Similarities and Differences in the Rupture Processes of the 1952 and 2003 Tokachi-Oki Earthquakes

Hiroaki Kobayashi1,2, Kazuki Koketsu1, Hiroe Miyake1, and Hiroo Kanamori3

1Earthquake Research Institute, University of Tokyo, Tokyo, Japan, 2Now at Kobori Research Complex Inc., Tokyo, Japan, 3Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract We investigated the similarities and differences between the rupture processes of the 1952 and 2003 Tokachi-oki earthquakes (Mw ∼ 8) that occurred 51 years apart in the southernmost region of the Kuril subduction zone. This event pair is rare because seismic waveforms of both events were instrumentally recorded. We performed joint source inversion analyses of both earthquakes to better understand the rupture processes of this earthquake sequence. The dataset for the 1952 earthquake consists of teleseismic and strong motion data which were obtained by digitizing copies of analog seismograms. Two datasets were made for the 2003 earthquake to examine the effect of data limitation and to facilitate a comparison of the inversion results of the two earthquakes. One dataset consists of a large amount of teleseismic, strong motion, and geodetic data. The other dataset is similar to that of the 1952 earthquake. Our results show that the rupture propagation, slip areas, and maximum slip amounts were similar for the 1952 and 2003 earthquakes in the Tokachi-oki region. However, there are two important differences: the 1952 earthquake was initiated by an Mw 6.1 subevent in the Tokachi-oki region, and its rupture extended to the adjacent Akekshi-oki region. The similarity in the rupture pattern of the M8-class earthquake pair suggests the persistence of asperities on the plate interface, while the differences imply a degree of variability in the initiation and termination of the cascading rupture process.

1. Introduction

Investigating the event-to-event slip behavior of great (Mw ∼ 8) to megathrust (Mw ∼ 9) interplate earthquakes in the same region is important to understand the physics of earthquake ruptures. Recent great to megathrust events such as the 2011 Mw 9.1 Tohoku earthquake and the 2014 Mw 8.2 Iquique earthquake were captured by dense and high-quality seismic and geodetic observation networks, and the rupture processes of these earthquakes were extensively investigated using various datasets (e.g., Gusman et al., 2015; Ide et al., 2011; Koper et al., 2011; Schurr et al., 2014; Yokota et al., 2011). However, the intervals of great to megathrust interplate earthquakes are generally several decades to several hundreds of years and instrumental seismic observations started at the end of the 19th century and in the early 20th century. As a result, there are only a few great earthquake pairs that have occurred in the same regions and whose waveforms were recorded by seismographs; consequently, detailed comparative studies of such events have been difficult.

Schwartz (1999) compared the locations of asperities, high stress areas with large co-seismic slip (Lay & Kanamori, 1980), of great earthquakes in four subduction zones and suggested that the rupture patterns of great earthquakes are variable. Nagai et al. (2001) performed source inversions of the 1968 Mw 8.3 Tokachi-oki earthquake and the 1994 Mw 7.7 Sanriku-haruka-oki earthquake. They showed that the 1994 Sanriku-haruka-oki earthquake re-ruptured one of the asperities of the 1968 Tokachi-oki earthquake with a variable slip amount. Park and Mori (2007) investigated five great earthquakes along the New Britain Trench and suggested that the asperities were not persistent in this region. Studies of recent great earthquakes, such as the 2015 Mw 8.3 Illapel earthquake and the 2016 Mw 7.8 Ecuador earthquake, showed a partial re-rupture and a quasi-repeat of past earthquakes (Tilmann et al., 2016; Ye et al., 2016).

In the southernmost part of the Kuril subduction zone including the Tokachi-oki, Akekshi-oki and Nemuro-oki regions (Figure 1a), the Pacific Plate is subducting beneath the North America or Okhotsk Plate with a convergence rate of approximately 8.5 cm/y (Drewes, 2009). We followed the definition of the three regions given in Satake et al. (2005). Note that the division of the zone given in the Headquarters for
Earthquake Research Promotion (2017) is slightly different from that in Satake et al. (2005). In this area, five great earthquakes (Satake, 2017) have occurred in the most recent 200 years (Figure 1b) and another megathrust earthquake occurred in the 17th century (Ioki & Tanioka, 2016; Nanayama et al., 2003; Sawai et al., 2009). In particular, in the Tokachi-oki region, two M8-class earthquakes, the 1952 and 2003 Tokachi-oki earthquakes, occurred in the last 100 years. Therefore, these two M8 event sequences are ideal to investigate the event-to-event slip behavior of great earthquakes.

Figure 1. (a) Index map. The black rectangle in the inset represents the map area. The gray and red stars denote the epicenters of the 1952 (41.7057°N, 144.1512°E) and 2003 (41.7785°N, 144.0785°E) Tokachi-oki earthquakes, respectively, as determined by the Japan Meteorological Agency. The blue inverted triangles and sky-blue triangles indicate the strong motion stations in 1952 and 2003, respectively. The blue-green diamonds show the F-net stations. The dark blue squares indicate the Global Navigation Satellite System (GNSS) Earth Observation Network System stations. The black broken lines divide the regions of the southernmost part of the Kuril subduction zone. The gray line shows the trench axis (Iwasaki et al., 2015). The black arrows indicate the motion of the Pacific Plate relative to the North America Plate (Drewes, 2009). The background colors show the topography of the General Bathymetric Chart of the Oceans 2014 (Weatherall et al., 2015). (b) Tsunami source area of the historical earthquakes along the southernmost part of the Kuril subduction zone (Satake, 2017). The seismic moments are from Ioki and Tanioka (2016), Satake et al. (2006), Tanioka et al. (2007), Tanioka, et al. (2004) and Utsu, (1999). (c) Teleseismic station map. The blue inverted triangles and sky-blue triangles indicate the teleseismic stations for the 1952 and 2003 earthquakes, respectively.

The 2003 earthquake was recorded by various observation networks and many studies on the source of this earthquake have been conducted using various datasets (Honda et al., 2004; Koketsu et al., 2004; Miura et al., 2004; Miyazaki, Larson, et al., 2004; Romano et al., 2010; Tanioka, Hirata, et al., 2004; Yagi, 2004; Yamanaka & Kikuchi, 2003). All these studies share a common result in that the 2003 earthquake ruptured only the Tokachi-oki region. However, the source studies of the 1952 earthquake indicate some similarities of the 1952 and 2003 ruptures, but also some differences.

Hamada and Suzuki (2004) investigated the aftershocks and seismic intensity distributions of the 1952 Tokachi-oki earthquake, and Nishimura (2006) performed a source inversion using geodetic survey data. These two studies concluded that the 1952 earthquake ruptured only the Tokachi-oki region. Yamanaka and Kikuchi (2003) performed a strong motion inversion of the 1952 earthquake and a teleseismic inversion of the 2003 earthquake. Even though most of the strong motion data for the 1952 earthquake went off scale after the S-wave arrival and the data length was not sufficient, they suggested that the two earthquakes share at least a common rupture area in the Tokachi-oki region. Hartzell and Heaton (1985) estimated the source time functions of various great earthquakes including the 1952 earthquake using teleseismic waveforms...
recorded in Pasadena. They found that the moment rate function of the 1952 Tokachi-oki earthquake had two peaks indicating that it was a multiple event. All of the above-mentioned studies on the 1952 earthquake used the seismic and geodetic data and suggest a rupture in the Tokachi-oki region.

Tsunami analyses of the 1952 earthquake have suggested another feature of this event. Tanioka, Nishimura, et al. (2004) compared the observed tsunami runup heights of the 1952 and 2003 earthquakes. They showed that runup heights on the coast of the Tokachi-oki region were similar for the 1952 and 2003 earthquakes but that the runup in the Akkeshi-oki region was larger for the 1952 earthquake than for the 2003 earthquake. Hirata et al. (2003) and Satake et al. (2006) performed source inversions using the tsunami waveforms. Their results indicate that the rupture area of the 1952 earthquake was larger than that of the 2003 earthquake and extended to the Akkeshi-oki region. Hirata et al. (2007) examined the tsunami source area of the 1952 earthquake based on eyewitness testimonies and concluded that the rupture area of the 1952 earthquake reached the Akkeshi-oki region. These tsunami studies suggest that the 1952 earthquake ruptured both the Tokachi-oki and Akkeshi-oki regions.

In this study, we performed source inversions of the 1952 and 2003 Tokachi-oki earthquakes and examined the similarities and differences between the two events. Previous source studies of the 1952 earthquake using the tsunami waveforms did not consider the entire temporal evolution of the rupture process. The temporal and spatial rupture process of the 1952 earthquake has already been studied by Yamanaka and Kikuchi (2003). However, as noted above, the entire rupture process was not analyzed due to the limited data length. Accordingly, we used both teleseismic and strong motion data with sufficient lengths. There have been numerous source studies of the 2003 earthquake; however, detailed parameters such as the maximum slip and seismic moment show large variations between these studies. This is likely due in part to the different datasets, model settings and analysis methods. We performed source inversions of the 1952 and 2003 earthquakes using the same methods and fault models. Because the amount of data is limited for the 1952 earthquake, we made two datasets for the 2003 earthquake, one of which had nearly the same amount of data as the 1952 dataset to maintain the same resolution between the historical 1952 and recent 2003 earthquakes.

2. Data and Method

The distributions of the observation stations are shown in Figures 1a and 1c. For the waveform data of the 1952 earthquake, copies of analog seismograms were collected from the United States Geological Survey, the Japan Agency for Marine-Earth Science and Technology, and the Japan Meteorological Agency (JMA). Moreover, we used the Headquarters for Earthquake Research Promotion data retrieval system of the JMA analog seismograms (http://www.susu.adep.or.jp/#eng; Furumura et al., 2020) and the records printed in Journal of Meteorological Agency (1957). These records were manually digitized to obtain the data. We corrected for the arc effect using the method of Kikuchi et al. (1999) when necessary. Parameters of the historical seismographs used in this study are shown in Tables S1 and S2. For the 2003 earthquake, the strong motion data were obtained from K-NET operated by the National Research Institute for Earth Science and Disaster Resilience (2019a). The teleseismic data were obtained from the Incorporated Research Institutions for Seismology Data Management Center (IRIS-DMC). We used coseismic displacement data from the Global Navigation Satellite System (GNSS) Earth Observation Network System stations estimated by Larson and Miyazaki (2008).

Information concerning the time of day is needed to perform source inversions using strong motion data. However, it is often difficult to obtain such information in the case of old seismograms. To address this problem, we picked P-wave arrival times while comparing seismograms of high-gain and low-gain (strong motion) seismographs and assumed that the picked arrival times corresponded to the arrivals reported by the Central Meteorological Observatory (1953). Such comparisons were necessary because the P-wave arrival times were often unclear on the low-gain seismograms. We used the origin times determined by JMA: 4 March, 1952 01:22:43.58 for the 1952 earthquake and 25 September, 2003 19:50:07.42 for the 2003 earthquake. The reference time of the teleseismic data in the inversion analysis was the P-wave arrival time. We picked these arrivals for both earthquakes. Even though some waveforms have unclear initial arrivals, we determined the arrival times of these waveforms while considering theoretical arrival times and waveforms.
with clear initial arrivals. We also used the phase arrival signature written by the operators on those days and the reported arrival times if these were available.

Figures 2–4 show comparisons of the waveforms of the two earthquakes recorded at stations whose locations were close to each other (Figures 1a and 1c). Because the waveforms of the two earthquakes were recorded by different seismographs, we convolved the instrument responses of the old seismographs with the 2003 displacement waveforms for the comparison. In these figures, the reference times (i.e., the origin time or P-wave arrival time) for the 1952 waveforms were shifted left by 7.5 s compared to that of the 2003 waveforms because of the small initial phase, which can be seen only for the 1952 earthquake (Figure 4). As shown in Figures 2 and 3, the waveforms of the two earthquakes have comparable amplitudes, indicating that these two earthquakes had similar magnitudes. However, on some 1952 teleseismic waveforms such as the three components of station DBN and the up-down components of station FLO, there is a large phase near $T = 80$ s (Figure 3) that is not seen in the 2003 waveforms; this second phase is unclear on the strong motion waveforms. Note that we compared the high-gain seismograms and used the waveforms of the F-net (NIED, 2019b) stations (Figure 1a) for the 2003 earthquake (stations KSR and NMR) in Figure 4a because the K-NET record is a trigger-type record and the data length prior to the P-wave arrival is insufficient.

To perform source inversion analyses, we made one dataset (the 1952-S dataset) for the 1952 earthquake and two datasets (the 2003-L and 2003-S datasets) for the 2003 earthquake. The 1952-S dataset consists of the teleseismic P-wave waveforms of 22 components at 12 stations and the strong motion waveforms of nine components at five stations. The 2003-L dataset consists of teleseismic, strong motion, and geodetic data and includes a large amount of data. The 2003-S dataset consists of teleseismic and strong motion data and has nearly the same amount of data and nearly the same station distribution as the 1952-S dataset. The contents of each dataset are summarized in Table 1. Information concerning the teleseismic and strong motion station pairs for the 2003-S and 1952-S datasets is shown in Tables 2 and S3, respectively. In the inversion analyses, all the waveforms were integrated to the displacement, band-pass filtered (non-casual Butterworth) at 0.02–0.2 Hz for the teleseismic waveforms and at 0.05–0.2 Hz for the strong motion waveforms.
waveforms, and resampled at 0.5 s intervals. We removed the instrument responses from the teleseismic waveforms.

We used the source inversion method of Hikima and Koketsu (2005) and Yoshida et al. (1996). This method is based on a multi-time-window formulation and solves the linear problem with spatial and temporal smoothness constraints using non-negative least squares. This method minimizes the objective function defined by the model misfit and smoothness, as described in Text S1. We calculated the teleseismic, strong motion, and geodetic Green’s functions using the methods of Kikuchi and Kanamori (1991), Koketsu (1985), and Zhu and Rivera (2002), respectively. To compute the teleseismic Green’s functions, we constructed a one-dimensional velocity structure model for the near-source structure (Table S4) from the Japan Integrated Velocity Structure Model (JIVSM; Koketsu et al., 2012). We used the Jeffreys-Bullen model (Bullen, 1963) for the near-receiver structure (Table S5). One-dimensional velocity structure models were extracted from the JIVSM model underneath each station and were used to calculate the strong motion Green’s functions.

Figure 3. Comparisons of the teleseismic waveforms. The black and red lines show the displacement waveforms of the 1952 and 2003 earthquakes, respectively. For each waveform pair, the 2003 waveform is corrected to simulate the 1952 instrument response. The station names and components are shown in each legend. The time scale is common to all plots. The horizontal axes indicate the time measured from 12.5 s and 20 s prior to the picked P-wave arrival times for the 1952 and 2003 waveforms, respectively.
The instrumental responses were convolved with the strong motion Green's functions in the inversion analyses using the 1952-S and 2003-S datasets. Because geodetic Green's functions are less sensitive to the velocity structure model than waveform Green's functions, we used the same one-dimensional velocity structure model constructed from JIVSM for all of the geodetic stations (Table S6). We assumed that the basis source time function for each time window is a boxcar function whose duration was 5 s and that the rake angle is allowed to vary between 110 ± 45°. We used the same data weighing method and spatial and temporal smoothness constraints for the 2003-S and 1952-S datasets (see Text S1 for details).

Considering the 1-week aftershock distributions of the two earthquakes, we constructed the fault model shown in Figure 5. The hypocentral depths of the 1952 and 2003 Tokachi-oki earthquakes determined by JMA were 52 km and 45 km, respectively, and are a few tens of kilometers deeper than the plate-boundary depth in the model of Iwasaki et al. (2015) (Figure 5a). In the JMA catalog, due to the lack of stations above the hypocenters, the offshore earthquakes around the 2003 earthquake tend to be mapped deeper than the depths determined using ocean bottom seismometers (Shinohara et al., 2004; Yamada et al., 2005). Therefore, we assumed that the hypocenters of the two earthquakes were located at the plate boundary and fit the fault model accordingly (Figures 5b and 5c). We divided the fault into 17 × 13 subfaults whose fault sizes are 15 km × 15 km. Because the horizontal distance between the hypocenters of the two earthquakes (~10 km) is close to the subfault size, we used the same fault model for the two earthquakes, that is, the locations of the subfaults where the rupture was initiated are different for the two earthquakes.

Figure 4. Comparisons of the initial parts of (a) high-gain seismograms at strong motion stations and (b) waveforms at teleseismic stations. The red lines show the waveforms of the 2003 earthquake. The background images show the original waveforms of the 1952 earthquake. The blue lines indicate the first motion arrival times for each event. For each waveform pair, the 2003 waveform is corrected to simulate the 1952 instrument response. The station names, components, and instrument names are shown near each waveform pair. The horizontal axis in panel (a) is the same as that in Figure 2. The horizontal axis in panel (b) indicates the time measured from 22.5 s and 30 s prior to the picked P-wave arrival times for the 1952 and 2003 waveforms, respectively.
3. Results

First, we performed a source inversion using the 2003-L dataset. We set four time windows for each subfault and determined the rupture front velocity, \(V_r \), which controls the start times of the first time windows of each subfault. We estimated \(V_r \) to be 3.3 km/s by minimizing the data misfit over a \(V_r \) range of 1.5–4.5 km/s. The obtained slip distribution indicates that the maximum slip of 7.5 m was located in the Tokachi-oki region and that the rupture primarily propagated in the down-dip direction from the rupture initiation point (Figures 6a and 6b). At 30–60 s from onset, a rupture propagation in the northeastern direction can be seen in the down-dip region. If we set the main rupture area in the Tokachi-oki region as shown by the light gray rectangle in Figure 6a, the seismic moment in the area is 1.7 \(\times 10^{21} \) Nm, which yields an \(M_w \) of 8.1.

Next, we performed a source inversion using the 2003-S dataset. We re-determined the rupture front velocity to be 2.8 km/s in the same manner as for the 2003-L model and set the same number of time windows. As shown in Figures 6c and 6d, the maximum slip of 6.9 m was located in the Tokachi-oki region and the rupture primarily propagated in the down dip direction from the rupture initiation point. The seismic moment of the main rupture area in the Tokachi-oki region is 1.7 \(\times 10^{21} \) Nm (\(M_w \) 8.1).

Finally, we performed a source inversion using the 1952-S dataset. We set four time windows and determined the rupture front velocity to be 2.5 km/s using the same method as for the 2003-L datasets. The obtained slip distribution indicates that there were two large slip peaks of 6.9 m and 6.0 m in the Tokachi-oki and Akkeshi-oki regions, respectively (Figure 6e). The rupture primarily propagated from the rupture initiation point in the down dip direction and then in the northeastern direction, which, in this case, led to another large slip in the Akkeshi-oki region (Figures 6e and 6f). If we set the main rupture area in the Akkeshi-oki region as shown in the gray rectangle in Figure 6e, the seismic moment for the area is 1.1 \(\times 10^{21} \) Nm (\(M_w \) 8.0). The seismic moment of the main rupture area in the Tokachi-oki region is 1.6 \(\times 10^{21} \) Nm (\(M_w \) 8.1). Therefore, the total seismic moment for the two main rupture areas is 2.7 \(\times 10^{21} \) Nm (\(M_w \) 8.2). In all three inversions, the overall fit of the synthetic to the observed data is satisfactory (Figures 7, 8a, 8b, S2, and S3). The resulting parameters of the three inversions are summarized in Table 3. The moment rate functions, calculated by treating the fault model as a plane (i.e., with the strike and dip angles the same for all the subfaults), are shown in Figure S4.

4. Discussion

Both the 2003-L and 2003-S models show the rupture propagation in the down dip direction. However, the rupture front velocity of the 2003-L model is slightly faster than that of the 2003-S model. This is likely due to the small number of strong motion stations in the 2003-S dataset. Nevertheless, the maximum slip locations of the 2003-L and 2003-S models are nearly the same, indicating that the 2003-S and 1952-S datasets are sufficient to obtain the rough rupture processes. However, a peak slip larger than 4 m was obtained for the 2003-S model near the trench region (Figure 6c). The synthetic waveforms from the near trench slip primarily explain the later phases of the observed waveforms (Figure S5). The tsunami source area estimated from tsunami travel time (Hiirata et al., 2004) and the slip distribution estimated from tsunami data (Tanioka, Hiirata, et al., 2004) do not support the existence of such a slip near the trench. Recently, Lay and Rhode (2019) and Lay et al. (2019) suggested that teleseismic \(P_{\text{coda}} \) amplitude relative to P amplitude is useful for evaluating up dip extent of rupture because \(P_{\text{coda}} \) amplitude is relatively large due to water.
reverberations under deep water when near trench slip exists. They showed that the 2003 earthquake has low P_{coda}/P amplitude, indicating that there is no large near trench slip. Considering the above, this near trench slip is likely an artifact due to inaccurate Green's functions resulting from the use of the one-dimensional velocity structure models and the limited amount of data. Even though a ~ 2-m slip zone in the 2003-L model (Figure 6a) and a ~ 3-m slip zone in the 1952-S model (Figure 6e) can be seen at the same location, these features may be poorly resolved.

Table 2

<table>
<thead>
<tr>
<th>Station</th>
<th>Lat. (°)</th>
<th>Lon. (°)</th>
<th>Azimuth (°)</th>
<th>Back azimuth (°)</th>
<th>Distance (°)</th>
<th>Station</th>
<th>Lat. (°)</th>
<th>Lon. (°)</th>
<th>Azimuth (°)</th>
<th>Back azimuth (°)</th>
<th>Distance (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLM</td>
<td>38.636</td>
<td>−90.236</td>
<td>39.517</td>
<td>−37.407</td>
<td>85.927</td>
<td>FLO</td>
<td>38.802</td>
<td>−90.370</td>
<td>39.541</td>
<td>−37.580</td>
<td>85.753</td>
</tr>
<tr>
<td>TUC</td>
<td>32.310</td>
<td>−110.785</td>
<td>56.226</td>
<td>−47.175</td>
<td>79.182</td>
<td>TCSN</td>
<td>32.247</td>
<td>−110.835</td>
<td>56.333</td>
<td>−47.279</td>
<td>79.188</td>
</tr>
<tr>
<td>PAS</td>
<td>34.148</td>
<td>−118.171</td>
<td>58.988</td>
<td>−50.559</td>
<td>73.308</td>
<td>PSDN</td>
<td>34.148</td>
<td>−118.172</td>
<td>59.009</td>
<td>−50.654</td>
<td>73.298</td>
</tr>
<tr>
<td>KIP</td>
<td>21.420</td>
<td>−158.012</td>
<td>94.145</td>
<td>−53.031</td>
<td>52.322</td>
<td>HON</td>
<td>21.303</td>
<td>−158.095</td>
<td>94.318</td>
<td>−53.040</td>
<td>52.269</td>
</tr>
<tr>
<td>CAN</td>
<td>−35.319</td>
<td>148.996</td>
<td>175.887</td>
<td>−3.758</td>
<td>76.857</td>
<td>RIV</td>
<td>−33.829</td>
<td>151.158</td>
<td>74.000</td>
<td>−5.390</td>
<td>75.442</td>
</tr>
<tr>
<td>HYB</td>
<td>17.417</td>
<td>78.553</td>
<td>−92.647</td>
<td>51.327</td>
<td>60.442</td>
<td>NIZ</td>
<td>17.432</td>
<td>78.454</td>
<td>−92.475</td>
<td>51.424</td>
<td>60.558</td>
</tr>
<tr>
<td>BFO</td>
<td>48.330</td>
<td>8.330</td>
<td>−27.951</td>
<td>31.718</td>
<td>82.136</td>
<td>ZUR</td>
<td>47.369</td>
<td>8.580</td>
<td>−28.559</td>
<td>31.802</td>
<td>82.954</td>
</tr>
<tr>
<td>IBBN</td>
<td>52.306</td>
<td>7.759</td>
<td>−25.516</td>
<td>31.693</td>
<td>78.943</td>
<td>GOT</td>
<td>51.550</td>
<td>9.967</td>
<td>−27.057</td>
<td>33.101</td>
<td>78.938</td>
</tr>
<tr>
<td>HGN</td>
<td>50.764</td>
<td>5.932</td>
<td>−25.333</td>
<td>30.295</td>
<td>80.855</td>
<td>DBN</td>
<td>52.102</td>
<td>5.177</td>
<td>−24.193</td>
<td>29.874</td>
<td>80.023</td>
</tr>
</tbody>
</table>

Note. World Geodetic System coordinates are used.

Figure 5. (a) Fault model used in the inversion analyses. The black lines show the fault model. The light gray and yellow circles indicate the one-week aftershocks of the 1952 and 2003 earthquakes (M$_{MSK} > 4.5$), respectively. The plate-boundary depth and the trench axis (Iwasaki et al., 2015) are represented by the light gray broken lines with 10-km contour intervals and the light gray line, respectively. The purple lines show the locations of the cross sections described in panels (b) and (c). Other aspects are the same as in Figure 1a. (b) and (c) Cross sections along the lines AB and CD in panel (a), respectively. The black crosses denote the locations of the point sources (i.e., the centers of each subfault). The gray lines show the plate boundary (Iwasaki et al., 2015).
Figure 6. Slip distribution and snapshots of the slip distribution. (a) and (b) The result with the 2003-L dataset. (c) and (d) The result with the 2003-S dataset. (e) and (f) The result with the 1952-S dataset. The contour intervals of the slip distributions and snapshots are 1 m and 0.5 m, respectively. The light gray and gray rectangles represent the main rupture areas in the Tokachi-oki and Akkeshi-oki regions, respectively. The red and gray stars denote the epicenters of the 2003 and 1952 Tokachi-oki earthquakes, respectively.
Figure 7. (a) Strong motion, (b) teleseismic, and (c) horizontal and (d) vertical static displacement data fits of the 2003-L dataset. The observed and synthetic data are shown with the red and black lines/arrows, respectively. The station names, components, and maximum amplitude of the observed waveforms (cm for strong motion and μm for teleseismic) are shown to the left of each waveform.
Figure 8. Teleseismic waveform fit of the inversions of the (a) 2003-S and (b) 1952-S datasets. The observed and synthetic displacement waveforms (0.02–0.2 Hz) are shown with the red and black lines, respectively. The station names, components, and maximum amplitudes of the observed waveforms in μm are shown to the left of each waveform. (c) Teleseismic station map simplified from Figure 1c. The red star denotes the epicenter of the 2003 earthquake. The blue inverted triangles and sky-blue triangles indicate the teleseismic stations for the 1952 and 2003 earthquakes, respectively. (d) Comparison of the observed maximum amplitudes of the teleseismic waveform pairs. The red circles indicate the amplitudes of the waveform pairs.
The source inversion results of the 1952 and 2003 earthquakes using the 1952-S and 2003-S datasets show that both earthquakes had similar rupture propagation, slip areas, and maximum slip amounts in the Tokachi-oki region (Figures 6c–6f). However, the 1952 earthquake also ruptured the Akkeshi-oki region. We believe that the large slip in the Akkeshi-oki region in the 1952-S model is not an artifact because only the teleseismic waveforms of the 1952 earthquake, which were obtained by deconvolution of the instrument response and filtering between 0.02 and 0.2 Hz, have two clear large phases, especially in the waveforms at stations NIZ to LIS (Figure 8), and the moment rate function of the 1952-S model also has two clear peaks (Figure S4), as shown in Hartzell and Heaton (1985). The observed maximum amplitudes of the 1952 teleseismic waveforms are generally larger than those of the 2003 teleseismic waveforms (Figure 8d). This is consistent with the slightly larger total seismic moment of the 1952 earthquake. Comparisons of m_B, the body wave magnitude, and M_S, the surface wave magnitude, for the 1952 and 2003 earthquakes are also consistent with the amplitude differences and the moment rate functions (see Text S2 for details).

The overlapping large slip areas between the 1952 and 2003 earthquakes in the Tokachi-oki region (Figure 9a) suggest the persistence of asperities along this segment of the subduction zone. Park and Mori (2007) suggested non-persistence of asperities along the New Britain Trench because the asperities of the five great earthquakes they analyzed did not overlap. However, the five earthquakes occurred within a much shorter period of time (∼30 years) than the expected recurrence period of M8-class earthquakes in the region (∼100 years), and their result can be interpreted as ruptures of different asperities for each event.
The last event that ruptured the Tokachi-oki region prior to 1952 may have been the great earthquake in 1843 (Figure 1b); if this is the case, the two most recent event intervals are 109 and 51 years. If the slip deficit rate is equal to the plate convergence rate (8.5 cm/y) and is constant during the event intervals, the accumulated slip deficits between the two intervals are 9.3 m and 4.3 m, respectively. Even though the maximum slip amount varies greatly in previous studies of the 2003 earthquake, it is between 5 m and 9 m in most of these studies including this study, and the maximum slip of the 1952 earthquake in the Tokachi-oki region is comparable to that of the 2003 earthquake. This suggests that the maximum slip of the 1952 earthquake was less than the accumulated slip deficit since the 1843 event and that the maximum slip of the 2003 earthquake was larger than the accumulated slip deficit since the 1952 earthquake. However, note that, in this calculation, we do not consider the possibility of a temporal change in the slip deficit rate (Loveless & Meade, 2016; Mavrommatis et al., 2014; Yokota & Koketsu, 2015) or stress transfers from surrounding great earthquakes.

Previous source studies of the 1952 earthquake using tsunami data (Hirata et al., 2003; Satake et al., 2006) suggest that the rupture area of the 1952 earthquake extended to the Akkeshi-oki region. Our result is consistent with their results on that point. However, the slip distribution of the tsunami analysis had a slip near the trench (Figure 9b). Azuma et al. (2012) conducted a seismic survey at the near trench region where Satake et al. (2006) suggested ~3-m slip (Figure 9b). Azuma et al. (2012) obtained strong reflectivity on the plate interface in the region indicating a weak interplate coupling and quasi-stable slip conditions. However, because the slip distribution obtained by Hirata et al. (2003) has a large slip of 7 m at the near trench region, Azuma et al. (2012) suggested that the 1952 earthquake had characteristics of a tsunami earthquake. The slip distribution of Satake et al. (2006) which was obtained by using finer grid system than that of Hirata et al. (2003) and correcting the clock errors of the tide gauge stations also shows ~3-m slip in the near trench region (Figure 9b). Because the old seismograms used for the analyses of the 1952 earthquake were good only up to a period of 50 s (0.02 Hz), even if there were slow slips at the near trench region, we cannot measure such slips. However, even though the possibility remains that the 1952 earthquake had some slips at the near trench region, it cannot be a typical tsunami earthquake like the 1946 Unimak Islands (in the Aleutians) earthquake or the 1896 Sanriku, Japan, earthquake. Because the $M_w = 8.2$ for the 1952 earthquake determined from the seismic frequency band is already very large, if it was a typical tsunami earthquake, the tsunami should have been far more widespread than reported for this event.

No large slip has occurred in the Akkeshi-oki region since the 1952 earthquake because the 2003 earthquake did not rupture the Akkeshi-oki region. However, in the Akkeshi-oki region, two smaller earthquakes, $M_{JMA} 7.1$ and 6.9, occurred on 28 November and 6 December 2004, respectively, approximately 1 year after the 2003 earthquake (Figure 9). The epicenters of these earthquakes were located near the area where a large slip occurred during the 1952 earthquake. According to the Global Centroid-Moment-Tensor Project (Ekström et al., 2012), the M_w values of these earthquakes are 7.0 and 6.7; therefore, the sum of their seismic moments is far less than the seismic moment of the 1952 earthquake in the Akkeshi-oki region. Moreover, no afterslip occurred after the 2003 earthquake in the Akkeshi-oki region (Baba et al., 2006; Miyazaki, Segall, et al., 2004), indicating that there was no significant strain release in the Akkeshi-oki region after the 2003 earthquake. Between the 1952 and 2003 earthquakes, two earthquakes with $M_{JMA} 7.2$ and 6.9 occurred on 11 August and 15 November 1961, respectively, ~9 years after the 1952 earthquake (Figure 9). We did not investigate the details of these earthquakes in this paper; however, the similarity of the waveforms recorded at the JMA stations Hiroo and Obihiro (Figure S7) suggests that these two M7 earthquake pairs ruptured nearly the same location and have nearly the same M_w values (the JMA stations Hiroo and Obihiro were at the same locations during time period between 1961 and 2004). No other earthquakes with magnitudes larger than $M_{JMA} 7.0$ occurred between the 1952 and 2003 earthquakes. Even though the slip deficit rate in the Akkeshi-oki region between the 1952 and 2003 earthquakes is unknown, it is highly likely that strain has accumulated in the Akkeshi-oki region since the 1952 earthquake. The Akkeshi-oki region has been ruptured with the Tokachi-oki and Nemuro-oki regions (Figure 1b). Our result indicates that an earthquake of at least $M_w 8$ could occur independently in the Akkeshi-oki region.

The source inversions cannot satisfactorily resolve the small initial rupture of the 1952 earthquake due to the small amplitude and short duration of this small initial phase (Figures 4, 6e, and 6f). Therefore, we examined this small initial rupture in detail separately. We estimated the first motion solution of the 1952
earthquake using polarity data that were determined in this study as well as reported to the International Seismological Centre and JMA. To plot the polarity data we calculated the takeoff angles using the 1D JMA2001 velocity structure model (Ueno et al., 2002) for the stations whose epicentral distances were less than 2,000 km and the Preliminary Reference Earth Model (Dziewonski et al., 1981) for the teleseismic stations whose epicentral distances were between 35° and 95°. Because the polarity data may include errors due to various causes such as incorrect assessments by the analyst and noisy seismogram traces, we determined a plausible solution via trial and error (Figure 10). We then used the first motion mechanism to calculate the synthetic waveforms using the same method as that used in the inversion analysis and convolved this with the instrumental response. We found that the initial phase of the waveforms can be reproduced well by assuming an isosceles triangle source time function with a width of 5.5 s and a seismic moment of 1.8×10^{18} Nm ($M_w 6.1$). This duration was calculated using Equation 1 in Ekström et al. (2012).

The rupture area of the $M_w 6.1$ earthquake was approximately 200 km2 according to the scaling relationship for interplate earthquakes (Murotani et al., 2008; 2013). Therefore, the fault width of the $M_w 6.1$ earthquake was 14 km if the fault width was equal to the fault length, or 10 km if the width was half the length. These values are close to the horizontal distance between the hypocenters of the 1952 and 2003 earthquakes.

The 1952 earthquake was initiated by a $M_w 6.1$ subevent, ruptured the Tokachi-oki region, and cascaded into the adjacent Akkeshi-oki region. Large afterslip occurred in the boundary region between the Tokachi-oki and Akkeshi-oki regions after the 2003 earthquake. Miyazaki, Segall, et al. (2004) suggested different frictional properties between the co-seismic slip and afterslip areas. The different rupture patterns of the 1952 and 2003 earthquakes suggest that the boundary region with velocity strengthening frictional property sometimes prohibits rupture growth into an adjacent region. Accumulated strain level in the adjacent region should also be an important factor for rupture growth. One possible explanation for the difference in the rupture initiations of the 1952 and 2003 earthquakes is a complex rough structure on the fault plane. The existence of hierarchical structures which consist of circular patches with various diameters proportional to the fracture energy (e.g., Ide & Aochi, 2005) could be another possible explanation. Noda et al. (2013) performed numerical simulations assuming a simple hierarchical structure consisting of large and small patches. They showed that a rupture of the large patch could be initiated by either a large nucleation zone in the large patch or a cascading rupture of the small patches.

Ioki and Tanioka (2016) estimated the seismic moment of the megathrust earthquake in the 17th century to be 1.7×10^{22} Nm ($M_w 8.8$). They estimated a fault model with 10-m slip in the Tokachi-oki region, 5-m slip in the Akkeshi-oki and Nemuoro-oki regions, and 25-m slip extending over the three very-near-trench regions to explain the tsunami deposits. The 10-m slip in the Tokachi-oki region may be larger than the average slip of the M8 earthquakes in this region because their model assumes uniform slip over the entire Tokachi-oki region.
region. Our source inversion results show that the 1952 earthquake ruptured both the Tokachi-oki and Akkeshi-oki regions but that the slip amount in the Tokachi-oki region was similar to that of the 2003 earthquake, which only ruptured the Tokachi-oki region. This suggests that the slip in the Tokachi-oki region does not necessarily increase when the rupture cascades into an adjacent region, but might increase when the near-trench region simultaneously ruptures.

5. Conclusions
We performed joint source inversions of the 1952 and 2003 Tokachi-oki earthquakes (Mw ~ 8) to investigate the similarities and differences in the rupture processes between these earthquakes. We performed two inversions for the 2003 earthquake using two datasets to examine the effect of data limitation on the 1952 earthquake and to facilitate a comparison between the two earthquakes. The first is a large dataset consisting of teleseismic, strong motion, and geodetic data, while second is a smaller dataset consisting of teleseismic and strong motion data. The amount of data in the smaller dataset is nearly the same as that available for the 1952 earthquake. The results of the two inversions of the 2003 earthquake demonstrated that the limited dataset is sufficient to investigate the overall rupture process. The inversion results of the 2003 and 1952 earthquakes revealed similar rupture propagation, slip areas, and maximum slip amounts in the Tokachi-oki region for both earthquakes. However, the 1952 earthquake differed from the 2003 earthquake in that the former also ruptured the Akkeshi-oki region. Comparisons of the teleseismic waveforms for the 2003 and 1952 earthquakes clearly show that the 1952 earthquake was a multiple event. An examination of the initial part of the teleseismic waveforms revealed that the 1952 earthquake was initiated by an Mw 6.1 subevent in the Tokachi-oki region. The similarities between the two earthquakes indicate spatial persistence of asperities on the plate interface, while the differences seen in the rupture initiation and termination imply variability in the cascading rupture behavior.

Data Availability Statement
Some station bulletins were obtained from the SISMOS project (http://storing.ingv.it/bulletins/ISC-GEM/). The waveforms of the JMA stations are provided by the Japan Meteorological Business Support Center (http://www.jmbsc.or.jp/en/index-e.html). The teleseismic data were provided by the Wilber three system of IRIS-DMC (http://ds.iris.edu/wilber3/find_event). The plate models by Iwasaki et al. (2015) were constructed from topography and bathymetry data by GSI (250-m digital map), Japan Oceanographic Data Center (500 m mesh bathymetry data, J-EGG500, http://www.jodc.go.jp/jodcweb/JDOSS/infoJEGG_j.html) and Geographic Information Network of Alaska, University of Alaska (Lindquist et al., 2004). The copies of the Gutenberg notepad used in this study are provided by the Archives of the California Institute of Technology. The digitized data used in this paper can be downloaded from the Zenodo data repository (http://doi.org/10.5281/zenodo.3941018). Figures were drawn using the General Mapping Tools (Wessel & Smith, 1998).

Acknowledgments
The authors would like to thank Toshitaka Baba, Phil Cummins, Shu-ichiro Fukumitsu, Willie Lee, Satoko Murotani, Kazuko Noguchi, Toshihiro Shimoyama, Steve Walter, and Yoshiko Yamanaka for their help in collecting and processing the copies of analog seismograms. The authors thank Thorne Lay for reading our manuscript and providing helpful comments and Luis Rivera for helping us identify some of the old observatories listed in the Gutenberg Notepad. The authors also thank two anonymous reviewers for their helpful reviews.

References

References From the Supporting Information

