist, Arkiv Fysik 5, 297 (1952).
¢ For a compressible medium one introduces

Ro = (p/pp)V & Vy,
and obtains the quasi-symmetric pair of equations,
aR_ + %V' {(R+ + Q+)Q— + (R+ - Q+)Q—} -V,
R, +3V-{R. + Q.)Q. + (R —~ Q.)Q:} = —Vm,

where Q. and = are given in (2.12) and (2.13). These equa-
tions are symmetric with respect to the interchange (—) <>
() but not R+ Q.
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B. Boundary Equations
1. Hydromagnetic Boundary Conditions

When electromagnetiec radiation effects are
ignored, only three of the boundary conditions™
are required to set up the dispersion relation:

continuity of normal flux: [n-B] = 0 (2.15)
continuity of normal velocity: [n-V] = 0 (2.16)
continuity of stress: [nm — B(B-n)] = 0, (2.17)

where the brackets indicate the difference between
plasma quantities and outerregion quantities. n is a
unit vector normal to the surface of discontinuity,
f, 4, z, t) = 0, and is (4) when pointing into the
plasma; that is,

n = V{/|Vfl. (2.18)

If we describe the interface by saying that a particle
once on the surface remains there,’ then the surface
is described by the equation

Df = 0. (2.19)

If we take the gradient of (2.19) and use (2.18), it
can be shown that n satisfies

amn + n{n.[(V-V)nl}

+0,m-Vn=n % (n x Vv,), (2.20)
where
2.21)

This equation is equivalent to those given pre-
viously,’* although the form in which it is written
is different. The second term on the left of (2.20)
is of second-order in a first-order perturbation
analysis and thus is neglected.

v, = Vn,

III. EQUILIBRIUM CONFIGURATION

Figure 1 depicts the equilibrium state. Here we
have a plasma of constant density p, surrounded by
a compressible, nonconducting gas of constant
density po. The magnetic field within and external
to the plasma has longitudinal and azimuthal com-

10T, G. Northrop, Phys. Rev. 103, 1150 (1956).

1t This describes a surface of major discontinuity where
the density and tangential velocity are discontinuous across
the boundary. In other physical circumstances one may
deal with surfaces which drift with respect to the particles
of the medium—the so-called surfaces of minor discontinuity.
In discontinuities of order ‘“n’”’, the density and the acceler-
ation and their first (n — 1) time and space derivatives are
continuous across the surface. See J. Hadamard, Legons sur
la Propagation des Ondes et les Equations de I’ Hydrodynamique
(Cie, Paris, 1903). In particular: Chap. 2; Chap. 5, Sec.
256-258; and Chap. 7.

12 See Eq. (9b) of reference cited in footnote 1.
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r<Rm
v=AVp(0,r/R,h)

B=Va (g pp)"z (,rs/rR,h)

r>R

8:VA(u,o PP) 1/2 (O.bg R/r, bz h )
F1G. 1. The equilibrium configuration,

ponents. The current sheets, j,* and j* at the
plasma interface, cause jump discontinuities in the
longitudinal and azimuthal components, re-
spectively. The velocity field is in the same direction
as the magnetic field.

The study of the equilibrium configurations
(3, = 0) is simplified by assuming only radially
dependent quantities (3, = 4, = 0). This causes
jo = (1/wo) (V x B), = 0." Thus the r component
of (2.5) gives us the relation

VﬂBz = V2B07 or VGVAz = VzVAo- (3-1)

This is the mathematical statement of the fact that
fluid streamlines adhere to flux lines in the non-
resistive case. For this problem we take the flow
parameter A to be a constant:

A=V Vi =V,/Va..
We also assume that V4, varies linearly with » and
that b = V.,/Va (r = R) is a constant. These

results are summarized by the following vector
relations:

r<R
V = AV, r/R, h)

B = V.i(uop,)}0, /R, 1), 3.2)
r>R

V=0
B = Va(uor,)'(0, bsR/r, b.h). (3.3

12 When the subscripts r, 6, and z follow letters, they indi-
cate the vector components of these quantities, excepting,
of course, the partial derivative 8. The subscripts p and o will
designate plasma and outer-region quantities, respectively.

ZABUSKY

The constant V4 is the Alfvén velocity associated
with the normalizing plasma density, p,, and the
internal azimuthal magnetic field at » = R.

In order to find the kinetic pressure distribution
the equilibrium assumptions, (3.2) and (3.3) are
substituted into the r component of (2.2) and we
obtain, after normalizing,

y =1 — LMA_xi’[z (34)

2 2
where p, is the normalizing pressure, and » = r/R;
M, = Vi/e.; ¢ = vp,/p,. Thus the normalized
hydromagnetic pressure becomes

- A2]:

n=%—%ﬁa—ﬁ, (3.5)
where
Pn = Py + B."/20.
If we define
Bi = 2p./p, Vs, (3.6)
then at z = 1, (3.4) imposes the requirement
8, > 2 — A 3.7

If (3.2) and (3.3) are substituted into the pressure
continuity condition (2.17), we obtain (after normal-
1zing) the condition

B, =B84 b +EBE~ D+ (1 —A). (38

The incompressible approximation is valid only
for fluid velocities which are much smaller than
sonic velocities; That is

M=V < 1. 3.9
If we take the plasma sonic velocity as
¢’ = Y0,/ pny (3.10)
then we can write
(Va/e)” = B'/yupy = 2/78,,  (3.11)

where 8, is defined in (3.6). If (3.11) is divided by
(3.9), we obtain the result

A = yB,M°. (3.12)

Fory = § and 8, = 2, A’ = $M*. Thus, one can

apply the following results only when A < 1.

IV. NORMAL-MODE ANALYSIS—OUTER
MEDIUM SOLUTIONS

In performing a normal-mode analysis one must
first linearize. Each “total” quantity (subscript 7")
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is replaced by the sum of its equilibrium value and a
small (perturbation) quantity designated by a tilde,

qT(rr 0; 2, t)
g(r) + §(r) exp i[mo + kz + wi]
q0) + 31,

where §° = (const) exp ¢ [m8 + kz + .

We perform a first-order analysis by neglecting
products of two or more perturbation quantities.

In the outer nonconducting medium, hydro-
dynamic and electromagnetic effects are uncoupled.
The medium is assumed to be compressible. If it
has a uniform pressure and density distribution and
is at rest in the equilibrium state, we can derive an
acoustic wave equation in § by using (2.1), (2.2),
and (2.3). This equation reduces to the modified
Bessel equation when

(4.1)
(4.2)

s — 1m0, 9, — tkz; 9, — tw.
Thus,
P = PKalEr). 4.3)

K,, is the modified Bessel function of the second
kind and

£ =

Note that

K —o'/e = K — e /vP, (4.4)

K.(i2) = —(ir/2)e ™ *H,” (2)
— (r/22) ",

(4.5

where H,® is the Hankel function of the second
kind. The latter expression holds for large z and corre-
sponds to outward going radial waves. The perturbed
velocity field is

¥ =

L {litrK.], [~ mKL), =k}, (49)

where the arguments of K, are understood to be
&

Maxwell’s equations in the outer medium can be
combined to yield wave equations in E and B. With
similar assumptions, the z component of these
equations reduces to modified Bessel’s equations,
and therefore

Es = EzoKm(‘EOr);

where

E: = E,OK",(EOT), (47)

£ =k — &’/c. (4.8)

If w/c = 0, we can determine the perturbation
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in the outer magnetic field, By, from (2.7) as

Bo=(B°/kr) { —ikrK., (kr), mK (k7), krK (kr)}. (4.9)

V. MATCHING BOUNDARY CONDITIONS—THE
) DISPERSION RELATION

The dispersion relation is obtained by substituting
solutions in the plasma region (subscript p; these
will be given in Sec. VI) and outer region (subscript
0) into the stress “dynamic” boundary conditions.
By using the solutions obtained in Sec. IV, we will
obtain a relation which depends only on plasma
variables.

If the equilibrium plus perturbation quantities
are substituted into the r component of the pressure
continuity equation (2.17) we obtain

®=m—m+ 7 — 7 =0. (5.1)
®, the normalized hydromagnétic pressure difference,
is zero across the boundary as the boundary moves.
We characterize the surface of discontinuity, f, by
having @ satisfy the same differential equation as
does f, namely (2.19). By substituting ® for f in
this equation and combining, we obtain

&, — 7 + Vo d.m —m) =0, (5.2

where
@ =0w+ w, w, = Awgam’, (5.3)
wa = V4R, m=m+Xh, X=EkR (54

The normal-vector differential equation (2.20) is
solved usingn = (7 1, 0, 0) in equilibrium, and we
obtain

n = (V,/aR)(0, m, X). (5.5)

Thus, the velocity continuity condition (2.16)
yields
—(:’VrOl

and the flux continuity condition yields, after
normalizing,

(5.6)

—wV,, =

B = B, + 8(Vo/d)uon,)t, (5D

where
§ = m(by — 1) + Xh(b, — 1), (5.8)
U= wlw,, = &/w,. (5.9

The hydromagnetic pressure in the outer medium,
wor = mo —+ o, 1 constructed from the basic defi-
nition (2.13) by using (3.2) and (3.3). Thus,

o = o/ py + (Va*/2 1R/’ + (b.1)°],  (5.10)
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To = Po/py + VA(ﬂopp)_%[bo‘Bao + bzhgm]. (5.11)

By using (4.9), the 6 and z components of B,
can be expressed in terms of the r component.
Similarly, f, can be expressed in terms of V,, (and
hence V.,) by using (4.3) and (4.6), and the boundary
relation (5.6). By using all these relations, we obtain

7~E0]T=R = ivw(VA/'d) { —(Po,/Pp u23€m~l(£gr)
+ 83,"N(X)[mbs + Xhb,]}
+ iB,, V alop,) " {0 (X)[mby + Xhb.)}.

where

(5.12)

Kn(e) = 2K/ (@) /K u(@);
Xn.(12) = zH,”'()/H,.> ().

If (5.10) and (3.5) are substituted into 9, (v, — =),
we obtain

(5.13)

8. (m, — m) = w R[A* — (1 = b)) (5.19)

Now, if (5.12) and (5.14) are substituted into
(5.2), and the result is divided by V,, (w,°R), we
obtain the dispersion relation

7,/ Vi Vs + (A7 — 1 + b5)
— (po/ P K (ER) + [mby + Xhb.]
. [6 + ﬁ(#opp)_%(gm/Vm)]ﬂ(?m'l(X) = (.

It is instructive to point out the physical signifi-
cance of each term in Eq. (5.15): (1) perturbation of
hydromagnetic pressure; (2) convective boundary
effect; that is, the boundary moves into a region of a
different equilibrium hydromagnetic pressure; (3)
perturbation of the kinetic pressure in the outer
region; (4) perturbation of the magnetic pressure
in the outer region.

(5.15)

VI. CHARACTERISTIC PLASMA DIFFERENTIAL
EQUATION AND PLASMA VARIABLES

If we substitute the equilibrium plus perturbation
quantities into the symmetric Egs. (2.9) and (2.10),
we obtain six linear algebraic equations in the six

unknowns [Q:

[a]lQ = [7 (6.1)
or
(di. —u_g 0 0 —u,s O
U_g T 0 us 0 0
0 0 @ O 0 0
—u_y 0 @, —u,y O
U_g 0 0 wu.p 2, 0
L 0 0 0 0 0 eu.Jd

J. ZABUSKY

Q:r —19,
Q.o (m/r)7
(BH » kx 6.2)
Q., = or —1d,%
Q-s (m/r)m
Lq-. Lkr
where
Uug = MQug/wsB = m(A £ 1), (6.3)
Uuy = kQu./ws = Xh(A £ 1), (6.4)
Usep = Uup + U, = m'(A £ 1), (6.5)
u, = Am’, (6.6)
To = U + Usyp, = u+ u,. (6.7)

The simplicity of Egs. (6.3)-(6.7) follows from the
assumptions made in describing the equilibrium
state, (3.2) and (3.3), and from the assumed nature
of the perturbation solutions, (4.1).

The determinant of the above system of equations

18
D, = (i_a,)(Q* - 1), (6.8)
where
A1 A—1
Q= u+mAa+1) + u+mA =1 (6.9)
or
Q — 2{au + m'(A* — 1] (6.10)

U, U
Q7' is equivalent to a normalized Doppler wave-
length. D, # 0 the solution of (6.2) can be written

3514

[ ~i[o7 + (m/r)QF]
[@ 8.7 + (m/r)7]

1 1 — Hkx " 6.17)

U=~ - _ Bi[o,7 + (m/r)9F]
Bl2 9.7 4 (m/n)7]
L B — k7
where
8 = a_/a,. (6.12)

14 When @ = =1, D, = 0 and [¢]™}, and therefore @), is
undetermined by the foregoing procedure. This problem is
considered in detail in Appendix 1, for, as will be shown
m=20, Q= +landm > 0, & = —1 seem to be solutions
of the dispersion relation. Actually, they are not solutions.
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Note that

Q- = 8Q... (6.13)

If the first three terms of (6.11) are substituted
into (2.11), we obtain the modified Bessel equation
in 7

3,7+ A/ oz — [m*/r" + &' =0,  (6.14)
where
£ = k(1 ~ Q). (6.15)
Thus the solution of (6.14) is
F =7 L&D, (6.16)
and
V. = B + Bifaw,(l — 2]
[, 7% 4+ (m/r)Q7], (6.17)
B, = 11— B/ + B (6.18)

By substituting these results into (5.15) and
setting r = R, we obtain

-2(1 — @uafaa, /@ + a.)]
= {gm(EpR) + mQ}D’

where the modified Bessel function ratio is defined
by

9n(2) = 21.'()/1.()

(6.19)

= [aJ.' @)/ n@))=-i.,  (6.20)
and
D= A —1+b" — (po/p )UK " (¢,R)
+ (mby + Xhb,)’%.,. (X), (6.21)
where we have used
u = 3@.)(1 + 8), (6.22)
3@, —a.) = 3@ )1l — ) =m'. (6.23)

If we use the »Q transformation (6.10), we obtain
F = Q D[4,(R) + mQ]

+ 21 — @)[Au + m(A* - 1] =0. (6.29)

The form of this equation is characteristic of the
dispersion relations for hydromagnetic stability
problems,”” It involves the sum of transcendental
functions, which are characteristic of the geometry
(9» and X,), and rational fractions in the eigen-
values u. The former have as arguments different

15 See Eq. 30 of reference cited in footnote 1.
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rational fractions in u. Both these rational fractions
have coefficients which are dependent on the proper-
ties (e.g. compressibility, etc.) and equilibrium
configuration of the plasma and outer medium.

VII. PROPERTIES OF THE u2 TRANSFORMATION

The properties of the plasma are most conveniently
described in terms of the variable @, which is related
to the normalized eigenfrequency, «, through the
transformation given in (6.9). The properties of this
transformation will now be considered, since they
determine the behavior of the zeros of the dis-
persion relation.

Rearrangement of (6.9) as a quadratic in u yields
u' + u[2Am’(1 — y)]

+2m” (A - DG —y =0, (7.1)
where
y =1/mQ. (7.2)

Thus we see that the u plane is a two-sheeted
Riemann surface which transforms into the €
plane. The singularities in the transformation occur

at
w=—m'(A£1), (7.3)
and the branch points are at (dQ/du = 0):
u=(m/N[I -1~ 79
If (7.1) is solved for «, we obtain
—u/m’ = {A(l —y) = (1 — 2y + A")'}.  (7.5)

Note that u can be complex (unstable modes) for
y real if

I-(1—-A<y<1l4+0-—1L (7.6

Hence, if | A | > 1, no unstable modes arise which
correspond to real values of Q. The bounds on
m'Q are given in the stability diagram of Fig. 2.
Thus the smaller m’, the larger the length of the
positive real @ axis which corresponds to unstable
modes. For example, if m = 0, a small m’ means a
small Xh, or physically the case of a large wavelength
and a weak longitudinal magnetic field.

It should be noted that taking m’ = O or A = %1
reduces (6.9) to a single-valued transformation.

If A = 0, each real value of @ corresponds to
values of « which are symmetrically distributed
about the origin. For | A | > 0 (and A # =£1) the
symmetry (or degeneracy) is removed. For A > 0
(< 0) the values of u are displaced toward the nega-
tive (positive) region.
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2.0
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REGION OF INSTABILITY

o8

0.4

-

0,8 1.0

[s] WSS .,
[ 0,2 oA 0,6
A

Fic. 2. The stability regions for incompressible Flow.

VII. PROPERTIES OF THE DISPERSION
RELATION

A. Negative Parameters

If A is replaced by — A and % by —wu in both
(6.9) and (6.24), then these equations are unaffected.
Hence, the result of reversing the direction of flow
does not affect the magnitude of the roots of the
dispersion relation, but only interchanges the role
of growing and decaying modes.

If X » —X and A — —h, the zeros of the dis-
persion relation are unaffected. Thus, if the longi-
tudinal field is reversed, the direction of propagation
of the constant phase surfaces is reversed.

B. The Q Plane

Since u appears explicitly in (6.24) only twice, it
is advantageous to seek the zeros of F in the Q
plane. The normalized eigenfrequencies are obtained
by applying the u£ transformation to these results.
As Q increases,

I R) — X, (XQ)/J(XQ)

— —XQtan (XQ — m#/2 — n/4). (8.1)

Thus we will have an infinite number of roots corre-
sponding to large @ and these will correspond to
eigenfrequencies clustered around the singularities
of the u? transformation (7.3).

C. Behavior of the Dispersion Relation
with a A Variation

For convenience we will assume that the outer
gas is removed, p, = 0. Thus » no longer appears

N. J. ZABUSKY

in D and appears only once in (6.24) as the term
Au. Other investigators have shown that when A = 0
(no flow) there are unstable (nonoscillatory) modes
which correspond to real values of Q. These modes
correspond to imaginary values of u. When A is
small but finite, u appears explicitly in the dis-
persion relation and @ must become complex in
order to satisfy (6.24) in the same neighborhood of
variables and parameters. Thus, with flow present
we have overstable modes.

If A is made large and X assumed small, the dis-
persion relation simplifies so that analytical in-
vestigations are permitted. In Appendix 2 we
demonstrate that for 8, = 2.0, b, = 1.0,"® X small
(= 0.1) that:

(1) The dispersion relation is homogeneous in
A% if only the terms of highest power in A are
considered. Thus for large A the eigenvalues in the
Q plane converge to a fixed point. The calculations
{fform = 1and X = 0.1) yield @ = 1.96258 =+
10.289068, while the computer study (Sec. VIII, D)
yields @ = 1.96437 + 70.282453 when m = 1.0,
X =01, and A = 15.0.

(2) If only terms of ©(A®) are included, the dis-
persion relation is independent of 4. Thus, no matter
how strong is the longitudinal magnetic field (&),
the system will be unstable if A is made sufficiently
large and it will have the same Q eigenvalue.

If terms of ©(A% A) are included, D has a term
which involves A/A. If this term is made sufficiently
small, the system will be unstable. Appendix 2
shows that the condition for instability is

h < (1/a)(2m — 1) — m®
A 2mX

1/a = |X.(X)] > 1.0 for |m| > 1. (8.3)

Form = 1, X = 0.1, this is (h/A) < 0.12315. Thus
for a given wave number X, stability is achieved by
increasing the longitudinal magnetic field, that
is k. This stable condition is removed by increasing
A until condition (8.2) is satisfied.

(8.2)

D. Computer Study

Quantitative information on the variation of the
eigenvalues of (6.24) with A was found by using an
iterative procedure in the complex Q plane based
on Newton’s method.”” The function, f, studied was

16 These numbers were used in the computer study de-
scribed below.

17 The computation procedures designed for use on the
MOD. 205 Datatron are outlined in Appendix 6 of the
author’s thesis, (Department of Physics, California Institute
of Technology, 1959).
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TarLe I. A survey of the physical situations studied.

Fig. m 3 X A(abscissa) Ordinate

3(a) 0 01 01,10,30 0<A<10 Im (u/VvX)
3(b) 0 01 01,10,30 0<A<10 Re (u/VX)
3(c) +1.0 01 0.1,1.0,30 0<A<16 Im (u/VX)
3(d) +1.0 01 0.1,1.0,30 0<A<16 Re(—u/VX)
3(e) +1.0 1.0 0.1,1.0 0<A<15 Re(xu/VX)

explicitly a function of Q. This function was obtained
by solving (6.24) for u(p, = 0 in D):

u = —m'g/Ag, (8.4)
where

9 = Dg: + (A* ~ D)g,

g=m(1—9Q), g = 309.¢R) + m’].

After substituting in (7.1) and rearranging, we obtain
f=¢ — gl28%0.(1 — 9]
+ 2(40.)°(8° — DG —y) = 0.

Two parameters were fixed: b, = 1.0; 8, = 2.0. The
cases studied are summarized in the following table,
where reference is given to the appropriate figure
numbers. No attempt was made to find all the
modes—only the dominant ones were sought.

(8.5)

(8.6)

0.26
. m=0,h=0y @)
0.24 \
0.22 x\=3
0.20
o418 \
\ gamn
016 v X ‘\"\\
— / \\ N\
X 014 A A
N =1.i R \
‘Z’ 0.2 X e S
= /}1 \ \\L \
0,10 ~,
(4 ~,
0.08 \ \?\:\
! LR
\ oty \
0.06 \ 4 ﬁ \\
\
0,04 k \ 4\
. X=0.1 \ || \\
002 ll
0 L

o] 0.1 02 03 04 05 06 07 08 09 1.0

(a)
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A study of Fig. 3 permits the following conclusions:
1) m=0,h=01

(a) Overstable modes exist in each case. For
small wave numbers (X = 0.1, 1.0) these arise (a
pair in the latter case) with A > 0, then build up

(b)
0.15 ’I,‘ /=/3r
0.10 /‘{ /( l/ /

II 3 ]
/x\zll ‘i’k /

Re(u/V'X)
e

-

P4
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e 7
0.50‘L W ]
..o/o”
/
0.25 ro—C
0
0 0.25 0.50 0,75 1,00 .25 150 175 2.00
A
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(d) X3
0.8 P
m=t, h=ai
0.7
0.6 /
E 0.5 /
} / G,X=1
L o4 ( {:
& / W
003 .
-
/ /Q
0.2 A ,,'
ou / 4
° L -
e e X =
o L vl et l
0 025 050 075 MO 125 150 475 200
A
(d)
3.5
(e)
3.0 —e
’_ - -
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2.5 . ] |
PR i I
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»,
NFU/ VX x=10
© b ]
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Fre. 3. Normalized eigenvalue variation with flow. Real or
imaginary (/v X) vs A.

to a maximum, and vanish with increasing A. With
X = 3.0 one mode is present at A = 0 as a pure
divergence. These modes show the characteristic of
increasing magnitude with increasing wave numbers.

(b) The magnitude of the oscillation frequency
of the modes increases with inecreasing A.

@ m=0h=10

(a) For the region 0 < A < 1.5 the overstable
modes have been removed by the strong field.

@) m=1,k=0110

(a) The magnitude of the oscillation frequencies
and growth rates inecrease monotonically with A
and X when A = 0.1,

(b) When A = 1.0, the instabilities are removed
in the region 0 < A < 1.5 for X = 0.1 and 1.0.

N. J. ZABUSKY

IX. . COMPARISONS

It is easily demonstrated that the dispersion
relation (6.24) reduces to that given by Kruskal
and Tuck (see reference 1, Eq. 30) when ¢, —» =
{(incompressibility); «/¢ — 0 {(displacement current
vanishes); and A = 0. Roberts’® also treated twisted
magnetic fields in the infinite eylindrical geometry
assuming A = O and incompressibility. The
characteristic differential equation of the plasma
(6.14) reduces to his equation (Eq. 39 with the
assumption given in Eqs. 47 and 48, Model 1).
However, it is difficult to compare results, as he
used the simple boundary condition (his Eq. 52)

= = 0. {9.1)
It should be noted that Roberts’ dispersion relation
[his Eq. (53)] has stable solutions for very large and
very small wave numbers X. This does not agree
with the result of Kruskal and Tuck. They demon-
strate that for m = 1, very small wave number
perturbations cannot be stabilized in an infinite
cylindrical geometry.

Chrandrasekhar'™ first investigated the flow
problem for the case of A = 1. His conclusion of
stability was based on a ealculation which used the
hydromagnetic equations of motion and the simpli-
fied boundary condition (his Eq. 14)

Q-=o. (9.2)
This simplification permitted him to express o’ as
the ratio of two positive definite integrals. )
In a recent investigation Trehan® also used (9.1)
as his dispersion relation [his Eq. (36)]. We will now
demonstrate that this imposes restrictions on the
physical variables. Equation (9.1) implicitly requires
that the braced quantity in (5.15) or the quantity
D in (6.24) be = 0. Thus if p, = 0, (6.21) implies

D=0=20-r0b-1

— (mby + Xkb)'a, (9.3)

where a is given by (8.3) and by’ is given by (3.8)
with 8, = 20and 8 = 0, as

b = A* + 1 — RB*(b,? — 1). (9.4)

We will demonstrate that (9.1) and (9.4) 7mply: a
specific variation of b, and by with A®; and restricted
regions of m and X where (9.1) is applicable.

If we define

o = i/hb,, A = bg/hbz = aba, (95)

13 §, Chandrasekhar, Proe, Natl. Acad. Sci. 42, 273, 1956.
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then we can write (9.3) and (9.4) as
CA+ M) ~1—-—(mA+ XV a=0

and

(9.6)

AT = (A 4+ 148" — 1. 9.7

By substituting (9.4) into (9.3) and solving the
resulting quadratic for A, we get

_mXat{~-"+ (14 X%a+m?a®) —m’a®}}

A
r—m’a

, (9.8)

where

r= Q@A+ )/ +R+D). (9.9

Thus for A/h large, 7 approaches a constant =
2.0, and A is independent of A.

By setting 7 = 2 in Eq. (9.8), one arrives at the
condition between m and X such that A is real,
namely,

2X* + m* > 2/a. (9.10)

Thus, (9.1) cannot be used as a dispersion relation
for small wave number disturbances. In particular,
for m = £ 1, X must be greater than 1.0.

For large A (9.6) and (9.7) yield, respectively,

a” = (hb)* = (A® + 1 + K)/(a* + 1)
— (const) A,
by’ = A’/a’ — (const)A’.

(9.11)
(9.12)

Thus, use of (9.1) as a dispersion relation removes
a degree of freedom by implicitly coupling the
external magnetic fields to the flow. This implicit
stabilization is probably the reason Trehan (his
Fig. 2) did not observe any instabilities form = —1
and A large.
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APPENDIX 1. @2 =1

If @* = 1, the inverse of matrix [a] is not defined
and one must return to the original equations.
Equation (6.13) is evident from an inspection of
(6.2) and is not affected by the vanishing of Det | a |.

STABILITY OF PLASMA
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Using this result, the first three equations of (6.2)
yield

- —(u_o + Buspy O
U_g + Bites 0. 0
0 0 X7
Q. 9.7
Qoo = | —@mmr.  (ALD
wa
Q.. — k¥
Thus ., = — (k/wsi)w, and the remaining pair
of equations becomes
i - Q [GH = —(1/d_ws) 8.7 (AL2)
Lz J Qoo = —(1/d cs)Gm/M7.  (AL3)

If (A1.2) is substituted into V-Q, = 0 and the
result rearranged, we obtain

0.8, + 1 (1 ~ m/9..
7 —-m , . o~
= (d_wd>[_r§_ ar + k r]- (A1.4)
Similarly, for (A1.3) the following was obtained:
ar@i-r + (1/7')(1 - mQ)Q+r

= (t/a-w)[(m’ /") + K]x.  (ALS5)
Subtraction of (Al.4) from (A1.5) yields
(/@) — Q4. = (/i-w,)
[(1/9) a7 + (m/r)x]. (A1.6)

After setting @ = +1 we are left with a first order
equation for ¥ whose solution is

~0 ~(m D)
o

T = (A1.D)
This solution is valid when m = F1.0, @ = +1.0,
ete. Equation (A.1.7) is also the solution which one
obtains from (6.4) by setting Q° = 1, This follows
since the value of the determinant cancels out of
the procedure which determines the plasma differ-
ential equation.

Substitution of (Al1.7) into (Al.5) yields a first

order differential equation in §,, whose solution is

—m Q~1 2
Y 1 (kr) :I
Qur = i _wA[ ¢ T 1= ma

(A1.8)

From (A1.2) we also determine

=7 [_15 + _(kn)® + 2mg]- (A1.9)

Ceo = 020w, 1 — mQ
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Thus, the quantity substituted into the dispersion
relation (5.15) is

Vo _0+8q.,

T, 2 i
_ia+/m[ 1 X?]
- 4?Z-wAR[ 9+m+1 ) (a1.10)

We see that @ = —1 is not a root of the dis-
persion relation. The same result, (A1.10), is
obtained by forming

Q../7 = i[0,7/% + mQ/r}/[Gw,1 — O]

from (6.11)7an_d expanding the resulting equation
before taking the limit of @ — —1.

APPENDIX 2. ASYMPTOTIC ANALYSIS IN A

If we retain terms of order A’ and A in (7.5) and
(6.21) we obtain the respective expressions

u= —m'A(l — 2/m’Q) + 0(1/4), - (A2.1)
0=A"D’
= A2 — am® — 2amXh/A) + (A", (A2.2)

where «a is defined in (8.3). We have taken b, = 1.0
and B, = 2.0 so that comparisons to the computer
results can be made. If we substitute these into the
dispersion relation (6.24) and take A large, we
obtain the expression

F = A*{D'Ql9.¢R) + mQ)
+ (@/m A — D)) =0. (A2.3)

If the quantity 2amXh/A in (A2.2) is very small,
then (A2.3) is homogeneous in the term A’ Thus
for large A each eigenvalue approaches a fixed point
in the complex Q plane.

We now show that for m = 41, X small (= 0.1),
that (A2.3) has a complex conjugate pair of modes
in the vicinity of the origin of the Q plane. If we
use

In@) = 9-.() = |ml
+2/2(ml + 1) + -+, (A249)
we can rearrange (A2.3) to the form
[Q%D'e) — *D'(m/4 + &)
+a—-1]e+ 11 =0, (A2.5)
where
€ = X*/8(m + 1), (A2.6)

N. J. ZABUSKY

and m has been taken as positive to simplify the
analysis.

If we take ¢ = 0 and D' = 2 — am®, we are left
with a quadratic equation whose solution is

qo 2=l = m2— am®)}}
- m(2 — am®)

Form = land X = 0.1 [| %, (0.1)] = 1.02463] this
yields

(A2.7)

= 1.953056 = 10.302565.

A better result is obtained if we substitute
Q@ = 2 4+ 6 into (A2.5) and solve the quadratic
portion of the resulting cubic equation in 6. If we
retain ¢ and again use m = +1, X = 0.1, we
obtain the complex modes

Q = 1.96258 -+ 70.289068.

These results are to be compared with the com-
puter calculated values of:

A Q

2.0 1.93841 = 40.339691

3.0 1.95922 =+ 0.293517
10.0 1.96485 3= ¢0.280518
15.0 1.96437 =+ 40.282453.

Note that (A2.7) indicates that this complex mode
is not present for any other value of m > 1.0.

If one includes the term ©(A™") in D’, we can
write the condition for complex modes (of (A2.5)
with € = 0) as

1 — 2m + am® + 2amXh/A < 0, (A2.8)
or
h _[2m —1/am] — m
T ox (A2.9)
For m = +1 this becomes
h _l1l/a—1
A < “ox (A2.10)

Thus for a fixed X, the stronger the longitudinal
magnetic field h, the larger must be the flow A
to obtain complex modes. Note that for A very
large, h does not appear explicitly in (A2.3) or
(A2.5), implying that the same unstable @ modes
will be present regardless of the values of A.
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