Supplemental information

Modeling bursty transcription and splicing with the chemical master equation

Gennady Gorin and Lior Pachter
Modeling bursty transcription and splicing with the chemical master equation: Supplementary Note

Gennady Gorin1 and Lior Pachter2

1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
2Division of Biology and Biological Engineering & Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

January 18, 2022

Contents

S1 CME definition ... 2
S1.1 Converting a reaction network to a CME 2
S1.2 Converting a CME to a PDE 4
S1.3 Joint burst distributions can emerge from a model of synchronized gene regulation . 6
S1.4 Joint burst distributions are tractable using Cauchy products 8

S2 CME solution .. 9
S2.1 Example: path graph splicing 11
S2.2 Example: alternative splicing 12
S2.3 Example: two-intron splicing with non-deterministic order 13
S2.4 General spectral solution 14

S3 Bursty systems have well-behaved moments 15
S3.1 The exponential sum is always positive 16
S3.2 All generating functions and marginals exist 16
S3.3 All marginals are infinitely divisible 16
S3.4 Only the first marginal is self-decomposable 17
S3.5 All stationary marginals are unimodal 17

S4 Simulation ... 17
S4.1 Benchmarking ... 19

S5 Inference ... 20
S5.1 Quantifying uncertainty in correlation coefficients 24
S6 Delay chemical master equations

S6.1 Example: constitutive production, one species .. 27
S6.2 Example: constitutive production, two species .. 27
S6.3 Example: bursty production, one species ... 29
S6.4 Example: bursty production, two species ... 29

Supporting References ... 31

S1 CME definition

In the current section, we work through the definition of the CME encoding the reactions in Equation 1 and convert it to the generating function PDE. For the most part, this amounts to rote application of definitions.

S1.1 Converting a reaction network to a CME

The CME is a continuity equation defined with respect to total probability density. For any set of states, we can write down the following relation tracking their total probability mass:

\[
\text{accumulation} = \text{influx} - \text{efflux} \tag{S1}
\]

Probability mass can be neither created nor destroyed, because the total probability mass must add to unity. We can encode the Markovian property by ensuring that accumulation at time \(t \) depends only upon the state of the system at \(t \). To compute the likelihood of state \(\mathbf{m} \) with \(m_i \) molecules of mRNA species \(T_i \), we need to evaluate \(P(\mathbf{m}, t) \). This microstate \(\mathbf{m} \) is the most natural and conventional mathematical object to track using Equation S1. This yields the general form of the CME:

\[
\frac{dP(\mathbf{m}, t)}{dt} = \sum_{\text{rxn}} \text{influx}(\mathbf{m}, t, \text{rxn}) - \sum_{\text{rxn}} \text{efflux}(\mathbf{m}, t, \text{rxn}) \tag{S2}
\]

We can explicitly write down the influx and efflux terms by splitting the reactions into three separate pools of channels: the transcription reactions, the degradation reactions, and the splicing reactions. It is easiest to start with the first-order efflux reactions, as they are only involve a single species \(i \) and can be decomposed into an additive form:

\[
\text{efflux}(\mathbf{m}, t, \text{deg}) = \sum_{i=1}^{n} \text{efflux}(m_i, t, \text{deg}) = \sum_{i=1}^{n} c_{i0} m_i P(m_i, t) \\
\text{efflux}(\mathbf{m}, t, \text{splic}) = \sum_{i=1}^{n} \text{efflux}(m_i, t, \text{splic}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} m_i P(m_i, t), \tag{S3}
\]

a simple form that results immediately from the propensities defined in Equation 1. Since each term in the sums only involves a single \(i \), we use a shorthand with respect to the microstate \(\mathbf{m} \), such that \(P(m_i) \) is a multivariate PMF defined as \(P(m_1, ..., m_i, ..., m_n, t) \), and implies that all dimensions
j \neq i$ are in the state m_j. With this shorthand, we can write down the equations for the influx due to the first-order reactions:

$$\text{influx}(m, t, \text{deg}) = \sum_{i=1}^{n} \text{influx}(m_i, t, \text{deg}) = \sum_{i=1}^{n} c_{i0}(m_i + 1)P(m_i + 1, t)$$

$$\text{influx}(m, t, \text{splic}) = \sum_{i=1}^{n} \text{influx}(m_i, t, \text{splic}) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}(m_i + 1)P(m_i + 1, m_j - 1, t),$$

which extends the shorthand to describe two species: $P(m_i + 1, m_j - 1, t) := P(m_1, ..., m_i + 1, ..., m_j - 1, ..., m_n, t)$. Equation S4 encodes the fact that the degradation influx channel removes T_i and receives probability density from states with $m_i + 1$ counts of T_i, whereas the splicing influx channel converts T_i to T_j and receives probability density from states with $m_i + 1$ counts of T_i and $m_j - 1$ counts of T_j. We sum over all pairs of indices to encode all possible splicing reaction channels.

Finally, we need to write down the equations that define the transcriptional dynamics. To start, we assume that no co-expression occurs. This implies a simple zeroth-order form for the efflux term:

$$\text{efflux}(m, t, \text{tx}) = \sum_{i=1}^{n} \text{efflux}(m_i, t, \text{tx}) = \sum_{i=1}^{n} k_{1,i}P(m_i, t),$$

where $k_{1,i}$ is the burst frequency corresponding to the reaction channel producing the one transcript T_i. The influx is slightly more complicated, as burst sizes are defined as random variables on \mathbb{N}_0, so the state m can be reached from any state with $m_z \in [0, 1, ..., m_i - 1, m_i]$.

$$\text{influx}(m, t, \text{tx}) = \sum_{i=1}^{n} \text{influx}(m_i, t, \text{tx}) = \sum_{i=1}^{n} k_{1,i} \sum_{z=0}^{m_i} p_{i,z}P(m_i - z, t),$$

where z is the burst size and $p_{i,z}$ is the PMF of the burst size random variable B_i corresponding to the reaction channel producing T_i.

This formulation is sufficient if there are content to model independent transcriptional dynamics. However, it is not sufficient to recapitulate the gene–gene correlations observed in real datasets. Several avenues are available to model them: for example, it is possible to explicitly describe regulatory interactions [1]. Unfortunately, such detailed schema are not analytically tractable. Instead, we propose that some sets of genes fire simultaneously; physiologically, this can be effected by exposure of neighboring loci on DNA, regulation by a common promoter, or activation by a common inducer [2, 3]. We discuss particular mechanisms that can yield these dynamics in Section S1.3. This formulation lends itself to tractable analytical solutions.

Anywhere between 1 and n species can be simultaneously transcribed in synchronized bursts. Further, for a co-expression module size of ℓ transcripts, there are $\binom{n}{\ell}$ possible combinations of specific co-expression modules, indexed by q. For a particular module, defined by the tuple ℓ, q, we can define a function $Q_{\ell,q}(j)$, with $j \in \{1, ..., \ell\}$, which returns the ℓ indices of co-transcribed species. For example, if a system has n transcripts, with species indexed 1 and n transcribed simultaneously, we yield $\ell = 2$, $Q_{2,1}(1) = 1$, and $Q_{2,1}(2) = n$. This function permits us to do the “bookkeeping” for the general multivariate form of burst distributions:

$$\text{efflux}(m, t, \text{tx}) = \sum_{\ell=1}^{n} \sum_{q=1}^{\binom{n}{\ell}} \text{efflux}(\{m_{Q_{\ell,q}}\}, t, \text{tx}) = \sum_{\ell=1}^{n} \sum_{q=1}^{\binom{n}{\ell}} k_{\ell,q}P(\{m_{Q_{\ell,q}}\}, t),$$

(S7)
where \(\{m_{Q_{\ell,q}}\} \) reports the species indices \(m_{Q_{\ell,q}(1)}, \ldots, m_{Q_{\ell,q}(t)} \) involved in a particular reaction. Finally, we need to write down the conservation equations for the influx reactions. These depend on the multivariate burst probability mass \(p_{\ell,q,z} \), where \(z \) is a vector defining burst size microstates:

\[
\text{influx}(m, t, tx) = \sum_{\ell=1}^{n} \sum_{q=1}^{(n)} \text{influx}(\{m_{Q_{\ell,q}}\}, t, tx)
\]

\[
= \sum_{\ell=1}^{n} \sum_{q=1}^{(n)} k_{\ell,q} \sum_{\{z\}}^{(n)} p_{\ell,q,z} P(\{m_{Q_{\ell,q}} - z_{Q_{\ell,q}}\}, t) \tag{S8}
\]

\[
= \sum_{\ell=1}^{n} \sum_{q=1}^{(n)} k_{\ell,q} \sum_{\{z\}}^{(n)} p_{\ell,q,z} P(m - z, t)
\]

where the summation over \(\{z\} \) includes all joint burst sizes with marginal \(z_{Q_{\ell,q}} \) up to \(m_{Q_{\ell,q}} \). All \(z_j \) where \(j \notin \{Q_{\ell,q}\} \) are set to zero for consistency. This equation is exact, but somewhat formal. We can illustrate its specific form by returning to the specific case of a system with \(n \) transcripts, with co-expressed species \(T_1 \) and \(T_n \):

\[
\text{influx}(m, t, tx) = \text{influx}(m_1, m_n, t, tx)
\]

\[
= k_{2,1} \sum_{\{z\}}^{(n)} p_{2,1,z} P(m_1 - z_1, m_n - z_n, t)
\]

\[
= k_{2,1} \sum_{z_1=0}^{m_1} \sum_{z_n=0}^{m_n} p_{2,1,z_1,z_n} P(m_1 - z_1, m_n - z_n, t) \tag{S9}
\]

Therefore, the most general CME we consider takes the following form:

\[
\frac{dP(m, t)}{dt} = \sum_{\ell=1}^{n} \sum_{q=1}^{(n)} k_{\ell,q} \left[\sum_{\{z\}}^{(n)} p_{\ell,q,z} P(m - z, t) - P(m, t) \right]
\]

\[
+ \sum_{i=1}^{n} c_i [P(m_i + 1, t) - m_i P(m_i, t)]
\]

\[
+ \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} [P(m_i + 1, m_j - 1, t) - m_i P(m_i, t)] \tag{S10}
\]

S1.2 Converting a CME to a PDE

With the CME in hand, we can write down the probability-generating function. The multivariate PGF is defined as follows:

\[
G(x, t) = \sum_{m_1=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} P(m_1, \ldots, m_n, t) \prod_{i=1}^{n} x_i^{m_i} := \sum_{m_1, \ldots, m_n} P(m, t) \prod_{i=1}^{n} x_i^{m_i} \tag{S11}
\]
We can sum over the left-hand side of Equation S10:

\[
\sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \frac{dP(m_1, \ldots, m_n, t)}{dt} \prod_{i=1}^{n} x_i^{m_i} = \frac{d}{dt} \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} P(m_1, \ldots, m_n, t) \prod_{i=1}^{n} x_i^{m_i} = \frac{\partial G(x, t)}{\partial t}
\] (S12)

As Equation S11 is linear with respect to \(P \), we can treat the interior terms of the summations separately. For a particular combination of \(\ell, q \) molecules, we yield:

\[
\sum_{m_1, \ldots, m_n} k_{\ell,q} P(m, t) \prod_{i=1}^{n} x_i^{m_i} = k_{\ell,q} G(x, t),
\] (S13)

i.e., the efflux term of a particular bursting reaction.

Now, taking the PGF and differentiating it with respect to \(x_i \):

\[
\frac{\partial G(x, t)}{\partial x_i} = \frac{\partial}{\partial x_i} \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} P(m_1, \ldots, m_n, t) \prod_{k=1}^{n} x_k^{m_k} \\
= \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} P(m_1, \ldots, m_n, t) x_i^{m_i} \prod_{k=1, k \neq i}^{n} x_k^{m_k}
\] (S14)

This implies three useful identities. First, the probability of any state with a negative number of molecules is zero. Therefore, we can reindex the summation over \(m_i \):

\[
\frac{\partial G(x, t)}{\partial x_i} = \sum_{m_1=0}^{\infty} \cdots \sum_{m_{i-1}=0}^{\infty} \sum_{m_{i+1}=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} m_i P(m_1, \ldots, m_i, m_{i+1}, \ldots, m_n, t) x_i^{m_i} \prod_{k=1, k \neq i}^{n} x_k^{m_k}
\]

\[
= \sum_{m_1=0}^{\infty} \cdots \sum_{m_{i-1}=0}^{\infty} \sum_{m_{i+1}=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} (m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_{i+1}, \ldots, m_n, t) x_i^{m_i + 1} \prod_{k=1, k \neq i}^{n} x_k^{m_k}
\] (S15)

i.e., the PGF of \((m_i + 1)P(m_i + 1, t)\) is \(\frac{\partial G(x, t)}{\partial x_i} \). This gives us the influx terms of all degradation reactions:

\[
\sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} c_{00}(m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_n, t) \prod_{i=1}^{n} x_i^{m_i} = c_{00} \frac{\partial G(x, t)}{\partial x_i}.
\] (S16)

Second, we can multiply \(x_i \) through the second line of Equation S14:

\[
x_i \frac{\partial G(x, t)}{\partial x_i} = x_i \sum_{m_1=0}^{\infty} \cdots \sum_{m_{i-1}=0}^{\infty} \sum_{m_{i+1}=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} m_i P(m_1, \ldots, m_i, m_{i+1}, \ldots, m_n, t) x_i^{m_i + 1} \prod_{k=1, k \neq i}^{n} x_k^{m_k}
\]

\[
= \sum_{m_1=0}^{\infty} \cdots \sum_{m_{i-1}=0}^{\infty} \sum_{m_{i+1}=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} m_i P(m_1, \ldots, m_i, m_{i+1}, \ldots, m_n, t) x_i^{m_i} \prod_{k=1, k \neq i}^{n} x_k^{m_k}
\] (S17)

\[
= \sum_{m_1=0}^{\infty} \cdots \sum_{m_{i-1}=0}^{\infty} \sum_{m_{i+1}=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} m_i P(m_1, \ldots, m_i, m_{i+1}, \ldots, m_n, t) \prod_{k=1}^{n} x_k^{m_k}.
\]
i.e., the PGF of \(m_i P(m) \) is \(x_i \frac{\partial G(x_i, t)}{\partial x_i} \). This gives us the efflux terms of all degradation and splicing reactions:

\[
\sum_{m_1=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} \prod_{i=1}^{n} x_i^{m_i} = c_{ij} x_i \frac{\partial G(x_i, t)}{\partial x_i}.
\]

(S18)

Third, we can multiply \(x_j \) through the relation from the third line of Equation S15:

\[
x_j \frac{\partial G(x_i, t)}{\partial x_i} = x_j \sum_{m_1=0}^{\infty} \ldots \sum_{m_j=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} (m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_n, t) \prod_{k=1}^{n} x_k^{m_k}
\]

\[
= \sum_{m_1=0}^{\infty} \ldots \sum_{m_j=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} (m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_j, \ldots, m_n, t) x_j^{m_j+1} \prod_{k=1, k \neq j}^{n} x_k^{m_k}
\]

\[
= \sum_{m_1=0}^{\infty} \ldots \sum_{m_j=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} (m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_j - 1, \ldots, m_n, t) x_j^{m_j} \prod_{k=1, k \neq j}^{n} x_k^{m_k}
\]

\[
= \sum_{m_1=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} (m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_j - 1, \ldots, m_n, t) \prod_{k=1}^{n} x_k^{m_k},
\]

(S19)

where the last step exploits the physical constraint that probabilities of microstates with negative counts are strictly zero, just as in Equation S15. Therefore, the PGF of \((m_i + 1) P(m_i + 1, m_j - 1, t) \) is \(x_j \frac{\partial G(x_i, t)}{\partial x_i} \). This gives us the influx terms of all splicing reactions:

\[
\sum_{m_1=0}^{\infty} \ldots \sum_{m_n=0}^{\infty} c_{ij}(m_i + 1) P(m_1, \ldots, m_i + 1, \ldots, m_j - 1, \ldots, m_n, t) \prod_{i=1}^{n} x_i^{m_i} = c_{ij} x_j \frac{\partial G(x_i, t)}{\partial x_i}.
\]

(S20)

S1.3 Joint burst distributions can emerge from a model of synchronized gene regulation

The specific form of the burst distribution is governed by the underlying physics. It is conventional [4] to assume that a promoter indexed by \(i \) can exist in one of two states, \(G_{i, \text{on}} \) or \(G_{i, \text{off}} \), where only \(G_{i, \text{on}} \) can transcribe. This premise yields the following reactions for each promoter:

\[
G_{i, \text{off}} \xrightleftharpoons[k_{i, \text{off}}]{k_{i, \text{on}}} G_{i, \text{on}}
\]

(S21)

\[
G_{i, \text{on}} \xrightarrow[k_{i, \text{init}}]{k_{i, \text{init}}} G_{i, \text{on}} + T_i
\]

The transcriptional strength of the promoter is described by the telegraph process [5], which we denote as \(K_i \). This process is the simplest nontrivial continuous-time, discrete-space Markov chain, which simply switches between two states. If \(k_{i, \text{off}}, k_{i, \text{init}} \to \infty \), the dynamics become bursty, producing multiple transcripts at burst arrival times. The distribution of the number of transcripts is geometric. This result is well-known [5], and has been derived using a variety of mathematical tools [6, 7]. For our purposes, it is easiest to use the Poisson formulation. The following SDE governs the Poisson intensity of \(T_i \):

\[
d\Lambda_i = -r_i \Lambda_i dt + K_i dt.
\]

(S22)
In the bursty limit, K_t is zero almost everywhere, because the off state does not transcribe. It has point masses distributed throughout the time coordinate, with an $\text{Exp}(k_{i,\text{on}})$ waiting time distribution between their arrivals. The point masses have weights $k_{i,\text{init}} \times T$, where T is the duration of the on period, a random variable with an $\text{Exp}(k_{i,\text{off}})$ distribution. Therefore, the weights are distributed per $\text{Exp}(k_{i,\text{init}}/k_{i,\text{off}})$, i.e., an average of $k_{i,\text{init}}/k_{i,\text{off}}$. This is precisely the jump size of the burst subordinator associated with promoter i. K_t thus takes the following form:

$$K_t = \sum_{q=0}^{N(t)} \delta(t - \tau_q)J_q,$$

(S23)

where $N(t)$ is a Poisson counting process with rate $k_{i,\text{on}}$, τ_q are the arrival times, and $J_q \sim \text{Exp}(k_{i,\text{init}}/k_{i,\text{off}})$ is the random variable giving the jump sizes or point mass weights. Finally, we note that $L_t := \int_0^t K_s ds$ is a compound Poisson process and thus a legitimate subordinator [8]. Therefore, we can redefine this (somewhat uninformative) form of $K_t dt$ as dL_t, with $k_{1,i} \leftarrow k_{i,\text{on}}$ and $b_i \leftarrow k_{i,\text{init}}/k_{i,\text{off}}$.

More sophisticated models of transcription can be encoded analogously. First, we can suppose that more than two promoter states exist. One state yields no transcription, while the two other states lie in the bursty limit. This is analogous to Figure SN9a of [9] with $k_{I\text{NI},1} = 0$, $k_{23} = k_{32} = 0$, and $k_{21}, k_{31}, k_{I\text{NI},2}, k_{I\text{NI},3} \to \infty$, with no submolecular details of elongation. In this case, the overall subordinator is a mixture of the individual states’ subordinators, weighted by their relative on rates.

To explain synchronization between burst sizes, we can invoke a slightly more complex model, analogous to Figure SN9b of [9]. Specifically, we can write down equations for a single global regulator and each of the promoters:

$$G_{\text{G,off}} \xrightleftharpoons[k_{G,\text{off}}]{k_{G,\text{on}}} G_{\text{G,on}}$$

$$G_{i,\text{on}} \xrightleftharpoons[k_{G}(t)k_{i,\text{on}}]{?} G_{i,\text{off}},$$

(S24)

where $K_G(t)$ is the telegraph process representing the global regulator. If $k_{G,\text{off}}, k_{i,\text{on}} \to \infty$, the global “on” periods become infinitesimally short, and the activation of the global regulator leads immediately to the activation of the individual promoters.

It remains to specify how the individual promoters turn off. If we suppose that the promoter dynamics are independent, and each promoter shuts off after a delay $\sim \text{Exp}(k_{i,\text{off}})$, the jump sizes associated with the promoter-specific subordinators are independent and distributed per $\text{Exp}(k_{i,\text{off}}/k_{i,\text{init}})$). This leads to the model described in the section “Example: Two-gene bursty model, with burst time synchronization” of the main text.

On the other hand, if we suppose that the promoters are forced to shut off precisely when the global regulator shuts off, the jump sizes associated with the promoter-specific subordinators are perfectly correlated and distributed per $\text{Exp}(k_{G,\text{off}}/k_{i,\text{init}})$. These are simply copies of the single random variable governing the global regulator “on” time, rescaled by promoter-specific initiation rates to yields the jump sizes. This leads to the model described in the section “Example: Two-gene bursty model, with partial burst time and size synchronization” of the main text.
S1.4 Joint burst distributions are tractable using Cauchy products

It remains to compute the generating function of the bursting influx term in Equation S10. To start, we can treat the simplest case, where \(k_{\ell,q} = 0 \) for all \(\ell > 1 \), i.e., no synchronized bursting occurs. First, we define the burst PGF (based on the PMF with weights \(p_{1,i,z} \) for species \(i \)) and recall the Cauchy product formula [10]:

\[
F_i(x) = \sum_{z_i=0}^{\infty} p_{1,i,z} x^{z_i} \sum_{n=0}^{\infty} a_n x^n \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} c_n x^n \text{ s.t. } c_n = \sum_{k=0}^{n} a_k b_{n-k}
\]
(S25)

Then, we write down the summation over the influx term and rearrange terms:

\[
\sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \sum_{z_i=0}^{m_i} p_{1,i,z_i} P(m_1, \ldots, m_i - z_i, \ldots, m_n, t) \prod_{k=1}^{n} x_k^{m_k} = \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \prod_{k=1, k \neq i}^{n} x_k^{m_k} \sum_{z_i=0}^{m_i} \sum_{m_i=0}^{\infty} \sum_{k=0}^{m_i} \sum_{z_i=0}^{m_i} \sum_{n=0}^{\infty} P_{\ell,q,z} x_i^{z_i} P(m_1, \ldots, m_i - z_i, \ldots, m_n, t) x_i^{m_i - z_i}
\]

\[
= \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \prod_{k=1, k \neq i}^{n} x_k^{m_k} \sum_{m_i=0}^{\infty} \sum_{z_i=0}^{m_i} \sum_{n=0}^{\infty} \sum_{k=0}^{m_i} \sum_{z_i=0}^{m_i} \sum_{\ell=1, \ell \neq i}^{\infty} p_{\ell,q,z} x_i^{z_i} P(m_1, \ldots, m_i - z_i, \ldots, m_n, t) x_i^{m_i - z_i} P_{\ell,q,z}
\]

\[
= \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \prod_{k=1, k \neq i}^{n} x_k^{m_k} \sum_{m_i=0}^{\infty} \sum_{z_i=0}^{m_i} \sum_{n=0}^{\infty} \sum_{k=0}^{m_i} \sum_{z_i=0}^{m_i} \sum_{\ell=1, \ell \neq i}^{\infty} p_{\ell,q,z} x_i^{z_i} P(m_1, \ldots, m_i - z_i, \ldots, m_n, t) x_i^{m_i - z_i} P_{\ell,q,z}
\]

\[
= \sum_{z_i=0}^{\infty} \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \prod_{k=1, k \neq i}^{n} x_k^{m_k} \sum_{m_i=0}^{\infty} \sum_{z_i=0}^{m_i} \sum_{n=0}^{\infty} \sum_{k=0}^{m_i} \sum_{z_i=0}^{m_i} \sum_{\ell=1, \ell \neq i}^{\infty} p_{\ell,q,z} x_i^{z_i} P(m_1, \ldots, m_i - z_i, \ldots, m_n, t) x_i^{m_i - z_i} P_{\ell,q,z}
\]

\[
= \sum_{z_i=0}^{\infty} \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} \prod_{k=1, k \neq i}^{n} x_k^{m_k} \sum_{m_i=0}^{\infty} \sum_{z_i=0}^{m_i} \sum_{n=0}^{\infty} \sum_{k=0}^{m_i} \sum_{z_i=0}^{m_i} \sum_{\ell=1, \ell \neq i}^{\infty} p_{\ell,q,z} x_i^{z_i} P(m_1, \ldots, m_i - z_i, \ldots, m_n, t) x_i^{m_i - z_i} P_{\ell,q,z}
\]

This expression gives us the influx terms for all burst processes with \(\ell = 1 \). Extending this solution to \(\ell > 1 \) requires iteratively applying the Cauchy product formula. For simplicity, we demonstrate
It remains to construct a function \(\phi(u, t) \) that solves Equation S30. In the current section, we discuss the solution procedure at length, motivating the spectral expression reported in the body of the text.
The integral can be written down in terms of characteristics. This amounts to introducing a vector of auxiliary functions \(U_1(u, s), ..., U_n(u, s) := U(u, s) \) that parametrize the solution and taking a total derivative \([11, 12]\). The characteristics are governed by the following series of \(n \) coupled differential equations:

\[
\frac{dU_i(u, s)}{ds} = \sum_{j=1}^{n} (U_j - U_i)c_{ij} - U_i c_{i0} \quad \text{s.t. } U_i(u, s = 0) = u_i, \tag{S31}
\]

with the \(\phi \) term taking the following form \([13]\):

\[
\phi(u, t) = \int_0^t \sum_{\ell=1}^{n} \sum_{q=1}^{(\ell)} k_{\ell,q}(M_{\ell,q}(U(u, s)) - 1)ds \tag{S32}
\]

General, closed-form solutions do not exist, as the integral in Equation S32 is typically intractable. Several special cases have been solved. For example, if we set \(k_{\ell,q} = 0 \) for all \(\ell > 1 \), and \(F_{1,i}(x) = x \), we recover the case of constitutive expression discussed by Jahnke and Huisinga \([14]\). The ensemble of Ornstein-Uhlenbeck models induced by background driving Lévy processes (BDLP) emerges from setting \(n = 1 \) and modulating \(M_{1,1} \), the jump size distribution; the usual negative binomial bursty model corresponds to exponential Lévy jump sizes, but generalizations have been studied in the financial context by Barndorff-Nielsen and others \([15–17]\). Unfortunately, systems with more than one species and bursty transcription are intractable; even the case of \(n = 2 \) and geometric bursts requires quadrature \([13]\), although some approximation methods are available \([18]\). Instead of unduly restricting analysis to systems that are fully tractable, we seek to reduce the PDE to the single integral in Equation S32, then use numerical quadrature.

We start by computing the characteristics \(U \). As we have assumed the splicing graph is a DAG, there must be at least one vertex with out-degree zero \([19]\). Therefore, at least one transcript (arbitrarily indexed by \(n \)) undergoes degradation only, with no splicing products. This transcript has the following characteristic:

\[
\frac{dU_n}{ds} = -U_n c_{n0} \implies U_n = u_n e^{-c_{n0}s}. \tag{S33}
\]

We can iterate backwards and write down an equation for each \(U_i(u, s) \). This amounts to iterating over S31 for different \(i \), checking whether all \(j \) corresponding to nonzero \(c_{ij} \) have already been visited, and solving the ODE if this is the case. Since DAGs have a partial order, it is always possible to apply this algorithm and proceed from “downstream” to “upstream” species in a well-defined way.

The following equality emerges from solving a simple linear ODE with arbitrary parameters \(a_i, b_i, \)
and r:

\[
\frac{dy}{dx} = \sum_i a_i e^{-b_i x} - ry \implies y = \sum_i \frac{a_i}{r - b_i} e^{-b_i x} + Ke^{-rx}
\]

\[
\frac{dy}{dx} = \frac{d}{dx} \sum_i \frac{a_i}{r - b_i} e^{-b_i x} + \frac{d}{dx} Ke^{-rx}
\]

\[
= -\sum_i \frac{a_i b_i}{r - b_i} e^{-b_i x} - K re^{-rx}
\]

\[
\sum_i a_i e^{-b_i x} - ry = \sum_i a_i e^{-b_i x} - \sum_i \frac{a_i r}{r - b_i} e^{-b_i x} - K re^{-rx}
\]

\[
a_i - \frac{a_i r}{r - b_i} = \frac{a_i r - a_i b_i - a_i r}{r - b_i} = \frac{a_i b_i}{r - b_i},
\]

which confirms that the expression for y solves the ODE. Therefore, we can write down Equation S31 in an analogous form:

\[
\frac{dU_i}{ds} = \sum_{j=1}^n U_j c_{ij} - U_i \left(c_{i0} + \sum_{j=1}^n c_{ij} \right). \tag{S35}
\]

Since the terminal characteristics, as derived in Equation S33, are exponential, and iterating backwards maintains the functional form, each characteristic must be expressible as a weighted sum of exponentials \(U_i = \sum_j A_{ij} e^{-r_j s} \), with exponents defined as \(r_i = \sum_{j=1}^n c_{ij} + c_{i0} \), the total efflux rate. Therefore,

\[
U_i = \sum_{j=1}^n \frac{a_j}{r_i - r_j} e^{-r_j t} + Ke^{-r_i t} \tag{S36}
\]

The initial condition is \(U_i(u,0) = u_i \) implies \(K = u_i - \sum_j \frac{a_j}{r_i - r_j} \). Care must be taken when the downstream paths converge. Duplicate terms in product characteristics \(U_j \) need to be aggregated:

\[
\sum_j U_j c_{ij} = \sum_j c_{ij} \sum_k A_{jk} e^{-r_k s} = \sum_k \left(\sum_j c_{ij} A_{jk} \right) e^{-r_k s} \tag{S37}
\]

Although the derivation is somewhat technical, it lends itself to automation. In a \(n \)-species system with as many distinct efflux rates, each characteristic can be defined with respect to \(n \) basis functions \(e^{-r_is} \). Therefore, we iterate over the splicing graph from “downstream” to “upstream”, and re-weight the coefficients of the bases for each characteristic.

S2.1 Example: path graph splicing

In this and the two following subsections, we solve the ODEs in Equation S31 by hand for several small systems.

Consider the system consisting of a bursting gene coupled to a \(n \)-step birth-death process, characterized by the path graph in Figure S1, where \(B \sim Geom(b) \), and all reactions occur after exponentially-distributed waiting times. The bursts occur with rate \(k_1 \), the conversion of adjacent
transcripts T_i to T_{i+1} occurs with rate β_i, and the degradation of T_n occurs with rate β_n. We assume the rates of conversion and degradation are all distinct. The amount of species T_i can be described by the non-negative discrete random variable m_i. We assume no molecules are present at $t = 0$.

Analysis yields the following PDE governing the generating function:

$$\frac{\partial \phi}{\partial t} = k_1 (M(u_1) - 1) + \sum_{i=1}^{n-1} \beta_i (u_{i+1} - u_i) \frac{\partial \phi}{\partial u_i} - \beta_n u_n \frac{\partial \phi}{\partial u_n}, \quad (S38)$$

where $M(u) := F(1 + u)$. This equation can be solved using the method of characteristics, with formal solution $\phi = k_1 \int_0^t [M(U_1(s)) - 1] ds$. The characteristics U_i, $i < n$ satisfy $\frac{du_i}{ds} = \beta_i (U_{i+1} - U_i)$, with $U_n(u, s) = u_n e^{-\beta_n s}$.

The functional form of $\frac{du_i}{ds}$, combined with Equation S36, implies that $U_1(s)$ is the weighted sum of exponentials $\sum_{i=1}^n A_{1i} e^{-\beta_i s}$. The weights A_{1i} can be computed through a simple iterative procedure, which proceeds from the terminal species and successively incorporates dependence on upstream rates:

$$A_{1i} \leftarrow 0 \quad \forall \ i < n$$
$$A_{1n} \leftarrow u_n$$
$$i \leftarrow n - 1$$

while $i > 0$ do

for $j > i$ do

$$A_{1j} \leftarrow A_{1j} \times \frac{\beta_i}{\beta_i - \beta_j}$$

end for

$$A_{1i} \leftarrow u_i - \sum_{j > i} A_{1j}$$
$$i \leftarrow i - 1$$

end while

This algorithm iteratively applies the solution from Equation S34 and its particular form in Equation S36 to explicitly compute the basis coefficients.

S2.2 Example: alternative splicing

Suppose the downstream dynamics are given by a directed rooted tree. The solution procedure is analogous to that used for the path graph. First, starting at the leaves, the path subgraph solutions are produced by the procedure above, yielding a sum of exponentials. Then, at a node of out-degree
> 1 (i.e., molecular species with several potential products), the associated ODE has a functional form identical to that of a path graph. Therefore, the solutions are analogous.

As an illustration, consider the simplest tree graph, shown in Figure S2a, where the splicing reactions occur at rates α_1 and α_2 and degradation reactions occur at rates β_1 and β_2. Physically, this graph can be interpreted as a single source mRNA being directly and stochastically converted to one of two terminal isoforms by removal of intron 1 or intron 2. Clearly, $U_i = u_i e^{-\beta_is}$ for $i \in \{1, 2\}$. The ODE governing the source species is:

$$\frac{dU_0}{ds} = \alpha_1(U_1 - U_0) + \alpha_2(U_2 - U_0) = \alpha_1 U_1 + \alpha_2 U_2 - (\alpha_1 + \alpha_2) U_0$$

$$\Rightarrow U_0 = \frac{\alpha_1}{\alpha_1 + \alpha_2 - \beta_1} u_1 e^{-\beta_1 s} + \frac{\alpha_2}{\alpha_1 + \alpha_2 - \beta_2} u_2 e^{-\beta_2 s} + Ke^{-(\beta_1+\beta_2)s} \quad (S39)$$

s.t. $K = u_0 - \frac{\alpha_1}{\alpha_1 + \alpha_2 - \beta_1} u_1 - \frac{\alpha_2}{\alpha_1 + \alpha_2 - \beta_2}$

Finally, the expression for U_0 can be directly plugged into the burst generating function and integrated.

S2.3 Example: two-intron splicing with non-deterministic order

Consider the same tree graph as in the example above, and suppose T_1 and T_2 are converted to product T_{12} at rates β_1 and β_2, as shown in Figure S2b. Afterward, T_{12} is degraded at rate γ. Physically, this graph can be interpreted as a single source mRNA being converted to one of two intermediate isoforms by the removal of one of two introns, then to a single terminal isoform by the removal of the other intron. Clearly, $U_{12} = u_{12} e^{-\gamma s}$. Setting $f_i := \frac{\beta_i}{\beta_i - \gamma}$, we find $U_i = (u_i - f_i u_{12}) e^{-\beta_i s} + f_i u_{12} e^{-\gamma s}$. Finally, the dynamics of the source molecule T_0 are governed by the following ODE:

$$\frac{dU_0}{ds} = \alpha_1(u_1 - f_1 u_{12}) e^{-\beta_1 s} + \alpha_2(u_2 - f_2 u_{12}) e^{-\beta_2 s} + (\alpha_1 f_1 + \alpha_2 f_2) u_{12} e^{-\gamma s} - (\alpha_1 + \alpha_2) U_0$$

Yet again, the functional form affords a straightforward analytical solution:

$$U_0 = Ke^{-cs} + \frac{C_1}{c - \beta_1} e^{-\beta_1 s} + \frac{C_2}{c - \beta_2} e^{-\beta_2 s} + \frac{C_3}{c - \gamma} e^{-\gamma s},$$

where $c := \alpha_1 + \alpha_2$, $C_1 := \alpha_1(u_1 - f_1 u_{12})$, $C_2 := \alpha_2(u_2 - f_2 u_{12})$, and $C_3 := \alpha_1 f_1 + \alpha_2 f_2$. From the initial condition $U_0(s = 0) = u_0$, we yield $K = u_0 - \frac{C_1}{c - \beta_1} - \frac{C_2}{c - \beta_2} - \frac{C_3}{c - \gamma}$. The computation procedure is demonstrated in Figure S3.
S2.4 General spectral solution

The solutions described above, although exact, are cumbersome to compute by hand. Ultimately, we seek to evaluate the characteristics of an arbitrary graph at an arbitrary set of \(u \) for the Fourier transformation and an arbitrary set of \(t \) for the quadrature.

In principle, we can exploit previous results. For example, the case of constitutive expression is known to have a multivariate Poisson distribution with intensities given by the reaction rate equations \([14]\). Therefore, to obtain the functions \(U \), we need to write down the generating function \(G^* \) of the solution to the constitutive case, differentiate the log-PGF \(\phi^* = \int_0^t \sum_{i=1}^n k_{1,i} U_i(u, s) ds \), and obtain the characteristics. The solution to this system has been well-characterized for sixty years, with cornerstone work by Gans \([20]\) and McQuarrie \([21]\), as well as recent extensions by Gadgil \([22]\) and Reis \([23]\), and can be obtained using the eigenvalues of the transition rate matrix with entries \(c_{ij} \). Equivalently, we know that the constitutive solution consists of independent Poisson distributions \([14]\); therefore, it must be possible to write down each \(\frac{\partial \phi^*}{\partial t} \) as a sum of independent species-specific functions \(\sum_{i=1}^n u_i \psi_i(s) \), where \(\psi_i \) is the derivative of the species average obtained by solving the reaction rate equations.

Ultimately, it is easiest to apply spectral methods directly to the characteristic relations. We can write down Equation S40 as a matrix equation:

\[
\frac{dU}{ds} = CU \quad \text{s.t.} \quad U(s = 0) = u,
\] \hspace{1cm} (S40)

where \(C \) is a matrix containing \(C_{ij} = c_{ij} \) for all \(i \neq j \) and \(C_{ii} = -\sum_{j=1}^n c_{ij} - c_{i0} \). We can decompose it as \(C = V\Lambda V^{-1} \), where \(\Lambda \) is a matrix containing the eigenvalues \(\lambda_1, ..., \lambda_n \) on the diagonal. The general solution to this system takes the following form:

\[
U(s) = \sum_{i=1}^n a_i e^{\lambda_i s} v_i,
\] \hspace{1cm} (S41)

1. Initialize product coefficient \(A_{12} = u_{12} \)
2. Compute intermediate weights \(A_i \leftarrow u_i - \beta_i - \gamma u_{12}, i \in \{1,2\} \)
3. Update weights and compute \(U_0 \)
 \(A_{12} \leftarrow A_{12} \sum_{i \in \{1,2\}} \frac{a_i}{\beta_i} \)
 \(A_0 \leftarrow u_0 - \sum_{i \in \{1,2\}} \frac{a_i}{\alpha_i} A_i - A_{12} \)

Figure S3: Illustration of the solution algorithm. The differential equation structure requires the backward propagation of downstream species’ solutions, weighted by ratios of rates.
where v_i are the eigenvectors contained in V. To compute the coefficients a_i, we need to plug in the initial condition:

$$u = U(0) = [v_1, ..., v_1][a_1, ..., a_n]^T = V[a_1, ..., a_n]^T$$

$$\implies [a_1, ..., a_n]^T = V^{-1}u. \quad (S42)$$

Plugging these coefficients into the solution:

$$U = [e^{\lambda_1 s}v_1, ..., e^{\lambda_n s}v_n]V^{-1}u \quad (S43)$$

Inspecting each individual characteristic U_i:

$$U_i = \sum_{j=1}^{n} \sum_{k=1}^{n} V_{ij}e^{\lambda_j s}V^{-1}u_k = \sum_{j=1}^{n} \sum_{k=1}^{n} V_{ij}V_{jk}^{-1}u_k e^{\lambda_j s} \quad (S44)$$

To actually compute the integral in Equation S32, we need to know U as a function of time. This is easiest to represent by writing the characteristics as weighted sums of the time-dependent spectral terms:

$$U = A[e^{\lambda_1 s}, ..., e^{\lambda_n s}]$$

$$A_{ij} = \sum_{k=1}^{n} V_{ij}V_{jk}^{-1}u_k \quad (S45)$$

$$w := V^{-1}u \implies A = V \cdot Diag(w).$$

Therefore, for each reaction system we investigate, we need only compute V, V^{-1}, and Λ once, by a single spectral decomposition and a single inversion. Thereafter, we can compute w for each value of u of interest, by two matrix multiplications per u.

Finally, if we are interested in a single characteristic, we simply extract the corresponding coefficients. For example, if only a single transcript with index i is being produced in bursts, the following equation gives its characteristic:

$$U_i(u, s) = \sum_{j=1}^{n} e^{\lambda_j s}(V \cdot Diag(V^{-1}u))_{ij}. \quad (S46)$$

By construction, the diagonal elements of C give the eigenvalues λ_i. Therefore, $r_i = -\lambda_i$. If multiple eigenvalues coincide, it is necessary to use a version of the spectral solution with mixed exponential-polynomial terms [13,24].

S3 Bursty systems have well-behaved moments

In the current section, we use the standard geometric burst distribution and demonstrate qualitative properties of the solutions: all solutions exist, have all moments, and are unimodal. For convenience, we adopt the assumptions and notation of the section "Moments of the splicing graph solutions are tractable by matrix operations" in the main text.
S3.1 The exponential sum is always positive

First, we demonstrate that the downstream processes yield a strictly positive functional form of time dependence. Noting that the marginal of species \(i \) (with \(u_j = 0 \) for all \(j \neq i \)) yields the functional form \(U_i(u_i, s) = u_i \sum_{k=1}^{n} a_{i,k} e^{-r_k s} := u_i \psi_i(s) \), this condition translates to \(\psi_i(s) > 0 \) for all \(s > 0 \).

Consider \(F(x) = x \), corresponding to constitutive production of the source species (i.e. a Poisson birth process), with no molecules present at \(t = 0 \). Focusing on the marginal of species \(i \), this assumption yields \(\phi(u_i, t) = k_1 \int_0^t U_i(u_i, s) ds = k_1 \int_0^t u_n \psi_n(s) ds \). Evaluating \(e^\phi \) at \(x_i = 0 \), i.e. \(u_i = -1 \), marginalizes over all \(j \neq i \) and yields the probability of observing zero counts of species \(i \): \(G(u_i, t) = P(m_i = 0, t) = P_0(t) = \exp(-k_1 \int_0^t \psi_i(s) ds) \). The corresponding time derivative is \(\frac{dP_0}{dt} = -k_1 \psi_n(t) \exp(-k_1 \int_0^t \psi_i(s) ds) \). Simultaneously, we know that \(P_0(t) = e^{-\lambda_i(t)} \), where \(\lambda_i(t) \) is the solution of the reaction rate equation for species \(i \) \[14\]. Clearly, \(\frac{dP_0}{dt} = -P_0(t) \frac{d\lambda_i(t)}{dt} \). The reaction rate \(\frac{d\lambda_i(t)}{dt} > 0 \) at \(t = 0 \) under the given initial conditions. Furthermore, \(\frac{d\lambda_i(t)}{dt} \) is strictly positive. This follows from the reaction rate equations. By the continuous formulation, \(\lambda_i \) is a weighted moving average of some set of processes \(\{\lambda_k\} \). \(\lambda_i \) is a strictly increasing function governed by \(\frac{k_1}{\Gamma_i}(1 - e^{-r_i s}) \). The property of being strictly increasing is retained under moving average and rescaling. Therefore, each successive moving average must be strictly increasing.

Finally, \(P_0 \in (0, 1) > 0 \), because the Poisson distribution has support on all of \(\mathbb{N}_0 \). Therefore, \(\frac{dP_0}{dt} \) is strictly negative. As the exponential term and \(k_1 \) are positive, this implies \(\psi_i(s) \) is strictly positive for all \(s > 0 \).

S3.2 All generating functions and marginals exist

Next, we show that \(G(u_i, t) \), the generating function of the \(i \)th marginal, is finite for the geometric burst system. This follows from the construction of the original PGF: the marginal PGF is guaranteed to be finite if \(1 - bu_i \psi_i \) is never zero. But for the relevant domain \(\Re(u_n) \leq 0 \), on the shifted complex unit circle, \(\Re(1 - bu_i \psi_i) \geq 1 \), except at the degenerate initial case. The existence of the marginal moments of \(X_i \) is implied by the existence of the generating function. The existence of all cross moments follows from the Cauchy-Schwartz inequality. Per standard properties, this existence property holds for both \(X_i \) and \(\Lambda_i \).

The tails of the stationary discrete marginals decay no slower than the geometric distribution. This follows immediately from the lower bound on \(\Re(1 - bu_i \psi_i) \), which in turn gives an upper bound on \(x_i \) \[13\]. Equivalently, this follows from the existence of all moments \[25\]. An analytical radius of convergence has been given previously for \(n = 2 \) \[13\], but numerical optimization is necessary to establish rates of tail decay for \(n > 2 \).

S3.3 All marginals are infinitely divisible

An infinitely divisible distribution of a random variable \(X \) can be represented as the sum of \(q \) independent random variables \(X_{q1}, \ldots, X_{qq} \) for every integer \(q \) \[26\]. This follows from the functional form of the PGF in Equation 14 (setting \(k_j = 0 \) when \(j \neq 1 \) for consistency): the system can be decomposed into \(q \) independent systems with burst frequencies \(k_1/q \).
S3.4 Only the first marginal is self-decomposable

The law of a self-decomposable (sd) random variable X is equal in distribution to the random variable $cX + X_c$, where X_c is independent of X [26]. By definition, a random variable is sd if such a representation can be found for any $c \in (0,1)$. Distributions in this class are frequently invoked in the stochastic process literature, as they are amenable to analysis through the Lévy-Khinchine representation and guarantee useful properties, chief among them unimodality [17, 27]. Unfortunately, we cannot rely on self-decomposability to prove unimodality in our case, because all of the downstream processes are non-sd.

A random variable has a self-decomposable law if and only if it offers a representation of the form $Y = \int_0^\infty e^{-t}dX_t$, with Lévy X_t [26]. By considering Equation 8, we find that downstream processes can be represented as moving averages of upstream processes. However, only $L_{1,t}$, the jump driver of the transcriptional process, is Lévy. All downstream intensity processes have nontrivial, almost-everywhere C^∞ trajectories, which implies they cannot be represented by a Lévy triplet: the only permitted continuous Lévy processes are linear combinations of the (non-differentiable) Brownian motion W_t and the trivial process t. Therefore, Λ_i is sd for $i = 1$ and non-sd for all $i > 1$.

S3.5 All stationary marginals are unimodal

Even though we cannot rely on the sd property, we can still invoke the properties of the transcriptional process to prove that all marginals are unimodal.

First, we consider a single trajectory of the intensity process Λ_1 governed by Equation 8. The trajectory of Λ_1 is a realization of the gamma Ornstein-Uhlenbeck process, a deterministically transformed version of a realization of $L_{1,t}$ [28]. The trajectories of all other species are deterministically transformed versions of Λ_1. For example, if the transcript processing reactions $T_1 \xrightarrow{r_1} T_2 \xrightarrow{r_2} ...$ take place, applying variation of parameters to the Poisson representation yields:

$$\Lambda_1(t) = \sum_{q=0}^{N(t)} e^{-r_1(t-\tau_q)}J_q$$

$$\Lambda_2(t) = \int_0^t r_2\Lambda_1(s)e^{-r_2(t-s)}ds.$$ (S47)

Therefore, the trajectory of every T_i is an iterated and rescaled moving average of the underlying process $L_{1,t}$, with exponential jumps J_q at times τ_q generated by the Poisson process $N(t)$.

Multimodality in the distribution of a trajectory can result from the definition of the moving average or from multimodality of the underlying process’s trajectory (e.g., Λ_1 in Equation S47). The one-parameter exponential moving average cannot induce multimodality. The stationary law of many realizations of Λ_1 is gamma; by ergodicity, a single realization of its trajectory over a long enough period of time converges to this law. Therefore, the stationary distributions of all downstream species are unimodal in the continuous worldview. By standard properties of Poisson mixtures [29], the CME marginals are likewise unimodal.

S4 Simulation

To compare the analytical solutions with simulation, we generated a random directed acyclic graph, shown in Figure S4a. The numbers of species (7) and isomerization reactions (11) were chosen...
arbitrarily. We enforced the existence of a single unique source node (a) and the weakly connected property to ensure only a single source mRNA would be present and all isoforms would be reachable from it, but did not impose any other conditions. The number of degraded species (3) was chosen arbitrarily; we assigned degradation reactions to the two sink species (c, e) and randomly chose a degraded intermediate (b) from a uniform distribution over the molecular species. All reaction rates were drawn from a log-uniform distribution on $[10^{-0.5}, 10^{0.5}]$; we chose to sample them from a single order of magnitude to avoid the trivial degenerate cases that occur in cases of very slow or very fast export [13]. This process produced the parameter values $k_a = 0.44$, $\beta = [0.48, 2.12, 1.31, 2.21, 1.16, 2.41, 0.4, 1.19, 0.37, 1.19, 0.53]$, and $\gamma = [0.94, 2.38, 0.72]$, with the indices corresponding to those in Figure S4a. Finally, we chose the geometric burst model with $b = 10$.

Figure S4: Validation of the solution algorithm using stochastic simulations. a. Graph representation of the randomly generated transcription, splicing, and degradation model. A single source isoform T_a is converted to a variety of downstream isoforms $T_b, ..., T_g$, which isomerize according to a randomly generated directed acyclic graph. b. The simulated marginal distributions and lower moments match the analytical solutions (gray bars: histograms obtained from simulations; red lines: analytical solutions; black points: covariance matrix entries from simulated data).

We applied the algorithm to compute the exponents and coefficients, and computed the stationary distributions of all species. Further, we simulated 1000 cells up to $T = 5r_{\text{min}}^{-1}$, where r_{min} was the minimum rate of k_a, all β, and all γ. The simulated distributions matched the quantitative results...
for the marginals, as shown in Figure S4b. Furthermore, the 49 entries of the covariance matrix were effectively predicted by the procedure for moment calculation.

S4.1 Benchmarking

To benchmark the performance of the algorithm and identify bottlenecks, we generated 100 splicing networks with the same number of nodes, edges, and degradation channels as above, and with rates and graphs drawn from the same distribution. Log-burst sizes $\log_{10} b$ were drawn from a normal distribution with mean and variance of 1, clipped at $[-1, 2]$. For each graph, we simulated 1000 cells and timed each step of the procedure. The results are shown in Figure S5. As evident from Figure S5a, all marginal PMF computation runtimes (including computation of coefficients, numerical integration, and inverse Fourier transformation) were below 100 ms, and demonstrated time complexity of $O(N^{0.414})$ in the relevant domain (up to approximately 1000 counts).

We can use this benchmark to demonstrate the impracticality of matrix methods for computing the marginals of highly multimodal systems. If we are interested in the marginal i, this semi-analytical solution requires an array of size $N = \max m_i$, with the maximum taken over all cells. However, matrix methods involve a state space size of $N = \prod_i \max m_i$: for example, if we wish to find the marginal of species e in Figure S4a, we need to compute the entire joint distribution of species a, b, d, f, g, and e and sum over the dimensions corresponding to a, b, d, f, and g. To understand how feasible this is, we can examine the “latent” dimension of the systems by computing $N = \prod_i (\max m_i + 6)$, the state space size used throughout the benchmarking to limit ringing artifacts. The distribution of overall system sizes is shown in Figure S5b, and ranges from 10^6 to 10^{16}. The upper range of this size requires 281 petabytes to define each state in 8-byte floating point format, making it impossible to even store an array of size N, much less process it in the conventional matrix time of $O(N^3)$.

Inspecting the predictive performance of all 100 systems is challenging. However, we can at least visualize the covariances, in the vein of the last panel of Figure S4b. The results are shown, without axes, in Figure S5c: overall, the theory agrees with the simulations, although some negative sample covariances are observed in simulations when the entries are close to zero.

Finally, in Table S1, we report the computation times necessary to generate the marginals for the 100 systems benchmarked in Figure S5. The simulation is by far the most computationally intensive part of the process, followed by numerical integration. The spectral decomposition requires approximately 0.1 ms per system (rather than per marginal). The computation of coefficients (matrix multiplication) takes on the order of 1 ms per marginal, whereas the Fourier inversion takes on the order of 0.1 ms per marginal. Therefore, the computational cost of the forward problem is dominated by the numerical integration, which takes on the order of tens of ms for each PMF. The runtime can be halved by exploiting the Hermitian property of the Fourier transform of a probability mass function [30]. Some further speed improvements can be obtained by approximation; we have reported gains by using Gaussian rather than adaptive quadrature [31] and by using special functions for certain narrow sets of splicing networks [18], but the performance reported here appears to be sufficient for most practical use.
S5 Inference

The current framework provides quadrature-based solutions to the forward problem of PMF prediction for a broad set of transcriptional processes. More broadly, we would like to treat the inverse problem of identifying parameters from sequencing data. A wide range of statistical approaches are available; however, in practice, even the simplest, ergodic version of the inverse problem depends on the following prerequisites:

1. Single-cell, single-molecule data for a set of cells in local equilibrium. This information permits the application of the ergodic model.

2. Full annotation of intermediate transcripts, including causal relationships, such as the splicing graph and the identities of degraded molecules. This information permits mapping between experimental data and theoretical quantities.

3. Transcriptome-wide quantification of all transcripts, ideally unbiased and fully saturated – or, at the very least, imperfect quantification combined with a statistical model of sequencing. This information permits the inclusion of technical noise.

No perfect experimental solution exists. The collection of single-cell, single-molecule data is enabled by barcoding [32]. Characterization of splicing graphs has been treated in experimental [33,34] and computational [35] contexts. However, these necessarily rely on comprehensive single-molecule annotations – which distinct intron/exon combinations occur? – which have only become feasible
Table S1: Timing of computation steps for the 700-marginal computation needed to generate Figure S5.

<table>
<thead>
<tr>
<th>Process</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph construction</td>
<td>607 ms</td>
</tr>
<tr>
<td>Simulation</td>
<td>14.1 min</td>
</tr>
<tr>
<td>Spectral decomposition</td>
<td>89 ms</td>
</tr>
<tr>
<td>Covariance computation</td>
<td>475 ms</td>
</tr>
<tr>
<td>Coefficient computation</td>
<td>1038 ms</td>
</tr>
<tr>
<td>Numerical integration</td>
<td>7272 ms</td>
</tr>
<tr>
<td>Inverse fast Fourier transform</td>
<td>113 ms</td>
</tr>
<tr>
<td>Total PMF computation</td>
<td>8482 ms</td>
</tr>
</tbody>
</table>

on a genome-wide scale since the introduction of molecular barcoding. Fully saturated sequencing is infeasible due to cost, and potentially due to thermodynamic constraints. Finally, standard sequencing capture protocols are, by design, biased toward polyadenylated regions [32]. This effect has been exploited to capture natural intronic sequences [36] and synthetic antibody-conjugated oligonucleotides [37,38], but the quantitative effects of these biases are as of yet unclear; we hypothesize that they can lead to systematic false negatives and false positives in the sequencing process [31]. Naturally, these data quality challenges are compounded with standard statistical challenges, such as the often considerable computational expense of determining confidence regions.

Formally, we can use a sequencing protocol, count the number of molecular barcodes assigned to a particular transcript, and produce a data matrix, which we then treat as a set of realizations of a random variable. However, we do not know the exact form of this random variable. Even if we assume that we can describe the physics of the system by a Markov model, the system may contain contributions from the following phenomena:

1. Intrinsic stochasticity due to factors incorporated in the model.
2. Intrinsic stochasticity due to factors outside the model scope.
3. Various regulatory effects that counteract stochasticity.
4. Extrinsic stochasticity due to random variability in biological parameters.
5. Extrinsic effects due to multiple cell types or trajectories.
6. Technical effects due to imperfect sequencing.
7. Ambiguities or bioinformatic uncertainties in identifying transcripts.

We can counteract some of these sources of uncertainty by choosing our data appropriately. The challenges of point 7 can be mitigated by choosing technologies that perform long-read sequencing. This essentially restricts us to two candidates with long-read sequencing, cell barcodes, and molecular barcodes: FLT-seq (full-length transcript sequencing by sampling) [39] and Smart-seq3 [40,41]. We chose the former due to the ready availability of processed, isoform-resolved data. In brief, FLT-seq synthesizes a cDNA library using 10X gel beads and primers, amplifies it, then applies
nanopore sequencing to generate long reads with associated cell and molecule barcodes. The accompanying bioinformatic pipeline FLAMES (full-length analysis of mutations and splicing) produces novel annotations characterizing the exons present in each molecule.

The challenges of point 5 can be mitigated by analyzing experimental conditions where the cells can be plausibly assumed stationary and homogeneous, up to stochasticity. We used a cultured mouse stem cell dataset and filtered for a subset of activated cells. Summary visualizations reported by the authors suggest that this subset is fairly internally homogeneous [39].

We analyzed the transcripts of the top 500 genes (based on total expression) observed in the data to constrain causal relationships between them. We used gffutils 0.10.1 to construct a database of identified intermediate and terminal isoforms, based on the accompanying annotations generated by the FLAMES pipeline. We used the intervaltree 2.1.0 Python package to split the transcript-specific exons into elementary intervals, defined as the set of largest contiguous stretches that are either present or absent in each isoform. The distributions of isoforms and introns (elementary intervals) per gene are shown in Figure S6. With these annotations in hand, we used graph tools from the NetworkX 2.5.1 Python package to generate directed acyclic graphs induced by accessibility relations between transcripts: if transcript T_j is accessible from transcript T_i by removing some portions of sequence, a path must lead from T_i to T_j. By filtering for transcripts with in-degree zero, we identified “root” transcripts that cannot be obtained by removing regions of any other transcript.

![Figure S6: Isoform diversity of the FLT-seq dataset. a. The top 500 highest-expressed genes demonstrate a high diversity of transcript forms, with most genes having up to 20, but a significant tail having 20-90. b. By definition, the isoform diversity stems from presence and absence of variable regions. An average gene has approximately 20 such regions.](image)

The hypothetical source transcript covering the entire locus was not observed for any of the genes. As their exonic patterns are mutually exclusive, we model each gene’s root transcripts asproducts of a single rapidly processed source species. The theoretical results given in Equation 29 immediately imply that the root transcripts must be distributed according to a negative binomial law. Therefore, by fitting the transcript distributions, we can estimate effective burst sizes bw_i and normalized efflux rates r_i. These marginal parameters can be plugged into the formula for Pearson correlation in Equation 31, and compared to the empirical correlation coefficients.

The procedure assumes that all of the root transcripts are rapidly, and stochastically, produced from a single parent transcript, and attempts to use this model to predict their sample correlation.
structure without foreknowledge of anything but the marginal distributions. As outlined in the “Results” section, the theoretical correlations are to be understood as upper limits. The noise sources outlined in points 2, 4, and 6 – and potential residual contributions from 5 and 7 – inevitably reduce transcript–transcript correlations. By treating correlations as upper limits in the absence of all noise outside the intrinsic stochasticity in point 1, we side-step the error sources outside the model: their specific form can be omitted; we are only concerned with the fact that they decrease mutual information.

To facilitate the fitting process, we performed several steps of filtering. After identifying the root transcripts, we filtered out “sparse” transcripts with fewer than five molecules in the entire dataset, as their fits are unlikely to be informative. To account for point 3 in an ad hoc way, we removed all transcripts with variance lower than the mean: they cannot be effectively fit to a negative binomial model, and underdispersion is a known hallmark of feedback regulation [42]. We fit the remaining root transcript marginal distributions using the statsmodels 0.10.2 Python package, and filtered out all genes that were not successfully fit.

542 transcripts were rejected due to sparsity. 302 transcripts were rejected due to underdispersion. 100 transcripts were rejected due to failure to converge to a satisfactory fit; all of these had average expression below 1 mRNA per cell, with the distribution of average transcript counts for this subset shown in Figure S7. The quality of fits is demonstrated for a sample gene in Figure 1c. The interactive Python notebook used to perform the analysis can be used to investigate the exon structure, elementary intervals, putative splicing DAGs, and fits for any gene in the dataset.

This analysis produced 4885 nontrivial correlations for pairs among 1978 transcripts. The sample correlations are visualized against the theoretical correlations in Figure 1d. The points are aggregated in the lower right corner of the plot, as we expect: if the theoretical correlations are computed in the absence of noise, any additional stochasticity will degrade the correlations actually observed in the data. Some points lie above the line of identity, possibly reflecting tight regulation. A cluster of points (evident as the sharp peak on the histogram in Figure S8) has small negative correlations, possibly indicating mutually exclusive splicing of certain isoforms. However, it is not yet clear that
either of these deviations results from meaningful model differences rather than the relatively small sample size of the FLT-seq datasets, filtered for a single cell cluster.

Figure S8: Histograms of sample correlations between root transcript counts in the FLT-seq dataset, computed for isoforms that passed filtering and were fit according to the procedure described in Section S5. a. The distribution of intra-gene correlations demonstrate a peak near -0.05. This visualization can be obtained by marginalizing Figure 1d. b. The distribution of inter-gene correlations demonstrate a peak near 0.7 and a shoulder near 0.2. This visualization can be obtained by marginalizing Figure 1g.

We can use the same procedure to try and predict inter-gene correlations: in the simplest model of co-expression, all genes fire simultaneously, with correlated burst sizes given by the model in Equation 28. Thus, their root transcripts are generated at the same time. To analyze the data, we need to select a single isoform for each gene. We cannot simply aggregate all isoforms, or even all root transcripts, as the distribution of sum of these random variables is not necessarily negative binomial. Therefore, we choose a single “dominant” isoform for every gene, based on highest expression. In the vast majority of cases, this isoform predominates and accounts for most of the expression among the root isoforms (Figure S9).

After processing the same set of 500 genes, 490 root transcripts remained after filtering and fitting. The analysis produced 119805 nontrivial correlations for pairs of transcripts. The sample correlations are visualized against the theoretical correlations in Figure 1g. As before, the points are aggregated in the lower right corner of the plot, suggesting that the upper limit on correlation obtained from the intrinsic-only noise model holds. Some points lie above the line of identity, but there does not appear to be a distinctive population of genes with negative correlations (Figure S8b).

S5.1 Quantifying uncertainty in correlation coefficients

To understand whether the model constraints hold, we have compared predicted “theoretical” correlations to sample correlations. However, with the relatively small sample sizes available by FLT-seq, both the predictions and the sample correlations themselves have non-negligible uncertainty. To understand whether violations of the constraints are systematic or artifactual, we need at least a qualitative understanding of the uncertainty involved. The prediction procedure is intended to be ad hoc: it sacrifices statistical power by predicting rather than fitting joint distributions. There-
Therefore, we do not treat uncertainty in ρ_{theo}: its interpretation and computation are rather obscure. However, we can analyze the distributions of the sample correlations and attempt to quantify their stability.

The distribution of correlations can be computed analytically, through the bootstrap, or through approximations. Unfortunately, it appears that analytical solutions are only available for a very narrow set of distributions, such as the multivariate normal [43]. For a rough estimate, we use an approximation and adapt the Fisher z-transformation $\frac{1}{2} \ln \frac{1 + \rho}{1 - \rho}$. If the number of observed cells is N, the 95% confidence interval for the z-transformed correlation has the half-width $1.96 / \sqrt{N - 3}$.

If the true correlation $\rho = 0$, the confidence interval (CI) for the sample correlation takes the following form [44]:

$$
\left[\tanh(-1.96 / \sqrt{N - 3}), \tanh(1.96 / \sqrt{N - 3}) \right]
$$

(S48)

For the sample size of 137 cells we use, the 95% CI is 0 ± 0.168. Although this estimate is very approximate, it appropriately conveys the high uncertainty in the observed correlations. We can compute 95% CIs for the sample correlation directly, using the bootstrap. We demonstrate these confidence intervals for the intra-gene correlations in Figure S10a. Compared with the 750 correlations in the “negative” regime obtained by point estimation, only 144 entries have a CI that lies entirely below the zero-correlation line (2.9% of all correlations). Further, compared with the 279 “inconsistent” entries, only 29 have a CI that lies entirely above the line predicted by Equation 31 (0.59% of all correlations). Therefore, the qualitative picture of the data as broadly consistent with the proposed model constraints appears to be supported by the analysis of uncertainty. We visualize the dependence of the uncertainty on the sample correlation in Figure S10. The CIs are in line with the approximation obtained from Equation S48: the correlations can be estimated up to an error of 0.1-0.2.

We perform an analogous analysis of inter-gene correlations in Figure S11a. Compared with the 1961 correlations in the “negative” regime, only 262 entries have a CI that lies entirely below the...
Figure S10: Bootstrap 95% confidence intervals for the intra-gene sample correlations.

- **a.** A variant of Figure 1d with uncertainty in the sample correlations (points: sample correlations; error bars: confidence intervals for the sample correlations; horizontal line: zero correlation; diagonal line: identity).
- **b.** Confidence intervals visualized as a function of the sample correlation (error bars: confidence intervals corresponding to a particular correlation matrix entry; red line: identity).

The zero-correlation line (0.0022% of all correlations). Further, compared with the 302 “inconsistent” entries, only 5 have a CI that lies entirely above the line predicted by Equation 31 (0.0042% of all correlations). Therefore, data appear to be broadly consistent with proposed model constraints, potentially to a greater extent than in the foregoing investigation of intra-gene correlations. We visualize the dependence of the uncertainty on the sample correlation in Figure S11; as before, the CIs are in line with the Fisher approximation.

Figure S11: Bootstrap 95% confidence intervals for the inter-gene sample correlations.

- **a.** A variant of Figure 1g with uncertainty in the sample correlations (points: sample correlations; error bars: confidence intervals for the sample correlations; horizontal line: zero correlation; diagonal line: identity).
- **b.** Confidence intervals visualized as a function of the sample correlation (error bars: confidence intervals corresponding to a particular correlation matrix entry; red line: identity).
S6 Delay chemical master equations

In the current supplement, we detour from the Markovian framework to consider delay systems, which have deterministic, rather than stochastic, state transitions. Certain degenerate cases – for example, the problem of incremental, linear movement with identical transition rates – directly bear upon the class of delay chemical master equations (DCMEs).

S6.1 Example: constitutive production, one species

To begin, we can model the simple linear chain of reactions with constitutive production:

\[\emptyset \xrightarrow{k_1} T_1 \xrightarrow{\beta/n} \ldots \xrightarrow{\beta/n} T_n \xrightarrow{\beta/n} \emptyset, \]

(S49)

where the total delay between production of \(T_1 \) and degradation of \(T_n \) is Erlang-distributed, with shape \(n \) and rate \(\beta \). As \(n \to \infty \), the Erlang distribution reduces to a point mass at \(\beta^{-1} := \tau \). This implies that we can treat an aggregated species \(\mathcal{T} \), produced at rate \(k \) and degraded after a deterministic delay \(\tau \):

\[\emptyset \xrightarrow{k_1} \mathcal{T} \xrightarrow{\tau} \emptyset \]

(S50)

This is precisely the “linear chain trick” introduced by MacDonald in 1978 [45]. The study of delayed dynamical systems, such as delay differential equations, dates back to the eighteenth century [46], with cornerstone biological models by Lotka and Volterra [45,46]. Recent work has focused on developing exact solutions [47–49] and simulation methods [50,51]. In particular, studies by Lafuerza and Toral [52,53] report full analytical solutions for constitutive systems with isomerization, while a contemporary study by Jia and Kulkarni [54] reports lower moments for a system with bursty mRNA production and catalysis. The distribution of \(\mathcal{T} \) is Poisson(\(k_1 \tau \)), as this is the number of transcriptional events in a window of length \(\tau \).

S6.2 Example: constitutive production, two species

As a secondary illustration, we consider the constitutive two-stage system described by Lafuerza and Toral [52]. If we assume that no stochastic degradation reactions occur, the reaction equations and generating function relations take the following form:

\[\emptyset \xrightarrow{k_1} T_1 \xrightarrow{\beta} T_2 \xrightarrow{\tau} \emptyset \]

\[\frac{\partial G}{\partial t} = k_1 (F(x_1) - 1)G + \beta (x_2 - x_1) \frac{\partial G}{\partial x_1} + \beta (1 - x_2) \sum_{m_1=0}^{\infty} G^*(x_1, x_2, \tau) m_1 P(m_1, t - \tau), \]

where \(G^* \) is a conditional generating function for an auxiliary non-degrading system, initialized at \(m_1 = 0 \) molecules of the parent transcript \(T_1 \). This auxiliary system has no degradation reactions, and allows us to incorporate the non-Markovian effects of delays. Assuming constitutive production, and using the shifted variables \(u_i \) for convenience, we find:

\[\frac{\partial G}{\partial t} = k_1 u_1 G + \beta (u_2 - u_1) \frac{\partial G}{\partial u_1} - \beta u_2 \sum_{m_1=0}^{\infty} G^*(u_1, u_2, \tau) m_1 P(m_1, t - \tau) \]

(S51)
The final term is not proportional to \(G \), so no convenient exponential ansatz is available. However, the sum affords an alternative representation, which exploits the separability of the initial condition and the dynamics on \([0, \tau]\):

\[
G^*(u_1, u_2, \tau) = [1 + U_1(\tau)]^{m_1-1} e^{\phi^*(\tau)}
\]

\[
\sum_{m_1=0}^{\infty} G^*(u_1, u_2, \tau)m_1 P(m_1, t - \tau) = e^{\phi^*(\tau)} \sum_{m_1=0}^{\infty} [1 + U_1(\tau)]^{m_1-1}m_1 P(m_1, t - \tau), \tag{S52}
\]

where \(\phi^* \) is the factorial-cumulant generating function of the auxiliary system, started at zero molecules. This sum may be treated as the first derivative of the stationary \(T_1 \) PGF, evaluated at \(1 + U_1 \), where \(U_1 \) is a function computed by solving the non-degrading system with the method of characteristics.

We start by computing the auxiliary \(U_1 \) by using the method of characteristics and enforcing \(U_2(0) = u_2 \) and \(U_1(0) = u_1 \).

\[
\varnothing \xrightarrow{k} T_1 \xrightarrow{\beta} T_2
\]

\[
\frac{\partial U_2}{\partial s} = 0 \implies U_2 = u_2 \tag{S53}
\]

\[
\frac{\partial U_1}{\partial s} = \beta(U_2 - U_1) \implies U_1 = u_2 + (u_1 - u_2)e^{-\beta s}
\]

Now, we compute the generating function of the subsystem:

\[
\phi^*(t) = k_1 \int_0^t U_1(s) ds = k_1 \int_0^\tau \left[u_2 + (u_1 - u_2)e^{-\beta s} \right] ds
\]

\[
= k_1 u_2 \tau + \frac{k_1}{\beta} (u_1 - u_2) \left[1 - e^{-\beta \tau} \right] \tag{S54}
\]

We compute the derivative of the \(T_1 \) Poisson PGF:

\[
H(x_1) = e^{k_1(x_1-1)/\beta}
\]

\[
H(u_1) = e^{k_1 u_1/\beta}
\]

\[
H'(U_1) = \frac{k_1}{\beta} e^{k_1 U_1/\beta} \tag{S55}
\]

This construction is slightly simpler than in the original: we do not use the full time-dependent Poisson distribution, but presuppose that the system starts with \(T_1 \) in equilibrium. Since it approaches this distribution exponentially fast regardless of initial conditions, the error is minimal, and the simplification eliminates the time dependence in the degradation term.

Plugging in and evaluating the non-Markovian term:

\[
e^{\phi^*(\tau)}H'(U_1(\tau)) = \frac{k_1}{\beta} \exp(k_1 u_2 \tau + k_1 u_1/\beta) \tag{S56}
\]

Finally, considering the full generating function expression:

\[
\frac{\partial G}{\partial t} = k_1 u_1 G + \beta(u_2 - u_1) \frac{\partial G}{\partial u_1} - k_1 u_2 e^{u_1/\beta + u_2 k_1 \tau} \tag{S57}
\]
Lafuerza and Toral report a solution [52], though computed through an ansatz rather than directly – this PDE is not quite as simple as that of the Markovian system. We restrict ourselves to the stationary solution, which can be solved with a rather mechanical application of the integrating factor method, or by noticing that the uncorrelated Poisson PMF solves the equation:

\[
G = e^{u_1 k_1 \beta + u_2 k_1 \tau} \\
\frac{\partial G}{\partial u_1} = \frac{k_1}{\beta} G \\
\frac{\partial G}{\partial t} = k_1 u_1 G + \beta (u_2 - u_1) \frac{k_1}{\beta} G - k_1 u_2 G = 0
\]

(S58)

Of course, this result can be derived just as well without writing down anything at all – by using the standard results for constitutive production [14], the linear chain trick, and the fact that sums of Poisson random variables are Poisson.

S6.3 Example: bursty production, one species

We can use such an approach to treat the simplest bursty delay reaction system:

\[
\emptyset \xrightarrow{k_1} B \times T \xrightarrow{\tau} \emptyset
\]

(S59)

Instead of writing down a DCME, we can notice that the system at time \(t \) has no memory beyond the last period of length \(\tau \). Therefore, we can immediately write down the distribution of \(T \): there are \(\text{Poisson}(k_1 \tau) \) burst events in each interval of length \(\tau \), and each burst event gives rise to \(\text{Geom}(b) \) molecules. Therefore, the stationary distribution of molecules remaining in the system is a Poisson-geometric mixture. This approach has recently been used in a more general treatment of DCMEs [55].

S6.4 Example: bursty production, two species

Unfortunately, more general systems with a combination of bursting and downstream processing are not amenable to either the \textit{ad hoc} or the rigorous approach. In particular, we attempt to solve the delayed analog of the two-stage bursty system [13]:

\[
\emptyset \xrightarrow{k_1} B \times T_1 \xrightarrow{\beta} T_2 \xrightarrow{\tau} \emptyset
\]

(S60)

\[
\frac{\partial G}{\partial t} = k_1 \left[\frac{1}{1 - b u_1} - 1 \right] G + \beta (u_2 - u_1) \frac{k_1}{\beta} G - \beta u_2 e^{\phi^*(\tau)} H'(U_1(\tau)),
\]

where the auxiliary system is now bursty.

First, we compute the factors of the non-Markovian term. The PGF derivative is found by evaluating the \(T_1 \) marginal:

\[
k_1 \int_0^T \left[\frac{1}{1 - b u_1 e^{-\beta s}} - 1 \right] ds = \frac{k_1}{\beta} \ln \left(\frac{b u_1 e^{-\beta T} - 1}{bu_1 - 1} \right),
\]

(S61)

which coincides with the relevant result for the gamma Ornstein–Uhlenbeck SDE [28]. However, this form is needlessly challenging to work with, and it is more straightforward to assume \(T \gg 0 \),
or the system starts in the equilibrium distribution of T_1. Again, due to exponential convergence, the error is minimal. Differentiating with respect to $x_1 = u_1 + 1$:

$$H'(x_1) = \frac{d}{dx_1} \left(\frac{1}{1-b(x_1-1)} \right)^{k_1/\beta} = \frac{k_1 b}{\beta} \left(\frac{1}{1-b(x_1-1)} \right)^{k_1/\beta+1}$$ \hfill (S62)

$$H'(u_1) = \frac{\mu_1 H(u_1)}{1-bu_1},$$ \hfill (S63)

where we define $\mu_1 := k_1 b/\beta$ for simplicity. This yields a straightforward expression for the summation:

$$\sum_{m_1=0}^{\infty} [1+U_1]^{m_1-1} m_1 P(m_1, t-\tau) = \frac{\mu H(U_1)}{1-bU_1}$$ \hfill (S64)

We reuse U_1 and U_2 from the derivation of the constitutive system, as the downstream components of the auxiliary systems match:

$$\varnothing \to k_1 \to B \times T_1 \to T_2$$

$\phi^*(\tau) = k_1 \int_0^\tau \left(M(U_1) - 1 \right) ds = k_1 \int_0^\tau \left[\frac{1}{1-bU_1} - 1 \right] ds$

$$\theta := \frac{b(u_1-u_2)}{1-bu_2}$$

$$\phi^* = k_1 \int_0^\tau \left[\frac{(1-bu_2)^{1-1}}{1-\theta e^{-\theta s}} - 1 \right] ds$$

$$= k_1 \tau \left(\frac{bu_2}{1-bu_2} \right) + \frac{k_1}{\beta(1-bu_2)} \ln \left(\frac{\theta e^{-\theta \tau} - 1}{\theta - 1} \right)$$

$$= k_1 \tau \left(\frac{bu_2}{1-bu_2} \right) + \frac{k_1}{\beta(1-bu_2)} \ln \left(\frac{bU_1(\tau) - 1}{bu_1 - 1} \right)$$ \hfill (S65)

which follows from the derivation of the PGF of the nascent marginal.

Now, considering the full generating function relation:

$$\frac{\partial G}{\partial t} = k_1 \left[\frac{1}{1-bu_1} \right] G + \beta (u_2-u_1) \frac{G}{\beta}$$

$$- \beta u_2 e^{-k_1 \tau} \exp \left(\frac{k_1 \tau}{1-bu_2} \right) \left(\frac{bU_1(\tau) - 1}{bu_1 - 1} \right)^{k_1 \beta(1-bu_2)^{-1}} \times \frac{k_1 b}{\beta} \left(\frac{1}{1-bU_1(\tau)} \right)^{k_1/\beta+1}$$ \hfill (S66)

This PDE is not easily tractable by standard analytical or numerical methods. The form of the equation is rather complicated and not amenable to analysis by characteristics. In principle, a numerical PDE or ODE solver can be used: we may fix u_2 and solve for $G(u_1, u_2)$ over a mesh of u_1. By repeating this for many values of u_2, we can compute the Fourier transform of the joint distribution. However, this requires solvers that can integrate over the complex plane, as well as initial conditions $G(0, u_2)$ for each u_2. These are the very values we seek, so even numerical approaches require some ingenuity.
In short, the stochastically delayed systems reduce to deterministically delayed systems in some well-studied regimes. However, in spite of the formal connection between the CME and the DCME, the former is far simpler to analyze: the DCME is non-Markovian, and generally resistant to exact analysis. Although much recent progress has been made, regulated transcriptional systems do not yet have full probabilistic solutions.

References

