CaltechAUTHORS
  A Caltech Library Service

Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes

Scully, Ziv and van Kreveld, Lucas and Boxma, Onno and Dorsman, Jan-Pieter and Wierman, Adam (2020) Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes. In: Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems. Association for Computing Machinery , New York, NY, pp. 35-36. ISBN 9781450379854. https://resolver.caltech.edu/CaltechAUTHORS:20210303-131501254

[img] PDF - Published Version
See Usage Policy.

854kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20210303-131501254

Abstract

We consider the tail behavior of the response time distribution in an M/G/1 queue with heavy-tailed job sizes, specifically those with intermediately regularly varying tails. In this setting, the response time tail of many individual policies has been characterized, and it is known that policies such as Shortest Remaining Processing Time (SRPT) and Foreground-Background (FB) have response time tails of the same order as the job size tail, and thus such policies are tail-optimal. Our goal in this work is to move beyond individual policies and characterize the set of policies that are tail-optimal. Toward that end, we use the recently introduced SOAP framework to derive sufficient conditions on the form of prioritization used by a scheduling policy that ensure the policy is tail-optimal. These conditions are general and lead to new results for important policies that have previously resisted analysis, including the Gittins policy, which minimizes mean response time among policies that do not have access to job size information. As a by-product of our analysis, we derive a general upper bound for fractional moments of M/G/1 busy periods, which is of independent interest.


Item Type:Book Section
Related URLs:
URLURL TypeDescription
https://doi.org/10.1145/3393691.3394179DOIArticle
https://resolver.caltech.edu/CaltechAUTHORS:20210303-094800346Related ItemJournal Article
ORCID:
AuthorORCID
Scully, Ziv0000-0002-8547-1068
Boxma, Onno0000-0003-4317-5380
Additional Information:© 2020 Copyright held by the owner/author(s). Ziv Scully was supported by an ARCS Foundation scholarship and the NSF Graduate Research Fellowship Program under Grant Nos. DGE-1745016 and DGE-125222. Lucas van Kreveld, Onno Boxma, and Jan-Pieter Dorsman were supported by the Netherlands Organisation for Scientific Research (NWO) through the Gravitation project NETWORKS, grant number 024.002.003. Adam Wierman was supported by NSF grant CNS-1518941.
Funders:
Funding AgencyGrant Number
ARCS FoundationUNSPECIFIED
NSF Graduate Research FellowshipDGE-1745016
NSF Graduate Research FellowshipDGE-125222
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)024.002.003
NSFCNS-1518941
Subject Keywords:response time; sojourn time; tail latency; tail optimality; Gittins policy; shortest expected processing time (SERPT); randomized multi-level feedback (RMLF); M/G/1
Record Number:CaltechAUTHORS:20210303-131501254
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20210303-131501254
Official Citation:Ziv Scully, Lucas van Kreveld, Onno Boxma, Jan-Pieter Dorsman, and Adam Wierman. 2020. Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job Sizes. In Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS '20). Association for Computing Machinery, New York, NY, USA, 35–36. DOI:https://doi.org/10.1145/3393691.3394179
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:108290
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:03 Mar 2021 21:57
Last Modified:03 Mar 2021 21:57

Repository Staff Only: item control page