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MINIMAL DEFINABLE GRAPHS OF DEFINABLE

CHROMATIC NUMBER AT LEAST THREE

RAPHAËL CARROY, BENJAMIN D. MILLER, DAVID SCHRITTESSER,
AND ZOLTÁN VIDNYÁNSZKY

Abstract. We show that there is a Borel graph on a standard
Borel space of Borel chromatic number three that admits a Bor-
el homomorphism to every analytic graph on a standard Borel
space of Borel chromatic number at least three. Moreover, we
characterize the Borel graphs on standard Borel spaces of vertex-
degree at most two with this property, and show that the analogous
result for digraphs fails.

1. Introduction

The investigation of definable chromatic numbers is a blooming field
of research with numerous applications, as can be found in [2, 6, 7, 8,
15, 16, 17, 18, 23]. The survey [13] contains many of the latest results.
Recall that a digraph on a set X is an irreflexive set G ⊆ X2, and a

graph on X is a symmetric digraph on X . A κ-coloring of a digraph
G on X is a map c : X → κ such that (x, y) ∈ G =⇒ c(x) 6= c(y)
for all x, y ∈ X . We will be interested in digraphs on spaces X which
are endowed with a standard Borel structure. In this case, one may
consider the Borel chromatic number of G, or χB(G), defined as the
least cardinal κ that admits a standard Borel structure with respect
to which there is a Borel κ-coloring of G. (Note that a standard Borel
structure exists on κ iff κ ∈ {0, 1, 2, . . . ,ℵ0, 2

ℵ0}, and for each such κ

it is unique up to Borel isomorphism.)
A homomorphism from a digraph G on X to a digraph G′ on X ′ is

a map φ : X → X ′ such that (x, y) ∈ G =⇒ (φ(x), φ(y)) ∈ G′ for all
x, y ∈ X . When G and G′ are digraphs on standard Borel spaces, we
write G ≤B G′ to indicate the existence of a Borel homomorphism from
G to G′. Similarly, when G and G′ are digraphs on Polish spaces, we
write G ≤c G

′ to indicate the existence of a continuous homomorphism
from G to G′. It is easy to see that G ≤B G′ =⇒ χB(G) ≤ χB(G

′).
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The complete graph on κ is given by Kκ = {(α, β) ∈ κ2 | α 6= β}. It is
also easy to see that if κ is endowed with a standard Borel structure,
then χB(G) ≤ κ ⇐⇒ G ≤B Kκ.
The systematic investigation of Borel chromatic numbers was initi-

ated by Kechris, Solecki, and Todorčevic [14]. One of their primary suc-
cesses was the isolation of a Borel graph G0 on 2N of uncountable Borel
chromatic number that admits a continuous homomorphism to every
analytic Borel graph on a Polish space of uncountable Borel chromatic
number. This result lies at the heart of a vast number of seemingly un-
related theorems in descriptive set theory (see, e.g., [4, 5, 19, 21, 22]),
often yielding shorter, more elegant proofs and substantial generaliza-
tions. Todorčevic and the fourth author [25] recently ruled out the
most straightforward analogs of the G0 dichotomy for graphs of Borel
chromatic number at least n, where 4 ≤ n ≤ ℵ0.
We will introduce a Borel graph L0 that plays a role analogous to

G0 for graphs of Borel chromatic number at least three:

Theorem 1.1. Suppose that G is an analytic graph on a Polish space.
Then exactly one of the following holds:

(1) The graph G has Borel chromatic number at most two.
(2) There is a continuous homomorphism from L0 to G.

It is easy to see that there is no analogous finite basis in the case of
finite graphs, where the notions of Borel graph and Borel chromatic
number coincide with their classical counterparts.
The graph L0 can be described using an inverse limit-like construc-

tion as follows: Let X0,0 be a two-point set, let L0,0 be the unique
connected graph on X0,0, and define X0 = X0,0. Given n ∈ N, a finite
set X0,n, and a tree L0,n onX0,n of vertex degree at most two, letX0,n+1

be the disjoint union of two copies of X0,n with a set Xn+1 of cardinal-
ity 2n + 2, fix a point sn ∈ X0,n of L0,n-vertex degree one, fix a a tree
Ln+1 on Xn+1 of vertex degree at most two, and let L0,n+1 be the graph
on X0,n+1 whose restriction to each copy of X0,n is the corresponding
copy of L0,n, whose restriction to Xn+1 is Ln+1, and which connects the
two copies of sn in X0,n+1 to distinct points of Xn of Ln-vertex degree
one (see the Figure below). Let πn+1 : X0,n+1 \ Xn+1 → X0,n be the
projection sending each point in one of the two copies of X0,n within
X0,n+1 to the corresponding point of X0,n. Let X0 be the set of pairs
of the form (n, x), where n ∈ N and x ∈ Xn ×

∏

m>nX0,m, such that
x(m) = πn+m+1(x(m + 1)) for all m ∈ N. Let L0 be the graph on X0

consisting of all pairs ((n, x), (n′, x′)) ∈ X0×X0 with the property that
(x(m), x′(m)) ∈ L0,m for all m ≥ max(n, n′). We will give a slightly
different description of this graph in §2.
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Figure 1. The first four stages of the construction of L0.

Our proof of Theorem 1.1 splits into two parts: We first establish
the existence of continuum-many L0-like Borel digraphs that serve as
a basis for the analytic digraphs on Polish spaces of Borel chromatic
number at least three under continuous homomorphism, and then show
that the undirected versions of any of these digraphs admits a contin-
uous homomorphism to the undirected version of any other.
Suppose that X is a set and L is a graph on X of vertex degree

at most two. We say that a set Y ⊆ X has large gaps if every L-
component contains L-connected sets disjoint from Y of arbitrarily
large finite cardinality. When X is a standard Borel space, we say that
L has the large gap property if there is a Borel set B ⊆ X with large
gaps that intersects every L-component. We say that L has the large
gap property modulo a two-colorable set if there is an L-invariant Borel
set M ⊆ X such that L ↾ (X \M) has the large gap property and
χB(L ↾ M) ≤ 2. We also characterize the family of Borel graphs L on
standard Borel spaces of vertex degree at most two satisfying the analog
of Theorem 1.1 in which the existence of a continuous homomorphism
from L0 to G is replaced with the existence of a Borel homomorphism
from L to G:

Theorem 1.2. Suppose that X is a standard Borel space and L is
an acyclic Borel graph on X of vertex degree at most two. Then the
following are equivalent:

(1) There is a Borel homomorphism from L to every Borel graph
G of Borel chromatic number at least three.

(2) The graph L has the large gap property modulo a two-colorable
set.

An oriented graph on a set X is an antisymmetric digraph on X .
Whereas the oriented analog of G0 satisfies the analog of the Kechris-
Solecki-Todorčevic dichotomy for analytic digraphs, we also show that
there is no such analog of Theorem 1.1:
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Theorem 1.3. Suppose that G is an analytic digraph on a Polish space
of Borel chromatic number at least three. Then there is a sequence
(Lt)t∈2N of Borel oriented graphs on Polish spaces of Borel chromatic
number three that admit continuous homomorphisms to G but for which
every analytic digraph on a standard Borel space that admits a Borel
homomorphism to at least two distinct graphs of the form Lt has Borel
chromatic number at most two.

One can view L0 as being built via towers over a canonical acyclic
graph L on 2N of vertex degree at most two that is not the graph of a
Borel function. In a future paper, we will establish a basis theorem for
the analytic graphs on Polish spaces of Borel chromatic number at least
three under the finer notion of injective continuous homomorphism.
While the cardinality of the basis we will provide is necessarily (at
least) that of the continuum, its elements are reminiscent of L0, in that
they too can be viewed as being built via towers, albeit this time over
three canonical graphs: the graph L over which L0 is built, the graph of
the odometer on 2N, and the graph of the unilateral shift on increasing
N-sequences of natural numbers (for a summary of the results, see, [3]).
In §2, we collect the most important definitions and facts used in

our arguments. In §3, we give the first half of the proof of Theorem
1.1. In §4, we give the second half and establish Theorem 1.2. In §5,
we establish our anti-basis result. In §6, we discuss open problems.

2. Preliminaries and basic facts

We refer the reader to [12] for general background on descriptive set
theory.
For each ordered pair (x, y), set (x, y)1 = (x, y) and (x, y)−1 = (y, x).

Define B−1 = {(x, y)−1 | (x, y) ∈ B} for all sets B ⊆ X2. Given a
digraph G on a set X and x, y ∈ X , an (undirected) G-path from x

to y is a pair p = ((x0, . . . , xℓ), dp) consisting of a finite sequence of
vertices (x0, ..., xℓ) with x0 = x and xℓ = y, and dp ∈ {±1}ℓ such that
(xi, xi+1)

dp(i) ∈ G for all i < ℓ. In the case that p is a G-path and G is
a graph, we will omit the second coordinate of p.
For all d ∈ {±1}<N, we use Σ(d) to denote

∑

i∈dom(d) d(i). We set

dilength(p) = Σ(dp) and length(p) = ℓ for the directed length and
(undirected) length of p. Let distG(x, y) be the minimal length of a
G-path from x to y.
It is easy to verify the next claim.
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Claim 2.1. Let G be an acyclic1 oriented graph on the space X, and
x, y ∈ X. Then for any two G-paths p and p′ from x to y we have
dilength(p) = dilength(p′).

Thus, for an oriented acyclic graph G on the space X , and x, y ∈ X

defining didistG(x, y) to be the directed length of a path from x to y
makes sense. If it is clear from the context, we will omit the superscript
from dist(·, ·) and didist(·, ·).
Note also that the parity of dilength(p) and length(p) are the same.

So, when referring to the parity of the length of a path, we will always
omit the word “directed”.
Define an equivalence relation EG on X by letting xEGy iff there

exists a G-path from x to y. The EG equivalence classes will be called
the connected components or components of G. For standard definitions
and facts from the theory of equivalence relations (e.g., smoothness,
saturation, countability) see [10]. As usual, a set S ⊆ X will be called
G-invariant if it is EG-invariant.
The restriction of G (EG) to B, in notation G ↾ B (EG ↾ B), is the

digraph G∩B2 (the equivalence relation EG ∩B2) on B. A set B ⊆ X

is called G-independent if B2 ∩G = ∅.
Definition of L0-type graphs. Now we outline a general scheme for

constructing Borel graphs, the graph L0 will be a particular example
of such a construction. First we define finitary approximations to our
graphs, parametrized by a sequence c ∈ N

N. For all n ∈ N, let Ln

denote the graph on {(0), . . . , (n)} with respect to which (i) and (j)
are neighbors if and only if |i− j| = 1. For the rest of the paper we fix
a sequence (sn)n∈N given by s0 = (c(0)) and sn = (0)n ⌢ (1), for n > 0.
Define graphs Lc,n on Xc,n =

⋃

m≤n{0, . . . , c(m)} × 2n−m by setting
Lc,0 = Lc(0) and Lc,n+1 to be the acyclic connected graph containing
{(vi a (j))i<2|j < 2 and (vi)i<2 ∈ Lc,n} and Lc(n+1) in which (sn, 0) is
a neighbor of (0), and (c(n+ 1)) is a neighbor of (sn, 1).
Now set Xc = {(n, k, r) ∈ N× N× 2N | k ≤ c(n)}, define πc,n : Xc ∩

({0, . . . , n} × N × 2N) → Xc,n by πc,n(m, k, r) = (k) a r ↾ (n − m)
for all n ∈ N, and let Lc be the graph on Xc consisting of all pairs
of the form ((ni, ki, ri))i<2 such that (πc,n(ni, ki, ri))i<2 ∈ Lc,n holds
∀n ≥ max(n0, n1).
Recall that in the introduction we have described the graph L0 = Lc

with c(0) = 1, and c(n) = 2n− 1 for n > 0.

1Throughout the paper, the term “acyclic” will mean that there are no undirected
cycles, that is, the graph G ∪G−1 contains no cycles.
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Definition of L0-type oriented graphs. We modify slightly the preced-
ing construction, considering oriented finitary approximations, which
yield oriented Borel graphs as limits.
An extra parameter is necessary to encode the orientation of the

graphs. For all n ∈ N and d ∈ {−1, 1}k with k > n, let Ld
n denote the

oriented graph on {(0), . . . , (n)} containing ((i), (j))d(max{i,j}) whenever
|i− j| = 1.
Let n ∈ {0, 1, . . . ,ℵ0}. In order to ease the notation, we will call a

pair b = (c, d) an odd n-pair if c : 1+n → 2N+1, d : 1+n → {−1, 1}<N,
|d(k)| = c(k) + 2 for all k ≤ n.
Given an odd ℵ0-pair b = (c, d), define graphs Lb,n on Xc,n by setting

Lb,0 = L
d(0)
c(0) and letting Lb,n+1 be the acyclic connected oriented graph

containing {(vi a (j))i<2|j < 2 and (vi)i<2 ∈ Lb,n} and L
d(n+1)
c(n+1) , in

which

((sn, 0), (0)))
d(n+1)(0) and ((c(n+ 1)), (sn, 1))

d(n+1)(c(n+1)+1)

are edges. Finally, let Lb be the graph on Xc consisting of all pairs
of the form ((ni, ki, ri))i<2 such that (πc,n(ni, ki, ri))i<2 ∈ Lb,n holds
∀n ≥ max(n0, n1).
Basic observations. Note that for any c ∈ NN and any odd ℵ0-pair

b, the definitions of Lc,n, Xc,n, and Lb,n depend only on (c(i))i≤n and
(b(i))i≤n, respectively. For n

′ > n natural numbers define πc,n,n′ : Xc,n′∩
{(k, t) | t ∈ 2n

′−m, for some m ≤ n} → Xc,n by πc,n,n′(k, t) = (k) a t ↾

(n−m), where m is chosen such that t ∈ 2n
′−m. Observe that

πc,n,n′ ◦ πc,n′ ↾ dom(πc,n) = πc,n

holds.
Let us use the abbreviation Ec for ELc . We list a number of useful

basic observations about the family of digraphs and graphs defined
above.

Claim 2.2. Assume that b = (c, d) is an odd ℵ0-pair. Then

(1) Xc is a closed subset of N × N × 2N, hence it is a Polish space
with the subspace topology.

(2) Lc = Lb ∪ L
−1
b , Lc,n = Lb,n ∪ L

−1
b,n.

(3) If for some n, k ∈ N, ε < 2, t ∈ 2<N we have (k)⌢ t⌢ (ε) ∈ Lc,n,

then (k)⌢t⌢(1−ε) ∈ Lc,n and distLc,n((k)⌢t⌢(ε), (k)⌢t⌢(1−ε))
is odd.

(4) Let (n, k, r), (n′, k′, r′) ∈ Xc with n ≤ n′. Then
(n, k, r)Ec(n

′, k′, r′) if and only if r = t ⌢ r∗, r′ = t′ ⌢ r∗ with
|t| − |t′| = n′ − n for some r∗ ∈ 2N, t, t′ ∈ 2<N.
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(5) Lc is acyclic and is 2-regular, except for a single vertex of degree
1.

(6) If B ⊆ Xc is Borel and meager, then so is [B]Ec.
(7) If B ⊆ Xc is Borel and non-meager, then χB(Lc ↾ [B]Ec) = 3.
(8) If lim supn c(n) = ∞ then Lc has the large gap property.

Proof. It is immediate from the definition of the graphs Lb that (1) and
(2) holds, while (3) follows from the fact that c ∈ (2N+ 1)N.
In order to see (4) note that if p = (x0, . . . , xl) is an

injective Lc-path, then for a large enough m the sequence
(πc,m(x0), . . . , πc,m(xl)) is an injective Lc,m-path. It follows from the

fact that the graphs Lc,m are acyclic that distLc((n, k, r), (n′, k′, r′)) ≥
distLc,m(πc,m(n, k, r), πc,m(n

′, k′, r′)) holds for every large enough m. In
particular, as the distance of the vertices in different copies of Lc,m−1

in Lc,m is at least c(m) + 2, we have that (n, k, r)Ec(n
′, k′, r′) if and

only if πc,m(n, k, r) and πc,m(n
′, k′, r′) are in the same copy of Lc,m−1

in Lc,m for every large enough m, which is equivalent to the right side
condition in (4).
For (5) observe that for every n every degree in Lc,n is at most 2,

hence the same must be true for Lc. Also, it is easy to see that if the
degree of a vertex (n, k, r) ∈ Xc is < 2 then for every large enough n′

the degree of πc,n′(n, k, r) in Lc,n′ must be < 2. It follows that this is
only possible if (n, k, r) = (0, 0, (0)N). Finally, acyclicity follows from
the acyclicity of Lc,n.
From (4) we get that Ec is the union of the graphs of the partial

maps and their inverses of the following form:

fn,n′,k,k′,t,t′(n
′, k′, t′ ⌢ r) = (n, k, t ⌢ r),

where n′ ≥ n, |t| − |t′| = n′ − n. It is clear that the above partial maps
are injective and preserve category. Thus,

[B]Ec =
⋃

n,n′,k,k′,t,t′

f±1
n,n′,k,k′,t,t′(B)

is also meager and Borel.
To see (7) first note that (5) implies χB(Lc ↾ [B]Ec) ≤ 3 using the

standard fact that the maximal vertex degree +1 is an upper bound
(see, e.g., [14]).
Assume that B is a non-meager Borel set and that c : [B]Ec → 2 is

a Borel 2-coloring of Lc ↾ [B]Ec . Then there exists an i < 2 and a
basic open set of the form [(n, k, t)](= {(n, k, r) ∈ Xc | r ⊐ t}) with
n, k ∈ N, t ∈ 2<N, such that [(n, k, t)] \ (B ∩ c−1(i)) is meager. Using
(6) we have that [[(n, k, t)] \ (B ∩ c−1(i))]Ec is also meager, so we can
pick a point (n, k, r) ∈ [(n, k, t)] ∩ B ∩ c−1(i) that does not belong to
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this meager set. Assume that r = t ⌢ (ε) ⌢ r′, then by 4 we have
that (n, k, t ⌢ (1− ε) ⌢ r′) ∈ [(n, k, t)] ∩ B ∩ c−1(i) holds, in particular
c(n, k, t⌢ (ε)⌢ r′) = c(n, k, t⌢ (1− ε)⌢ r′) = i. As in the proof of (4),
it follows that

distLc((n, k, t ⌢ (ε) ⌢ r′), (n, k, t ⌢ (1− ε) ⌢ r′)) =

distLc,n+|t|+1(πc,n+|t|+1(n, k, t
⌢ (ε)⌢ r′), πc,n+|t|+1(n, k, t

⌢ (1− ε)⌢ r′)) =

distLc,n+|t|+1((k) ⌢ t ⌢ (ε)), (k) ⌢ t ⌢ (1− ε)),

which is an odd number by (3). This contradicts the assumption that
c was a Borel 2-coloring of LB ↾ [(n, k, r)]Ec ⊆ LB ↾ [B]Ec .
Finally, for (8), it is easy to verify that B = {(0, 0, r) ∈ Xc | r ∈ 2N}

witnesses the large gap property of Lc, whenever lim supn c(n) = ∞.
�

Claim 2.3. Assume that L, L′ are ≤ 2-regular acyclic Borel graphs on
standard Borel spaces X, X ′.

(1) Let A be an L-invariant analytic set so that EL ↾ A is smooth.
Then χB(L ↾ A) ≤ 2.

(2) Assume that φ is a Borel homomorphism from L to L′. De-
fine M = {x ∈ X | φ mapping [x]EL

→ [φ(x)]EL′ is not onto}.

Then M is Borel and χB(L ↾M) ≤ 2.

Proof. In order to see (1) note that EL is countable, so smoothness
is equivalent to the existence of an L-invariant Borel partial mapping
x → yx so that yxELx holds, for every x ∈ A. Clearly, the map
c : A → 2 defined by c(x) = 0 iff distL(x, yx) is even, is a 2-coloring of
the graph L ↾ A, such that for i < 2 the sets c−1(i) are analytic. Using
the analytic separation this yields that χB(L ↾ A) ≤ 2.
For (2), fix a Borel linear ordering < on X . Since L′ ↾ φ([x]EL

)
and L′ ↾ [φ(x)]EL′ are ≤ 2-regular acyclic connected graphs, there are

one or two vertices in [φ(x)]EL′ \φ([x]EL
) which have an L′-neighbor in

φ([x]EL
), let yx be the <-minimal such vertex. Now, similarly to (1),

letting c(x) = 0 iff distL
′

(φ(x), yx) is even, shows that χB(L ↾ M) ≤
2. �

The following claim will be used to establish Theorem 1.1 for Borel
graphs.

Claim 2.4. Assume that G is a Borel graph on a standard Borel space
X, c ∈ (2N + 1)N and (φn)n∈N is a a sequence of Borel partial maps
from X to Xc,n with the following properties for every n ∈ N:

(1) dom(φn) ⊆ dom(φn+1) and
⋃

n∈N dom(φn) = X.
(2) the map φn is a partial homomorphism from G to Lc,n.
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(3) φn = πc,n,n+1 ◦ φn+1 ↾ dom(φn).

Then there exists a Borel homomorphism φ from G to Lc.
Moreover,

(4) if X is Polish, for every n ∈ N the set dom(φn) is open in X,
and the maps φn are continuous,

then φ can be chosen to be continuous.

Proof. Let x ∈ X be arbitrary and take nx
0 to be minimal such that

x ∈ dom(φn0
). For n ≥ n0 we have that φn(x) = (kn)

⌢ tn for some
tn ∈ 2n−mn and kn, mn ∈ N. By (3) for every n ≥ n0 the relations kn =
kn+1, mn = mn+1, and tn ⊏ tn+1 hold. Let φ(x) = (mn0

, kn0
,
⋃

n≥n0
tn).

Clearly, φ is a Borel map, we check that it is a homomorphism. Indeed,
if (xi)i<2 ∈ G then by (2) letting n ≥ max{nxi

0 | i < 2} we have
that (φn(xi))i<2 ∈ Lc,n. Notice that πc,n(φ(x)) = φn(x), whenever
x ∈ dom(φn), so we obtain (πc,n(φ(xi)))i<2 = (φn(xi))i<2 ∈ Lc,n, which
verifies our claim by the definition of Lc.
Finally, one can easily check that the assumptions of (4) of the claim

yield the continuity of φ. �

3. A basis under continuous reducibility

In this section we construct a basis for Borel digraphs with Borel
chromatic number > 2. We will show these results in a somewhat
greater generality than stated in the introduction, namely for ana-
lytic graphs defined on Hausdorff spaces. The proof relies on a slight
modification of the idea behind the G0-dichotomy together with an
observation about the Borel 2-colorability of Borel digraphs, which is
essentially summarized in Claims 3.3, 3.4, and 3.5 below.

Theorem 3.1. Let G be an analytic digraph on a Hausdorff space X.
Then exactly one of the following holds:

(1) χB(G) ≤ 2.
(2) There exists an odd ℵ0-pair b so that Lb admits a continuous

homomorphism to G. Moreover, for any f ∈ NN the pair b =
(c, d) can be chosen in such a way, so that for every i ∈ N we
have Σ(d(i)) > f(i) ·

∑

j<i |Σ(d(j))|.

Proof. The proof will follow the proof of the G0-dichotomy presented
in [20].
Fix a function f ∈ NN. As G is analytic, there exist a continuous

surjection φG : NN → G and a continuous map φX : NN → X such that
φX(N

N) is the union of the two projections of G to X . By iteratively
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throwing away G-invariant sets restricted to which G has a Borel 2-
coloring we define a decreasing sequence (Xα)α<ω1

of analytic subsets
of X . Let X0 = φX(N

N) and Xλ =
⋂

α<λX
α if λ is a limit ordinal.

Let us now describe the successor stage.
An approximation is a quadruple a = (na, ba, φa, ψa), where na ∈

N, ba = (ca, da) is an odd na-pair, φa : Xca,na → Nna

, and ψa : Lba,na →
Nna

. An approximation a′ said to one-step extend a, if

(a) na′ = na + 1.
(b) ca

′
⊐ ca, da

′
⊐ da.

(c) Σ(da
′
(na′)) > f(na) ·

∑

j≤na |Σ(da(j))|.

(d) ∀x ∈ dom(πca′ ,na,na′ ) φa′(x) ⊐ φa ◦ πca′ ,na,na′ (x).
(e) ∀x, y ∈ dom(πca′ ,na,na′ )

(x, y) ∈ Lba
′
,na′ =⇒ ψa′(x, y) ⊐ ψa(πca′ ,na,na′ (x), πca′ ,na,na′ (y)).

A configuration is a quadruple of the form γ = (nγ , bγ, φγ, ψγ), where
nγ ∈ N, bγ is an odd nγ-pair, φγ : Xcγ ,nγ → NN, and ψγ : Lbγ ,nγ → NN

having the following property: for every (x, y) ∈ Lbγ ,nγ

(3.1) (φG ◦ ψγ)(x, y) = (φX ◦ φγ(x), φX ◦ φγ(y)).

A configuration γ is said to be compatible with an approximation a,
if

(1) na = nγ .
(2) ba = bγ .
(3) ∀x ∈ Xcγ ,nγ φa(x) ⊏ φγ(x).
(4) ∀(x, y) ∈ Lbγ ,nγ ψa(x, y) ⊏ ψγ(x, y).

We say that a configuration γ is compatible with a set Y ⊆ X , if
φX ◦ φγ(Xcγ ,nγ) ⊆ [Y ]EG

. An approximation a is Y -terminal if no
configuration is compatible with both Y and a one step extension of a.
Let

A(a, Y ) = {φX ◦ φγ(snγ ) | γ is compatible with a and Y }.

Lemma 3.2. Suppose that Y ⊆ X is an analytic set and a is a Y -
terminal approximation. Then there exists an G-invariant Borel set
B(a, Y ) ⊇ [A(a, Y )]EG

so that G ↾ B(a, Y ) has a Borel 2-coloring,
ca,Y .

We start with a series of claims.

Claim 3.3. Suppose that A ⊆ X is an analytic set such that for every
x, y ∈ A, every G-path from x to y has even (undirected or, equiv-
alently, directed) length. Then there exists a G-invariant Borel set
B ⊇ [A]EG

on which G ↾ B admits a Borel 2-coloring.
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Proof. For i < 2, define the Ai ⊆ [A]EG
as follows: let x ∈ Ai if there

exists a path of length n from x to some y ∈ A, where n ≡ i mod 2.
It is clear that the sets (Ai)i<2 are analytic, their union covers [A]EG

,
and they are G-independent. Note that their G-independence implies
that A0∩A1 = ∅. By the analytic separation theorem there exist Borel
sets Bi ⊇ Ai with B0 ∩ B1 = ∅. Define c(x) = i ⇐⇒ x ∈ Bi and let
C = {x ∈ X | c is a 2-coloring of G ↾ [x]EG

}. Clearly, the sets X \ C
and A0 ∪ A1 are disjoint, analytic, and G-invariant. Hence, by [11,
Lemma 5.1] there exists an G-invariant Borel set B ⊇ A0 ∪ A1, with
B ∩ (X \ C) = ∅. Then, c ↾ B is a Borel 2-coloring of G ↾ B. �

Claim 3.4. Let A′ ⊆ A ⊆ X be analytic sets and d ∈ Z be an odd
number. Assume that for every x′ ∈ A′ there exists an x ∈ A, such
that there exists a G-path from x′ to x of directed length d. Moreover,
assume that every odd length G-path between elements of A has directed
length ≤ |d|. Then there exists an G-invariant Borel set B ⊇ [A′]EG

on which G ↾ B admits a Borel 2-coloring.

Proof. Suppose that d > 0, the other case is analogous. Let A′
0 = {x′ ∈

A′ | there exists a G-path from x′ to some element of A with odd neg-
ative directed length}. We claim that A′

0 satisfies the assumptions of
Claim 3.3. Assume that it is not the case, i.e., there exists x′, y′ ∈ A′

0

so that there exists a G-path of odd length between x′ and y′. As the
directed length of odd length path is non-zero, we can assume (switch-
ing the roles of x′ and y′ if necessary) that there exists a path p from
x′ to y′ of positive odd directed length. Then, using our assumptions
on A′

0 and A′ there exist z, w ∈ A and G-paths q, r, such that q is
a path from z to x′, r is a path from y′ to w and dilength(q) > 0,
dilength(r) = d and both of these numbers are odd. But then the path
q⌢p⌢ r (i.e., the path (q(0)⌢p(0)⌢ r(0), dq

⌢dp
⌢dr)) connects z with

w and dilength(q ⌢ p ⌢ r) > d+ dilength(p), and the former is an odd
number > d, contradicting our assumption on A.
Now let B0 be the invariant Borel superset of [A′

0]EG
provided by

Claim 3.3 and define A′
1 = A′ \ B0. Clearly, by the definition of A′

0

and as A′
1 ⊆ A, the set A′

1 also satisfies the requirements of Claim 3.3,
so let B1 ⊇ [A′

1]EG
be the Borel set guaranteed. Then, it is easy to

see from the invariance of B0 and B1 that B = B0 ∪ B1 satisfies the
requirements of the Claim. �

Claim 3.5. Let A ⊆ X be an analytic set, and assume that there exists
an n ∈ N such that whenever x, y ∈ A and p is a G-path of odd length
from x to y then dilength(p) ≤ n. Then there exists an G-invariant
Borel set B ⊇ [A]EG

such that G ↾ B admits a Borel 2-coloring.
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Proof. We prove this statement by induction on the minimal n with
this property. If n = 0, then Claim 3.3 yields the required conclusion.
Now assume that we have shown the statement for every number

≤ n − 1. If n > 0 is even, then it cannot be minimal, hence there is
nothing to show. So we can assume that n is odd. For ε ∈ {−1, 1}
let An,ε = {x ∈ A : there exists a G-path from x to some y ∈ A of
directed length ε · n}. Now, we can apply Claim 3.4 to the sets An,ε,
A and ε · n. This yields G-invariant Borel sets Bε ⊇ An,ε on which G
admits a Borel 2-coloring. Note that if x ∈ A \ (B−1 ∪ B1) then every
odd length path between x and an element of A must have directed
length < n. So, by the inductive hypothesis, we can find an invariant
Borel set Bn−1 ⊇ [A \ (B−1 ∪ B1)]EG

, such that G ↾ B admits a Borel
2-coloring. Using the invariance of Bn−1, B−1, and B1 again, we obtain
that G ↾ Bn−1∪B−1∪B1 also admits a Borel 2-coloring, which finishes
the proof. �

Proof of Lemma 3.2. By definition, the set A(a, Y ) is analytic. If there
exists an n ∈ N such that every path p of odd length between vertices
from A(a, Y ) have directed length ≤ n then Claim 3.5 yields the G-
invariant Borel set B(a, Y ) ⊇ [A(a, Y )]EG

, and a Borel 2-coloring ca,Y
of G ↾ B(a, Y ).
So, assume that such an n does not exist, we will show that a is not

Y -terminal. Using this assumption for n = f(na) ·
∑

j≤na |Σ(da(j))|
we obtain two configurations (γj)j<2 compatible with a and Y , a G-
path of odd length p = ((x0, . . . , xm+2), dp) with dilength(p) > f(na) ·
∑

j≤na |Σ(da(j))| such that x0 = (φX◦φ
γ0)(sna) and xl = (φX◦φ

γ1)(sna).

Pick r0, . . . , rm+2 ∈ NN and e0, . . . , em+1 ∈ NN so that

• r0 = φγ0(sna), rm+2 = φγ1(sna),
• ∀j ≤ m+ 2 φX(rj) = xj ,
• ∀j < m+ 2 φG(ej) = (xj , xj+1)

dp(j).

We define a configuration δ as follows: let nδ = na+1, bδ = (cδ, dδ) =
(ca ⌢m, da ⌢ dp), and define φδ : Xcδ,nδ → NN by

{

φδ(x ⌢ (j)) = φγj (x), for x ∈ Xca,na , j < 2.

φδ((j)) = rj+1, for j ≤ m.

Finally, define ψδ : Lbδ,nδ → NN by


















ψδ(x ⌢ (j), y ⌢ (j)) = ψγj

(x, y), for (x, y) ∈ Lba,na , j < 2.

ψδ((sna
⌢ (0), (0))d(0)) = e0.

ψδ(((m), sna
⌢ (1))d(m+1)) = em+1.

ψδ((j, j + 1)d(j+1)) = ej+1, for j ≤ m− 1.
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It is not hard to check that δ is a configuration. Moreover, as γ0
and γ1 are compatible with Y , so is δ. Finally, using the fact that
Σ(d) = dilength(p) > f(na) ·

∑

j≤na |Σ(da(j))|, one can deduce that
there exists a unique one-step extension a′ of a, that is compatible
with δ. This contradicts the assumption that a was Y terminal. �

Define

Xα+1 = Xα \
⋃

a is Xα terminal,

B(a,Xα).

Since there are only countably many possible approximations, and X0

is an analytic set, the sets Xα are analytic for every α < ω1. Note also
that each Xα is G-invariant.

Lemma 3.6. Assume that α < ω1 and a is an approximation that
is not Xα+1-terminal. Then a has a one-step extension that is not
Xα-terminal.

Proof. Let a′ be a one-step extension of a for which there exists a
configuration γ compatible with Xα+1 and a′. Then ∅ 6= (φX ◦
φγ)(Xcγ ,nγ) ⊆ [Xα+1]EG

= Xα+1, but if a′ was Xα-terminal, then
[(φX ◦ φγ)(Xcγ ,nγ )]EG

⊆ [A(a′, Xα)]EG
would be covered by B(a′, Xα),

contradicting the definition and the G-invariance of Xα+1. �

Note that the set of Xα-terminal approximations increases as α in-
creases, and there are only countably many approximations. Thus, we
can fix an α < ω1 so that the Xα-terminal and Xα+1-terminal approx-
imations are the same.

Lemma 3.7. If every approximation is Xα+1-terminal, then G has a
Borel 2-coloring.

Proof. Observe first that Xα+1 is G-independent: otherwise, if (x, y) ∈
G ∩ (Xα+1)2, then there exists a configuration γ with cγ = (1) com-
patible with {x, y}. Consequently, there exists an approximation a

that is compatible with γ and Xα+1. Then, a is Xα+1-terminal, so
x, y ∈ [A(a,Xα+1)]EG

, but then a is an Xα-terminal approximation as
well, so x, y ∈ [A(a,Xα)]EG

⊆ B(a,Xα), contradicting the definition
of Xα+1.
Moreover, Xα+1 ⊆ X0 is G-independent and G-invariant, so by the

definition of X0 it must be empty.
Let e : {(a, β) : a is Xβ terminal, β ≤ α} → N be an injection and

let ca,Xβ be the Borel 2-coloring of G ↾ B(a,Xβ) given by Lemma 3.2,
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for (a, β) ∈ dom(e). If x ∈ X , define c(x) =
{

ca,Xβ(x), if e(a, β) is minimal such that x ∈ B(a,Xβ)

0, if x 6∈
⋃

(a,β)∈dom(e)B(a,Xβ).

It is easy to check that c is a Borel map and it is defined on X , while
the G-invariance of the sets B(a,Xβ) implies that c is a 2-coloring. �

Now we are ready to finish the proof of Theorem 3.1. Assume
χB(G) > 2. Then, by Lemma 3.7 there exists an approximation
that is not Xα+1-terminal. Clearly, we can find such an a0 with
na0 = 0. By applying Lemma 3.6 recursively, we obtain one-step ex-
tensions an+1 of an which are not Xα-terminal, with nan = n. Define
b = (c, d) =

⋃

n b
an , φ : Xc → NN, and ψ : Lb → NN by letting

φ(m, k, r) =
⋃

n≥m φ
an(πc,n(m, k, r)) and for (mi, ki, ri)i<2 ∈ Lb let

ψ((mi, ki, ri)i<2) =
⋃

n≥m0,m1
ψan((πc,n(mi, ki, ri))i<2). It follows from

the fact that an+1 one-step extends an (using conditions (d), (e), and
the fact that πc,n,n′ ◦ πc,n′ ↾ dom(πc,n) = πc,n) that φ and ψ are well-
defined.
Now, we check that φX ◦ φ is a continuous homomorphism of Lb

to G. The continuity of this mapping is clear from its definition, we
check that it is a homomorphism. To this end, let (x0, x1) ∈ Lb with
xi = (ni, ki, ri), for i < 2. We claim that

(3.2) (φG ◦ ψ)(x0, x1) = ((φX ◦ φ)(x0), (φX ◦ φ)(x1)),

which is clearly sufficient, as the left side is an element of G. We
show that if U and V are open neighborhoods of (φG ◦ ψ)(x0, x1) and
((φX ◦ φ)(x0), (φX ◦ φ)(x1)), then U ∩ V 6= ∅.
By the definition of Lb we have that (πc,n(xi))i<2 ∈ Lb,n for every

n ≥ max(n0, n1). Thus, using the continuity of φ, ψ, φG, and φX we
can find an n ≥ max(n0, n1) so large that U ⊇ φG([ψ

an((πc,n(xi))i<2)])
and V ⊇ φX([ψ

an ◦ πc,n(x0)])× φX([φ
an ◦ πc,n(x1)]).

Let γ be a configuration compatible with an. Then by (3.1) we have
that

(3.3) (φG ◦ ψγ)((πc,n(xi))i<2) =

((φX ◦ φγ)(πc,n(x0)), (φX ◦ φγ)(πc,n(x1)).

Then from the compatibility of γ and an it follows that

((φX ◦ φγ)(πc,n(x0)), (φX ◦ φγ)(πc,n(x1))) ∈

φX([φ
an ◦ πc,n(x0)])× φX([φ

an ◦ πc,n(x1)]) ⊆ V

and
φG ◦ ψγ((πc,n(xi))i<2) ∈ φG([ψ

an((πc,n(xi))i<2)]) ⊆ U,
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which together with (3.3) implies U ∩ V 6= ∅, finishing the proof of
Theorem 3.1. �

4. Large gaps

In this section, we complete the proof of Theorem 1.1, and prove
Theorem 1.2. Note that graphs (rather than digraphs) will be consid-
ered. Let L be a graph on the space X , and assume that B ⊂ X . The
minimal cardinality of an L ↾ X \ B-component will be denoted by
mgs(B).
We start with an easy observation.

Claim 4.1. Let L be a ≤ 2-regular acyclic Borel graph on a standard
Borel space X that has the large gap property. Then there exists an
increasing sequence (Bn)n∈N of Borel subsets of X, such that

⋃

n∈NBn

is L-invariant, EL ↾ X \
⋃

n∈NBn is smooth, for every n ∈ N the
L ↾ Bn-components are finite, and mgs(Bn) → ∞, as n→ ∞.

Proof. Let B be a Borel set witnessing the large gap property of L.
The graph L restricted to an L-component is an infinite, connected,
≤ 2-regular graph, which can be partitioned to disjoint L ↾ X \ B-
components. Let S0 be the union of those L-components which

• contain an infinite L ↾ X \B-component or
• the lim sup of the cardinality of the L ↾ X \ B-components is
finite in one of the directions.

It follows from the choice of B that S0 is Borel and EL ↾ S0 is smooth.
Let

Bn = B∪{x ∈ X\S0 : the L ↾ X \B-component of x has size < n}.

Clearly, the sets Bn are increasing, X \ S0 =
⋃

n∈NBn, mgs(Bn) ≥ n.
Finally, note that if the L ↾ Bn-component of x was infinite, then the
cardinality of L ↾ X \ B-components would be bounded by n in some
of the directions in the L-connected component of x, in other words
x ∈ S0 would hold. �

The next proposition is the essence of the argument.

Proposition 4.2. Assume that c ∈ (2N+ 1)N.

(1) Let L be a ≤ 2-regular acyclic Borel graph on the standard Borel
space X. Assume that (Bn)n∈N is an increasing sequence of
Borel subsets of X with

⋃

n∈NBn = X, mgs(Bn) → ∞, and for
every n the L ↾ Bn-components are finite. Then L ≤B Lc.

(2) If c0 ∈ (2N+ 1)N, c0(n) → ∞, then Lc0 ≤c Lc.
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Our strategy is to inductively define sequences kn ∈ N and φn :
Bkn → Xc,n, and appeal to Claim 2.4.
We start with the key lemma.

Lemma 4.3. (1) Let B ⊆ B′ ⊆ X be Borel, n ∈ N be given with
the properties that mgs(B) > 2·length(Lc,n+1), every component
of L ↾ B is finite, and φ is a Borel homomorphism from L ↾ B

to Lc,n. Then there exists a homomorphism φ′ from L ↾ B′ to
Lc,n+1 so that πc,n,n+1 ◦ φ

′ ↾ B = φ holds.
(2) If moreover, L = Lc0, B = {(l, m, r) ∈ Xc0 : l < k}, B′ =

{(l, m, r) ∈ Xc0 : m < k′} for k < k′, and φ is continuous then
φ′ can be taken to be continuous.

Proof. First we show (1). Note that the graph L ↾ B′ is a disjoint union
of finite paths. Fix a Borel linear ordering < of X . We will define φ′

so that the value φ′(x) will only depend on

(a) the values of φ on the L ↾ B′-component of x,
(b) the index of x in the unique enumeration (vxi )i≤mx of the L ↾ B′-

component of x, with the property that vx0 < vxmx and ∀i < mx

we have (vxi , v
x
i+1) ∈ L.

Claim. For a connected component of L ↾ B′ let (vi)i<m be the
enumeration described in (b). There exists a homomorphism ψ of L ↾

{v0, . . . , vm} to Lc,n+1 so that we have πc,n,n+1 ◦ψ ↾ {v0, . . . , vm}∩B =
φ ↾ {v0, . . . , vm} ∩B.

Proof of the Claim. In order to see that such a homomorphism ψ exists,
note that the set {v0, . . . , vm} decomposes into connected components
of L ↾ B and paths connecting them: more precisely, there are an odd
number l, a sequence 0 ≤ i0 < i1 < · · · < il ≤ m with the property
that if i ∈ [0, i0) ∪ (i1, i2) ∪ (i3, i4) ∪ · · · ∪ (il, m] (where the first and
last intervals could be empty) then vi ∈ B′ \ B, while for every j < l

even, {vij , . . . , vij+1
} is an L ↾ B-component.

Define ψ(vi) for i ∈ [i0, . . . , i1] to be φ(vi)
⌢ (0), and extend this

to a homomorphism from L ↾ {v0, . . . , vi1} to Lc,n+1. Now, assume
that ψ has been defined on {vi : i ≤ ij} for j < l − 1 odd with
πc,n,n+1 ◦ ψ ↾ {vi : i ≤ ij} ∩ B = φ ↾ {vi : i ≤ ij} ∩ B remaining
true on these vertices. We will extend ψ to {vi : i ≤ ij+2}. Since
πc,n,n+1(ψ(vij)) = φ(vij ) holds, ψ(vij ) has the form φ(vij)

⌢ (ε) for some
ε ∈ {0, 1}. Note that by mgs(B) > 2 · length(Lc,n+1), we have that
ij+1 − ij > 2 · length(Lc,n+1).
If the parity of the distance of φ(vij ) and φ(vij+1

) in Lc,n is the same as
the parity of ij+1−ij then by ij+1−ij > 2·length(Lc,n+1) > length(Lc,n),
the map ψ extends to a homomorphism from L ↾ {v0, . . . , vij+1

} to
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Lc,n+1 with ψ(vij+1
) = φ(vij+1

)⌢ (ε). In this case define ψ(vi) = φ(vi)
⌢

(ε) if i ∈ [ij+1, ij+2].
Otherwise, if the parity is different, using ij+1−ij > 2·length(Lc,n+1)

again and the fact that the distance of φ(vij+1
)⌢ (0) and φ(vij+1

)⌢ (1)
is odd in Lc,n (see (3) of Claim 2.2) we have that ψ can be extended
to a homomorphism from L ↾ {v0, . . . , vij+1

} to Lc,n+1 with ψ(vij+1
) =

φ(vij+1
) ⌢ (1 − ε). In this case define ψ(vi) = φ(vi)

⌢ (1 − ε) if i ∈
[ij+1, ij+2].
This inductive process yields a homomorphism from L ↾ {v0, . . . , vil}

to Lc,n+1 with πc,n,n+1 ◦ ψ ↾ {v0, . . . , vm} = φ ↾ {v0, . . . , vil}, and this
of course can be extended to a homomorphism to the set {vil, . . . , vm}
(which is disjoint from B). This finishes the proof of the claim. �

For a given m there are only finitely many homomorphisms from the
path of length m to Lc,n+1. Fix an enumeration of those homomor-
phisms (ψm

j )j<lm for each m ∈ N. Now, for an x ∈ B′ let (vxi )i≤mx be

the enumeration described in (b), and jx minimal index for which ψmx

jx

satisfies the Claim. It is clear that the map x 7→ ψmx

jx is Borel, and so

is the map φ′(x) = ψmx

jx (x). Moreover, φ′ satisfies that it depends only
on (a) and (b) and the requirements of the lemma. This finishes the
proof of (1).
Now assume that the assumptions of (2) hold, and let < be the

lexicographic ordering on Lc. It is enough to check that the map φ′

defined as in the first part is a continuous mapping. For a given x the
value φ′(x) depends only on finitely many values. Hence, it suffices to
show that if xn → x then the values determining φ′(xn) converge to
the values determining φ′(x).
From the definition of Lc0 it follows that a connected component of

Lc0 ↾ B′ contains the points of the form {(l, m, t ⌢ r) : l < k′, m ≤
c0(l), t ∈ 2k

′−l−1} for some r ∈ 2N. Moreover, if (lni , m
n
i , t

n
i
⌢ rn) →

(li, mi, ti
⌢ r) for i < 2 with li < k′, then (li, mi, ti

⌢ r)i<2 ∈ Lc holds
iff (πc0,k′−1(li, mi, ti

⌢ r))i<2 ∈ Lc0,k′−1 iff (πc0,k′−1(l
n
i , m

n
i , t

n
i
⌢ rn))i<2 ∈

Lc0,k′−1 is true for every large enough n. This, and the fact that < is
open, implies that if (vxn

i )i≤mxn and (vxi )i≤mx are the enumerations of
Lc0 ↾ B′-components described in (b), then mxn must stabilize to mx

and vxn

i → vxi holds for all i ≤ mx. Hence, since B is clopen and φ is
continuous, we get that φ′(xn) = φ′(x) for every large enough n. �

Proof of Proposition 4.2. We define a sequence (kn, φn)n∈N inductively.
For convenience, we will assume that B0 = ∅. Choose k0 = 0, then
Bk0 = ∅, φ0 = ∅ and mgs(Bk0) = ℵ0 > 2 · length(Lc,1). Now



18 R. CARROY, B.D. MILLER, D. SCHRITTESSER, AND Z. VIDNYÁNSZKY

assume that (φi, ki)i≤n had already been defined with the proper-
ties that mgs(Bkn) > 2 · length(Lc,n+1) and φi is a Borel homomor-
phism from L ↾ Bki to Lc,i. Choose kn+1 so large that mgs(Bkn+1

) >
2 · length(Lc,n+2). An application of (1) of Lemma 3.6 to Bkn, Bkn+1

, n,
and φn yields a homomorphism φn+1 of L ↾ Bkn+1

to Lc,n+1 so that
πc,n,n+1◦φn+1 ↾ Bkn = φn. Thus, we obtain a sequence (kn, φn)n∈N that
satisfies the assumptions (1)-(3) of Claim 2.4, which finishes the proof
of the first part.
Finally, a similar proof yields the second half: first, note that that

if B = {(l, m, r) ∈ Xc0 : l < k} then mgs(B) = min{c(i) + 1 : i ≥
k}. This, and the assumption that c0(n) → ∞ allow us to find the
sequence (Bkn)n∈N and iterate (2) of Lemma 4.3. This yields a sequence
(kn, φn)n∈N satisfying (1)-(4) of Claim 2.4. �

Combining the preceding theorems we obtain the following result,
which of course implies Theorem 1.1.

Theorem 4.4. Assume that G is an analytic graph on a Hausdorff
space. Then exactly one of the following holds.

(1) χB(G) ≤ 2, i.e., G is Borel bipartite.
(2) L0 admits a continuous homomorphism to G.

Proof. The fact that (1) and (2) are mutually exclusive follows from the
observations χB(L0) > 2 ((7) of Claim 2.2) and that L0 ≤c G implies
χB(L0) ≤ χB(G).
Now, assume that (1) is false. Recall that L0 = Lc0 , where c

0(0) = 1,
and c0(n) = 2n− 1. Then by Theorem 3.1 there exists an odd ℵ0-pair
b = (c, d), such that Lb ≤c G. But then Lc ≤c G, and using (2) of
Proposition 4.2 we obtain L0 ≤c Lc ≤c G. �

We conclude this section with proving Theorem 1.2, that is:

Theorem 1.2. Suppose that X is a standard Borel space and L is
an acyclic Borel graph on X of vertex degree at most two. Then the
following are equivalent:

(1) There is a Borel homomorphism from L to every Borel graph
G of Borel chromatic number at least three.

(2) The graph L has the large gap property modulo a two-colorable
set.

Proof. Assume first (2). Using Claim 4.1 together with (1) of 4.2 we
obtain a sequence (Bn)n∈N of Borel sets and an L-invariant Borel set
M such that L ↾

⋃

nBn ≤B L0, EL ↾ X \ (M ∪
⋃

nBn) is smooth,
and X \

⋃

nBn is L-invariant, and χB(L ↾ M) ≤ 2. By Claim 2.3
and the invariance of M we have that χB(L ↾ X \

⋃

nBn) ≤ 2, so
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L ↾ X \
⋃

nBn admits a Borel homomorphism to each non-empty Borel
graph. Putting together the Borel homomorphisms on the invariant
sets X \

⋃

nBn and
⋃

nBn we obtain L ≤B L0. Thus, by Theorem
4.4, L admits a Borel homomorphism to each Borel graph with Borel
chromatic number > 2.
Now assume that L ≤B L0, witnessed by the Borel map φ. Let M

be the set from (2) of Claim 2.3 and let B ⊆ X0 witness that L0 has
the large gap property ((8) of Claim 2.2). To show the theorem, it
is enough to check that L ↾ X \M has the large gap property. Let
B′ = (φ ↾ X \M)−1(B), it is easy to see from the fact that φ ↾ X \M
maps L-components onto L0-components that B′ witnesses the large
gap property of L ↾ X \M . �

5. An antibasis result for digraphs

Finally, we show a slightly more general version of Theorem 1.3, that
is:

Theorem 5.1. Suppose that G is an analytic digraph on a Hausdorff
space with χB(G) > 2. Then there is a sequence (Lt)t∈2N of Borel
oriented graphs on standard Borel spaces such that for each t ∈ 2N we
have Lt ≤c G, and χB(Lt) > 2, and any Borel graph that admits a
Borel homomorphism to at least two oriented graphs of the form Lt

has a Borel two-coloring.

Let us start with some definitions. Assume that G is an acyclic
oriented graph on a space X , and let B ⊆ X . Using Claim 2.1 we can
define the didistance set of B by letting DG(B) = {n ∈ Z : ∃x, y ∈
B didistG(x, y) = n}.

Lemma 5.2. Assume that L is a ≤ 2-regular acyclic Borel oriented
graph on the space X, b = (c, d) is an odd ℵ0-pair, and Lb ≤B L.
Assume that C is a Borel EL-complete set. There exists a non-meager
Borel set B ⊆ Xc such that DLb(B) ⊆ DL(C).

Proof. Let φ be a Borel homomorphism from Lb to L, and let M =
{x ∈ Xc : φ mapping [x]E → [φ(x)]EL

is not onto}. By Claim 2.3 we
have χB(Lb ↾ M) ≤ 2. By the invariance of M and (7) of Claim
2.2 it must be meager. Define B = φ−1(C) \M , we check that B is
non-meager. Note that, as C is an EL-complete set, the set B is a
Ec ↾ (Xc \M)-complete. As [B]Ec ⊇ Xc \M is co-meager, it follows
from (6) of Claim 2.2 that B cannot be meager.
Finally, if x, y ∈ B, let p = ((z0, . . . , zl), dp) be an Lb-path with

z0 = x and zl = y. Then, p′ = ((φ(z0), . . . , φ(zl)), dp) is an L-path,
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with dilength(p′) = dilength(p). It follows that didistLb(φ(x), φ(y)) ∈
DL(C). Thus, DLb(B) ⊆ DL(C). �

In order to carry out our construction we will impose a growth con-
dition on the approximations to our graphs. Assume that b = (c, d) is
an odd ℵ0-pair. We say that b has property (∗) if for every i ∈ N we
have

Σ(d(i)) > 8 ·
∑

j<i

2i−j · |Σ(d(j))|.

Lemma 5.3. Suppose that b = (c, d) is an odd ℵ0-pair with property
(∗). Then there exists a collection (Pt)t∈2N of perfect subsets of Xc such
that for every t 6= t′ we have

(1) |DLb(Pt)| = ℵ0,
(2) There exists an i0 ∈ N such that for every k, k′ ≥ i0 if k ∈

DLb(Pt) and k
′ ∈ DLb(Pt′) then

k
k′
6∈ [1

4
, 4].

(3) χB(Lb ↾ [Pt]Ec) = 3.

Proof. Let S ⊆ 2N be a perfect almost disjoint family of infinite sets
(identifying 2N with P(N)). Of course (using a bijection between S and
2N), it is enough to construct a family indexed by the elements of S.
For t ∈ S, let

Pt = {(n, k, r) ∈ Xc : n = k = 0, ∀i ∈ N (t(i) = 0 =⇒ r(i) = 0)}.

Claim. Assume that x 6= y ∈ Pt and xEcy. Let x = (0, 0, rx), y =
(0, 0, ry), and let i ∈ N be maximal with with rx(i) 6= ry(i) (such an i

exists by xEcy). Then t(i) = 1 and | didistLb(x, y)| ∈ [Σ(d(i))
2

, 2·Σ(d(i))].

Proof. It is obvious from the definition of Pt, that we have t(i) = 1.
Moreover, it follows from the definition of Lb and the choice of i

that didistLb(x, y) = didistLb,i(πc,i(x), πc,i(y)), so it is enough to give an
estimation on the latter. Since rx(i) 6= ry(i), πc,i(x) and πc,i(y) are in
different copies of Lb,i−1 in Lb,i. But then,

Σ(d(i))− | dilength(Lb,i−1)|) ≤ | didist(πc,i(x), πc,i(y))|

≤ Σ(d(i)) + | dilength(Lb,i−1)|.

So, by an easy induction we have

Σ(d(i))−
∑

j<i

2i−j · Σ(d(j)) ≤ | didist(πc,i(x), πc,i(y))|

≤ Σ(d(i)) +
∑

j<i

2i−j · Σ(d(j)),
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which implies our statement by (∗). �

The Claim clearly implies property (1).
Assume that t 6= t′ are given. By the choice of S there exists an

i∗0 ∈ N such that t ∩ t′ ⊆ i∗0, let i0 =
Σ(d(i∗

0
))

2
and assume that k, k′ ≥ i0

with k ∈ DLb(Pt), k
′ ∈ DLb(Pt′). The choice of i∗0 and i0 together

with the Claim and (∗) yields that k ∈ [Σ(d(i))
2

, 2 · Σ(d(i))] and k′ ∈

[Σ(d(i′))
2

, 2 · Σ(d(i′))] with i 6= i′. But then k
k′

6∈ [1
4
, 4] follows from (∗),

showing (2).
Finally, a Baire category argument analogous to the one in the proof

of (7) of Claim 2.2 yields that (3) holds for each t ∈ S. �

Lemma 5.4. Assume that b∗ = (c∗, d∗) is an odd ℵ0-pair with property
(∗), and B ⊆ Xc∗ is a Borel set so that the set [B]Ec∗

is co-meager.
Then there exists an i1 ∈ N such that for every i > i1 we have that

DLb∗ (B) ∩ [Σ(d∗(i))
2

, 2 · Σ(d∗(i))] 6= ∅.

Proof. By our assumption on B and (6) of Claim 2.2, we can find an
i1 and a non-empty basic open set of the form [(i1, k, σ)] in which B is
co-meager. Let i > i1. By shrinking B with the Ec∗ -saturation of the
meager set [(i, k, σ)] \ B (which is also a meager set), we can assume
that [(i − 1, k, σ)] ∩ B = [(i − 1, k, σ)] ∩ [B]Ec∗

. In particular, we can
find an r ∈ 2N so that (i− 1, k, σ ⌢ (0) ⌢ r), (i− 1, k, σ ⌢ (1) ⌢ r) ∈ B

hold, let x = (i− 1, k, σ ⌢ (0) ⌢ r), and y = (i− 1, k, σ ⌢ (1) ⌢ r).
Again, it is clear that didistLb∗ (x, y) = didistLb∗,i(πc,i(x), πc,i(y)),

moreover, πc,i(x) and πc,i(y) are in different copies of Lb∗,i−1 in Lb∗,i.
So,

Σ(d∗(i))−
∑

j<i

2i−j · Σ(d∗(j)) ≤ | didist(πc,i(x), πc,i(y))|

≤ Σ(d∗(i)) +
∑

j<i

2i−j · Σ(d∗(j)),

which implies our statement by (∗). �

Proof of Theorem 5.1. By Theorem 3.1 without loss of generality we
can assume that G = Lb for some odd ℵ0-pair b = (c, d) with property
(∗). Now, using Lemma 5.3 we obtain a family (Pt)t∈2N of perfect
subsets of Xc having properties (1)–(3). For each t ∈ 2N let Lt =
Lb ↾ [Pt]Ec . We show that (Lt)t∈2N satisfies the requirements of the
theorem. The condition on the Borel chromatic numbers is clear from
(3) of Lemma 5.3.
Let t, t′ ∈ 2N be distinct. Assume that H ≤B Lt, Lt′ with χB(H) =

3. Then, by Theorem 3.1 we can assume that H = Lb∗ and that
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b∗ has property (∗). As Pt and Pt′ are ELt and ELt′
-complete sets,

using Lemma 5.2 we obtain non-meager Borel sets B,B′ in Xc∗, with
DLb∗ (B) ⊆ DLt(Pt) and D

Lb∗ (B′) ⊆ DLt′ (Pt′). Let i > i0, i1, i
′
1, where

i0 comes from (2) of Lemma 5.3, while i1, i
′
1 are obtained from applying

Lemma 5.4 to B and B′.
By Lemma 5.4 we can find k ∈ DLb∗ (B)∩ [Σ(d∗(i))

2
, 2 ·Σ(d∗(i)))], k′ ∈

DLb∗ (B′)∩ [Σ(d∗(i))
2

, 2 ·Σ(d∗(i))]. But then k
k′
∈ [1

4
, 4], which contradicts

k ∈ DLt(Pt), k
′ ∈ DLt′ (Pt′) and (2) of Lemma 5.3. �

6. Open problems

We conclude with a number of open problems. First, it is not clear,
how Theorem 1.2 can be generalized to arbitrary Borel graphs.

Problem 6.1. Characterize the Borel graphs with Borel chromatic
number 3, which admit a Borel homomorphism to each Borel graph
G with χB(G) > 2, (or, equivalently, the ones which are ≤B L0).

The product of graphs G on X and G′ on X ′ is the graph on X ×X ′

given by ((x, x′), (y, y′)) ∈ G × G′ ⇐⇒ (x, y) ∈ G and (x′, y′) ∈ G′.
The Borel version of Hedetniemi’s conjecture reads as follows: Is it the
case that χB(G×G′) = min{χB(G), χB(G

′)}?
Theorem 1.1 implies that the answer is affirmative, if

min{χB(G), χB(G
′)} ≤ 3. El-Zahar and Sauer [9] showed that

for finite graphs the bound 4 already implies an affirmative answer.
Hence the following problem is quite natural.

Problem 6.2. Assume that G,G′ are Borel graphs on standard Borel
spaces, and min{χB(G), χB(G

′)} ≤ 4. Is it true that χB(G × G′) =
min{χB(G), χB(G

′)}?

Note that a recent breakthrough result of Shitov [24] is that the
answer is negative in general, there exists a counterexample for finite
graphs.
The G0-dichotomy, the results in [25], and the current paper give a

complete description of the existence of simple bases for Borel graphs
with a given Borel chromatic number. However, the natural reformu-
lation of the notion of chromatic numbers in terms of homomorphism
raises the following problem:

Problem 6.3. Characterize the Borel graphs H so that the collection
{G : G is a Borel graph, G 6≤B H} has a single element basis.

It is conceivable that such a characterization is impossible due to a
complexity barrier.
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Babai’s celebrated results [1] suggest that among finite graphs the
isomorphism relation is simpler than the homomorphism relation. It
would be interesting to know the answer to the analogous question in
the case of Borel graphs.

Problem 6.4. Determine the projective complexity of the isomorphism
relation on Borel graphs on Polish spaces.
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Benjamin D. Miller, Kurt Gödel Research Center for Mathemati-

cal Logic, Universität Wien, Währinger Straße 25, 1090 Wien, Aus-

tria

E-mail address : benjamin.miller@univie.ac.at

URL: http://www.logic.univie.ac.at/benjamin.miller
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