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Dissipative soliton Kerr frequency combs in microresonators have recently been demonstrated
with self-injection locking. They have the advantage of turnkey deterministic comb generation,
and also simplify dark soliton generation in the normal dispersion regime. Here, the formation
process of dark solitons triggered by self-injection locking is studied by regarding them as a pair of
domain walls that connect domains having different intracavity powers. The self-injection locking
mechanism allows the domain walls to self-regulate position so that a wide range of dark soliton
states can be accessed. Moreover, soliton duty cycle is readily controlled by the feedback phase.
Direct imaging of the dark soliton pulse shape using the electro-optic sampling technique is used to
verify the theory. The results provide new physical insights as well as a new operational modality
for this important class of nonlinear waves.

Soliton microcombs [1] offer a path towards miniatur-
ization of optical frequency comb technologies [2] onto
photonic chips. And their integration with III-V pump
lasers without the need for optical isolation [3–6] is an im-
portant step towards fully integrated chip-based soliton
microcombs. The self-injection locking process [7], which
was originally used to reduce laser linewidth [8–10] has
been shown to create a new “turnkey” operating point
[5] that eliminates complex startup and feedback pro-
tocols. This combination of features enables single-chip
soliton microcomb devices that comprise heterogeneously
integrated III-V pump lasers with microresonators [11].
Moreoever, the self-injection-locked “turnkey” operation
simplifies access to dark soliton states [6]. Specifically,
dark solitons exist under conditions of normal group ve-
locity dispersion (GVD) [12–16] and their formation re-
quires special spectral-design considerations (e.g., mode-
crossing induced anomalous dispersion [13]). And self-
injection locking makes it possible to turnkey-trigger
dark solitons without these requirements [6]. However,
despite this benefit, a theory describing the dark soliton
microcomb generation process under conditions of self
injection locking has not yet been established.

Here we analyze the formation process of such dark
solitons in the self-injection locking regime. It is shown
that nonlinear injection locking not only eliminates the
startup protocols from a technical viewpoint [5, 6], but
also provides a new physical understanding of these soli-
tons, wherein two oppositely-oriented domain walls are
able to regulate their own dynamics. Moreover, the set
point in this self-regulation is controlled by the feeedback
phase so that soliton duty cycle can be readily adjusted
to vary comb spectra and optimize comb pump power ef-
ficiency. The concept of a domain wall was developed to
describe a sheet-like boundary between spatial regions in
which a discrete symmetry is broken [17, 18]. In optics,
polarization domain walls and novel types of vector dark
domain wall solitons have been theoretically predicted

[19] and observed in a fiber ring laser [20, 21]. In the con-
text of microresonators, the domain walls are the spatial
counterpart of switching waves [22, 23]. Their dynamics
are governed by energy balance and can be described by
the Maxwell point, which plays a central role in soliton
formation and self-injection feedback. A model is devel-
oped and validated by taking “snap-shots” of dark soliton
shapes via the electro-optic sampling technique [24–26].

We consider a self-injection system consisting of a non-
linear ring-type resonator and a laser as shown in Fig.1a.
The laser and resonator are directly coupled without op-
tical isolation, allowing the backscattered light from the
resonator to be fed back to the laser and alter its dy-
namics. Within the approximation of weak backscatter-
ing and fast laser dynamics, the intracavity field follows
the same dynamics as in a conventional nonlinear res-
onator, described by the Lugiato-Lefever equation (LLE)
[27] (see Supplementary Information):

∂ψ

∂τ
= −(1 + iα)ψ − iβ2

2

∂2ψ

∂θ2
+ i|ψ|2ψ + f (1)

where ψ is the normalized intracavity field amplitude, τ
is the normalized slow time, α is the normalized detuning
(cold resonance frequency minus pump laser frequency)
β2 is the normalized group velocity dispersion (GVD), θ
is the resonator angular coordinate (from 0 to 2π), and
f is the normalized pumping term. The injection locking
dynamics can be summarized through a locking equilib-
rium equation (see Supplementary Information):

Im

[
eiφ

1 + iα− 2iP

ρ

f

]
= 0 (2)

Here φ is the feedback phase including contributions from
the feedback path, backscattering and laser amplitude-
phase coupling; P is the normalized intracavity power
and ρ is the normalized average field. The overall lock-
ing dynamics can be understood to result from the si-
multaneous solution of two separate equations giving
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FIG. 1: Laser-resonator system with nonlinear injec-
tion locking. (a) Schematic of the system, where an on-chip
laser is coupled to an on-chip microresonator without optical
isolation, thereby allowing signals from the resonator to be fed
back to the laser. Within the resonator, there are light cir-
culating in both the clockwise (CW) and counter-clockwise
(CCW) directions. (b) Blue curve shows the nonlinear res-
onator pumping curve for |f |2 = 4, and the dashed blue line
marks the instability section, which forms the orange region
(marked with “Dynamical instability”) when the pump power
varies. The highlighted section shows the three branches of
the multivalued part of the curve, and the powers correspond
to |ρH|2, |ρM|2 and |ρL|2. Black lines show the laser lock-
ing curve in the presence of injection locking. The feedback
phases are taken as −π/2, 0 and π/2 (from left to right). The
black dots mark continuous-wave operating points of the sys-
tem associated with these phases. The φ = 0 curve is solid
(others are dashed) and arrows show the evolution direction
of the system.

first, the continuous-wave dependence of the intracavity
power on detuning (herein called the resonator pumping
curve), and second, the impact of feedback on the pump
laser frequency (herein called the laser locking curve).
These two equations are co-plotted in Fig.1b as the blue
curve and solid black line. Their solution provides a
new continuous-wave operating point in the resonator [5].
However, as now shown, because the operating point can
lie within the dynamical unstable region, it provides a
new mechanism of dark soliton formation and self regu-
lation.

We first study a special case of zero second-order dis-
persion (i.e., β2 = 0). Higher-order dispersion becomes

important in the absence of β2, but is also assumed zero
in the model for simplicity, and does not qualitatively af-
fect the results. Zero dispersion removes the field deriva-
tive terms from the LLE, which allows step discontinu-
ities in the field. We proceed to show that such non-
continuous-wave solutions exist and are stable in the ab-
sence of dispersion. This is related to the dynamical in-
stability of the intracavity power. Referring to Fig.1b,
the resonator pumping curve may have three branches
with respect to the detuning α, and the field solutions
are denoted as ρH, ρM and ρL, ordered by their absolute
value from highest to lowest. Solutions on the upper (ρH)
and lower (ρL) branches are readily shown to be stable
while the middle branch solution (ρM) is unstable. The
dynamical instability region indicated in Fig.1b can be
determined from the LLE and plays a central role for
comb generation.

In Fig.1b the continuous-wave operating point (Eq. 2)
is visualized as the intersection of the resonator pump-
ing curve and laser locking curves, and the power de-
pendency of the laser locking curve may position the op-
erating point on the middle unstable branch of the res-
onator pumping curve rather than the stable branches.
As an example, the case of φ = 0 can be shown to give
|ρ|2 = 2α/3. This simple equation can be understood to
result from self-phase modulation of the clockwise mode
(Fig.1a) on itself (shifted by |ρ|2) and cross-phase mod-
ulation of the clockwise mode on the counter-clockwise
mode (shifted by 2|ρ|2). When pumping an initially un-
pumped resonator, the system is quickly pulled to the
continuous-wave operating point, after which it evolves
towards an operating point along the laser locking curve
[5]. Overall, the system is driven to the effectively red-
detuned region, where dynamical instabilities exist.

Since the operating point lies within the modulation
instability regime, fluctuations cause the field to destabi-
lize away from the operating point. Fields in about half
of the resonator will increase to the upper equilibrium
while fields in the other parts decrease to the lower equi-
librium. However, these local changes must still satisfy
the laser locking condition. This occurs in a spatially
averaged sense wherein the average intracavity field and
power determines the operating point. The whole process
is illustrated in Fig.2a and 2b. As an aside, the average
field will change in response to the power changes, but
such changes cannot flip the upper equilibrium to the
lower equilibrium or vice versa, as such a spontaneous
flipping of the field requires large fluctuations that are
exponentially unlikely.

In summary, beginning from the unstable branch op-
erating point, the waveform evolves to become square-
wave-like consisting of sections of upper and lower equi-
libria. We will refer to these sections as high-field and
low-field domains, respectively (Fig.2b). Between these
domains, a field discontinuity occurs. Such discontinu-
ities are known as domain walls (Fig.2b), analogous to
the domain walls that separate magnetic domains in fer-
romagnetic materials. A similar optical concept, known
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FIG. 2: Formation dynamics of the dark soliton. (a) A section of Fig.1b showing the three equilibria at a specific
detuning α = 3.528. (b) Evolution of the intracavity field in the absence of dispersion. Left panel: The intracavity field
reaches ρM at the continuous-wave operating point, and there are fluctuations of the field (shown as blue shading and greatly
exaggerated). Middle panel: The field evolves toward the upper and lower equilibrium. Arrows show the evolution direction
of the respective fields. Right panel: high- and low-field domains appear in the resonator, and a domain wall forms to connect
the two domains. (c) The domain wall solution for |f |2 = 4 and finite normal dispersion. The red and blue areas mark the
high-field and low-field domains, respectively. Arrows show the evolution direction of the respective field domains. (d) The
Maxwell point (black solid curve) as a function of detuning. Gray curves are the boundaries for soliton generation. Black
dashed curve is the α2 estimate based on variational methods. (e) Block diagram illustrating the dark soliton self-regulation
process in the self-injection locking regime.

as switching waves, has been extensively studied in fiber
loops and resonators [22, 23, 28], but the name “domain
wall” is used here to stress its spatial, rather than tem-
poral structure, and to also note its topological origin
as an object that continuously connects the high- and
low-field domains. For the special dispersionless case ini-
tially studied here, the domain walls have zero width due
to absence of the derivative terms in the LLE. The width
becomes finite for the normal GVD regimes as discussed
below.

For the normal dispersion case where β2 > 0, the do-
main formation process is qualitatively similar to the dis-
persionless case. The system still reaches the continuous-
wave operating point followed by the emergence of high-
and low-field domains. However, the walls at the bound-
ary of the domains are now finite width due to the dis-
persion term ∂2θψ which imposes a continuity condition
on the field. The spatial width of the domain wall is as-
sumed to be much shorter than 2π (cavity round trip)

such that boundary effects can be ignored. This will be
discussed later in terms of domain wall interactions.

Typical domain wall solutions to the LLE (normal dis-
persion) are plotted in Fig.2c. The domain wall can be
roughly divided into two parts. The portion close to the
high-field domain has the form of a constant term minus
an exponential that increases to the upper equilibrium,
while the portion close to the low-field domain is either
exponentially or oscillatory decaying to the lower field
equilibrium. These behaviors are controlled by the cor-
responding Lyapunov exponents at the equilibria. At the
upper and lower equilibria, the energy gain of the field
equals the energy loss. For the upper (lower) part of the
domain wall, the optical gain (cavity loss) term is more
prominent, and the field has the tendency to converge
to ρH (ρL), expanding the high-field (low-field) domain.
A stationary domain wall thus requires that these two
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effects balance each other. Quantitatively,∫ (
−2|ψ|2 + 2Re[fψ∗]

)
dθ = 0 (3)

where the first term represents loss to the environment
and the second term represents gain from the pump. If
these tendencies are unbalanced, then the domain wall
will move as a whole in the direction determined by the
dominant tendency. The overall speed of the domain wall
can be calculated from the energy imbalance (see Sup-
plementary Information). With strong pumping, the do-
main wall converts pump energy to expand the high-field
domain, while for weak pumping loss causes the high field
domain to shrink. For steady state operations, a critical
f value exist for a fixed detuning where the domain wall is
in energy balance between pumping and loss. This value
is known as the Maxwell point (MP) [23] denoted as fMP

and plotted in 2d. It can be determined by various an-
alytical or variational methods. Near the critical point
α =

√
3, above which multiple equilibria can be found

in the resonator, the MP can be obtained by asymptotic
expansion, while for intermediate α values, MP can be
estimated using variational methods based on the energy
balance condition derived above (see Supplementary In-
formation):

f2MP ≈
α2

2π
(4)

Normally, it’s challenging to tune a pumping laser ex-
actly to the MP so as to stop the domain wall from mov-
ing. However, because the self-injection locking process
relates α to the intracavity field, it provides a feedback
loop necessary to maintain laser lock to the MP. For ex-
ample, suppose that the intracavity field has split into
a single low-field domain and a high-field domain under
constant pumping. Therefore, two oppositely-oriented
domain walls appear in the system. If the pumping field
is stronger than fMP at the initial detuning, the expan-
sion of the high-field domain will increase both the aver-
age field norm and average power in the resonator, which,
in turn, increases the detuning according to the nonlin-
ear locking relation. This brings the detuning closer to
the MP, and the movement of domain walls slow down.
Eventually the detuning converges to the MP, and the
domain walls stop moving where the combination of av-
erage field and power maintain the appropriate detuning.
The opposite situation of an initial pump field that is too
low case works in a similar way. To quantify the propor-
tion of the high-field domain, we introduce the duty cycle
variable, w%, defined as the portion of the resonator with
intracavity power higher than |ρM|2, which is analogous
to the duty cycle describing square waves. The locking
process is summarized in Fig.2e.

Domain walls are always generated in pairs with alter-
nating orientations within a resonator subject to periodic
boundary conditions on the field. If a pair of domain
walls is close enough, then their exponential tails will

overlap causing interactions between the domain walls.
For the normal GVD case, domain walls attract each
other when the high-field portions overlap, as the over-
lap integral leads to extra energy loss from the system
(see Supplementary Information). This leads to collision
and annihilation of the walls, and indicates that a bright-
like pulse with w% close to 0% is unstable in a normal
GVD system. The presence of extra energy input chan-
nels can stabilize such bright-like pulses (e.g., the pump
mode eigenfrequency can be red-shifted compared to the
parabolic dispersion [13, 15] such that pumping becomes
more efficient). For domain walls with overlapping os-
cillatory tails near the low-field domain, the interaction
will be alternating between attraction and repulsion de-
pending on the relative position of the tails. This re-
sults in multiple equilibrium positions of the two walls,
and has been studied previously using bifurcation theory
[23]. These interactions unify the domain wall picture
with conventional dark solitons as well as platicons gen-
erated with a fixed-detuning laser. If the pumping power
is higher than f2MP, the two domain walls will move to-
wards each other until their low-field portions overlap, at
which point they start to interact and settle into equi-
librium. If the pumping is too high, the maximum re-
pulsion is not capable of holding the domain walls apart,
leading to pair annihilation of the walls. This is consis-
tent with the fact that dark solitons exist only within
a very narrow region in the detuning-pump phase space
[29]. From this point of view, the conventional dark soli-
tons and platicons require the wall interactions to exist,
which makes their duty cycles close to 100% and 0%, re-
spectively. On the other hand, domain walls in the non-
linear self-injection-locked resonator can be independent
of each other, since the detuning is instead determined
by the duty cycle. And as a result, the duty cycle can
reach an intermediate value close to 50%.

We now investigate the effects of the feedback phase,
which will be shown to influence the soliton number (the
number of dark pulses) as well as the duty cycle of dark
solitons. As shown previously, dark solitons form from
fluctuations on the unstable branch. Because these fluc-
tuations are parametrically amplified by interaction with
the pumping wave, the number of domain wall pairs gen-
erated in the resonator will be close to the relative mode
number of the mode having the largest parametric gain
(here relative mode number is defined as the actual mode
number less the mode number of the pump mode). This
in turn depends on the α and ρ coordinates of the operat-
ing point. Therefore the soliton number can be estimated
given the operation point parameters (see Supplementary
Information). We note that the exact soliton number
is subject to domain wall collisions and other transient
processes, and still has a certain degree of randomness.
In some cases, single soliton operation is desirable due
to its smooth spectrum and the lack of uncertainty of
the distance between different solitons. This requires
the gain to monotonically decrease with mode number
relative to the pumping line, so that parametric oscil-
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FIG. 3: Control of soliton duty cycle using feedback phase. (a) Phase diagram for the continuous-wave operating
point showing regions corresponding to single and multiple soliton generation. The resonator pumping curve for |f |2 = 4 is
also shown. The conventional modulation instability region (MI) is also marked, where dark solitons can be generated but
soliton number no longer depends on the mode number of the mode having the largest parametric gain. (b) Duty cycle of the
generated dark soliton as a function of feedback phase for pump strength |f |2 = 4, assuming the domain wall width is negligible
compared to the resonator circumference. Smaller feedback phase relative to φ = 0 leads to larger duty cycles, and vice versa.
The colored dots correspond to panel (c). (c) Simulated soliton profiles for different feedback phases, with φ = −0.4π (red),
φ = 0 (black) and φ = 0.4π (blue), at pumping strength |f |2 = 4.

lation occurs on the signal-idler pair that neighbor the
pump. This can be shown to happen when the operating
point is blue-detuned compared to the cross-phase mod-
ulation line |ρ|2 = α/2. For each pumping strength, this
gives a specific range of the feedback phase (Fig.3a). We
note that dark solitons can also emerge after the primary
comb has formed inside the resonator through modula-
tional instability (MI), in which case the soliton number
no longer depends on the relative mode number for para-
metric gain, but on long-range fluctuations on top of the
Turing roll pattern (see Supplementary Information).

Although the final detuning after soliton formation will
be locked at the MP, the closeness between the MP and
the initial continuous-wave detuning will determine the
duty cycle that is needed to compensate for this dif-
ference. If the width of the domain wall is negligible
compared to the scale of the resonator, ρ and P can be
approximated as the weighted average of the high- and
low-field domain contributions. The duty cycle can thus
be related to the feedback phase via the locking condi-
tion (see Supplementary information) and w% can, in
principle, be solved numerically (Fig.3b and c). Other
quantities of interest, such as the overall comb power ef-
ficiency, can also be derived based on the duty cycle. We
note that w% becomes independent of the soliton number
within the approximation of thin domain walls.

We use the electro-optic sampling technique [26] to ex-
perimentally obtain waveforms of the dark solitons and
to verify some of the above theoretical predictions. A
commercial InGaAsP distributed-feedback (DFB) laser
around 1556 nm is endfire coupled without optical isola-
tion to an integrated silicon nitride/silica resonator (free
spectral range 10.85 GHz) [6]. The field is collected from
the drop port of the resonator to avoid the pumping field
showing up in the result. The feedback phase is tuned

by adjusting the gap between the laser and resonator. It
is noted that implementation of a heater section beside
the waveguide can enable the on-chip thermal control of
feedback phase [11]. Soliton snapshots are obtained by
mixing at a photodetector the dark soliton pulse train
with an electro-optically (EO) generated comb having a
slightly different repetition rate. The detailed experimen-
tal setup and data processing procedures can be found
in the Methods. For different feedback phases, we are
able to observe soliton states with different duty cycles
(Fig.4a and b). The square-like waveform is apparent
from the time evolution plot and its 3D representation.
The variations of the field in both the high-field and low-
field domains are believed to result from resonator in-
homogeneity along the propagating direction as well as
inaccuracies in the sampling process. As ρM cannot be
accurately retrieved from the experiment, the pulse width
here is determined instead as the portion with an optical
power greater than the average of the 87.5% and 12.5%
quantiles of the whole waveform. In strong contrast to
previously demonstrated bright solitons, dark solitons or
platicons, the measured pulse width occupies a significant
portion of the resonator.

We have also swept the feedback phase by adjusting
the coupling gap between the laser and resonator, and
monitored the evolving field in the resonator during the
scanning process (Fig.4c). When the feedback phase is
decreasing, Turing rolls, breathing states and a single
dark soliton can be observed during the single scan. No-
tably, the pulse width for a single soliton state near the
end of the scan visibly widens. These observations are
in good qualitative agreement with Fig.3a and 3b and
consistent with MP predictions.

Noise spectra of the soliton repetition rate signal have
also been measured, and a representative noise spectrum
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is shown in Fig.5. At 10 MHz offset frequencies, typ-
ical phase noise observed are −140 to −145 dBc Hz−1

and are comparable with previous bright [30] soliton sys-
tems with 10-GHz-scale repetition rates. We note that a
‘quiet’ operation point[31], where repetition rate noise is
significantly depressed compared with normal operations,
is also practical in the present systems.

There are many other effects that can be included in
the model and these can lead to new phenomena in the
system. For example, backscattering of the resonator β

is heavily dependent on the geometry and fabrication de-
tails which can range from 10−3 to 101. Strong backscat-
tering causes mode splitting and, when combined with
optical nonlinearity, can lead to new modal dynamics.
There have also been numerical efforts to generalize the
backscattering to each pair of longitudinal modes [32],
but the actual behavior of such scattering can be more
complicated, with large amplitude and phase variations
across different pairs of modes. High-order dispersion can
also be added to the model. Similar domain-wall-like be-
havior of the pulse has also been shown in the numerical
simulations [33] .

In summary, the formation dynamics of dark solitons
in microresonators via the self-injection-locking process
have been analyzed in terms of domain walls. And the
resulting system has a new physical property associated
with self regulation of the domain walls. The dark soli-
tons were also imaged using an electro-optic sampling
system, and the measurements verified predictions of the
model. Self-regulation allows operation of the dark soli-
ton microcomb at previously inaccessible duty cycles that
offer high power efficiency comb states [16] as well as for
microwave generation [6]. Duty cycle is controlled by the
feedback phase, which in future designs could be electri-
cally varied by way of, for example, an on-chip heater
[11].
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Methods

Experimental setup

The self injection locking dark soliton generation set up
consists of the DFB laser chip enfire coupled to the inte-
grated CMOS-ready ultra-high-Q microresonator chip. A
fiber lens mounted on 3 independent precision translation
stages is used to collect power from the microresonator
chip waveguide. The optical waveguide facets and lens
fiber port are aligned by fine tuning a micro-positioner.
The laser stage is equipped with a piezoelectric control
for all three translation degrees of freedom. For mea-
surements with varied feedback phase, the gap between
laser and resonator chip is tuned by applying a trian-
gular signal to the piezoelectric controller of the laser
stage. The transduction factor is measured as 0.42 µm
V−1, equivalent to about 1.1π feedback phase change per
volt. Changing the gap also weakly affects the coupling

efficiency between the laser and resonator, which is esti-
mated to be < 0.5 dB for the tuning range used.

The EO comb used in the sampling measurement is
generated using two phase modulators and one amplitude
modulator followed by amplification using an erbium-
doped fiber amplifier (EDFA). The sampling comb is then
conditioned by a waveshaper to form the sampling pulse.
The amplitude of each comb line is carefully trimmed and
the comb has around 40 lines with equal intensity (vari-
ation < 1 dB). The dark soliton is collected via the fiber
lens and mixed with the sampling comb on a photode-
tector (1 GHz bandwidth). The radio frequency signal is
then collected by the oscilloscope, digitally demodulated
and segmented. The segmentation length is variable and
determined from the waveform to maintain the periodic-
ity of the pulse and to correct for repetition rate drift-
ing. Each piece of waveform is then down-sampled to 128
points for plotting and averaging.
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