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ABSTRACT
We present measurements of the redshift-dependent clustering of a DESI-like luminous
red galaxy (LRG) sample selected from the Legacy Survey imaging dataset, and use
the halo occupation distribution (HOD) framework to fit the clustering signal. The
LRG sample contains 2.7 million objects over the redshift range of 0.4 < z < 0.9 over
5655 sq. degrees. We have developed new photometric redshift (photo-z) estimates
using the Legacy Survey DECam and WISE photometry, with σNMAD = 0.02 preci-
sion for LRGs. We compute the projected correlation function using new methods that
maximize signal-to-noise while incorporating redshift uncertainties. We present a novel
algorithm for dividing irregular survey geometries into equal-area patches for jackknife
resampling. For a 5-parameter HOD model fit using the MultiDark halo catalog, we
find that there is little evolution in HOD parameters except at the highest-redshifts.
The inferred large-scale structure bias is largely consistent with constant clustering
amplitude over time. In an appendix, we explore limitations of MCMC fitting using
stochastic likelihood estimates resulting from applying HOD methods to N-body cat-
alogs, and present a new technique for finding best-fit parameters in this situation.
Accompanying this paper we have released the PRLS (Photometric Redshifts for the
Legacy Surveys) catalog of photo-z’s obtained by applying the methods used in this
work to the full Legacy Survey Data Release 8 dataset. This catalog provides accurate
photometric redshifts for objects with z < 21 over more than 16,000 square degrees of
sky.
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1 INTRODUCTION

Galaxy surveys over the past two decades, such as the Sloan
Digital Sky Survey (SDSS, Gunn et al. 1998, York 2000),
Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson
et al. 2013) and DEEP2 (Newman et al. 2013), have en-
abled remarkable advancement in our understanding of the
Universe, and more recent and on-going surveys such as the
Dark Energy Survey (DES, Collaboration 2005) and the Hy-
per Suprime-Cam survey (Aihara et al. 2018b) are provid-
ing more stringent constraints on models of cosmology and
galaxy evolution.

The Dark Energy Spectroscopic Instrument (DESI,
DESI Collaboration et al. 2016a,b) is a next-generation
galaxy redshift survey that will produce an unprecedented
3-dimensional map of the Universe and shed light on the
expansion history of the Universe and the nature of dark
energy. An important class of DESI spectroscopic targets
are the luminous red galaxies (LRGs). The high large-scale
structure bias of the LRGs make them ideal tracers for the
underlying matter distribution, and they have been used to
efficiently measure the baryon acoustic oscillation (BAO)
signal (e.g., Eisenstein et al. 2005, Alam et al. 2017). The
DESI survey, with much larger survey volume and higher
number density, will enable more accurate BAO measure-
ments.

In this paper we the present small-scale (. 20h−1Mpc)
galaxy clustering analysis of a set of DESI-like LRGs. Al-
though the small-scale clustering of LRGs from other pro-
grams have been studied previously (e.g., Zheng et al. 2008,
White et al. 2011, Zhai et al. 2017), these samples are either
at lower redshifts or are much sparser than the DESI LRG
sample. This paper presents the first detailed study of the
clustering of the DESI-like LRGs.

The selection of our LRG sample is motivated by and
intended to mimic the DESI LRG selection. Since spectro-
scopic redshifts are not available yet, we compute accurate
photometric redshifts (photo-z’s) and their error estimates
using imaging in g, r and z bands from Dark Energy Cam-
era Legacy Survey (DECaLS), which is part of the DESI
Legacy Imaging Surveys (Dey et al. 2019), and imaging in
W1 and W2 bands from the Wide-field Infrared Survey Ex-
plorer (WISE, Wright et al. 2010). We use the photo-z’s to
measure the projected correlation functions in five redshift
bins over redshift range of 0.4 < z . 0.9. We interpret the
results in the halo occupation distribution (HOD) frame-
work, and we incorporate photo-z error estimates and their
uncertainties in this analysis.

Although one can expect that better constraints on
HOD parameters will be obtained with spectroscopic red-
shifts from the upcoming DESI data, this work nevertheless
provides an important test of the DESI LRG target selec-
tion by providing an estimate of the large-scale structure
bias which we can compare with the expected value, and
the results also enables the construction of accurate mock
galaxies catalogs for DESI analysis before and in the early
stage of the survey. Moreover, we demonstrate that data
from imaging surveys alone can provide powerful constraints
on parameters of HOD and other galaxy-halo connections
models.

This paper is organized as follows. We describe the data
and the LRG sample in section 2. We describe the photo-

metric redshifts in section 3. We describe the clustering mea-
surements in section 4 and modeling of the measurements
in section 5. We discuss the results and conclude in section
6 and 7.

We make the photo-z’s (computed with more recent
DR8 data) publicly available1. We describe them in Ap-
pendix B.

2 DATA

We use the publicly available imaging catalogs from DE-
CaLS DR7 for both sample selection and photometric red-
shift estimation. DECaLS is one of the DESI imaging sur-
veys, and it provides imaging in g/r/z bands with median 5σ
depth of 23.72/23.27/22.22 for the fiducial DESI galaxy tar-
get (galaxy with an exponential disk profile with half-light
radius of 0.45′′). The source catalogs are constructed using
the software package the Tractor (Lang et al. 2016) for
source detection and photometry, and they also include the
forced photometry of the unWISE coadded images (Lang
2014; Meisner et al. 2019) in the 3.4 micron (W1) and 4.6
micron (W2) bands. Some of the data from DES observa-
tions are also processed by Tractor and included in DR7,
and are used here.

2.1 Sample selection

In the final DESI imaging dataset, each object on average
is covered by 3 exposures in each of the three optical bands,
and to ensure adequate depth and minimize the impact of
cosmic rays we require that each object have at least 2 expo-
sures in each optical band. We remove objects contaminated
by nearby bright stars by applying masks as described in
section 2.2, and we avoid regions of high stellar density by
removing the area within |b| < 25.0◦ (where b is the Galactic
latitude).

To facilitate the process of dividing the footprint for
jackknife resampling (see section 4.3), we divide the foot-
print into HEALPix (Gorski et al. 2005) pixels of area ∼ 0.21
sq. degrees each (corresponding to Nside = 128). The pixels at
the survey boundaries are removed, and then small “islands”
consisting of fewer than 100 pixels are also removed.

The photometry is corrected for Galactic extinction us-
ing the Galactic transmission values in the DR7 catalog.
The LRG sample is selected with the following color and
magnitude cuts:

(z −W1) > 0.8 × (r − z) − 0.6 (1a)

z < 20.41 (1b)

r − z > (z − 17.18)/2 (1c)

r − z > 0.9 (1d)

(r − z > 1.15) OR (g − r > 1.65) (1e)

Note that all the magnitudes used in this paper are in
the AB system. The cuts are shown in Fig. 1. Equation 1a
acts as a stellar-rejection cut, similar to the one presented
in Prakash et al. (2015). It is shown in the left panel of Fig.

1 http://legacysurvey.org/dr8/files/

#photometric-redshifts
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1. This selection relies on the fact that galaxies with old
stellar populations have spectra which exhibit a peak at 1.6
micron (sometimes referred to as the “1.6 micron bump”);
at higher redshift this bump causes an increased flux in the
WISE W1 (3.4 micron) band. Therefore we can easily sep-
arate stars from redshifted galaxies with the z −W1 color.
This cut allows us to achieve less than 1% stellar contami-
nation in our sample, as verified using the much deeper and
better-seeing HSC data (Aihara et al. 2018a).

Equation 1b is an apparent magnitude limit for the sam-
ple, which is similar to that expected for DESI LRGs (cf.
DESI Collaboration et al. 2016b). Equation 1c is a “slid-
ing” color-magnitude cut that imposes a redshift-dependent
luminosity threshold on the sample, selecting the most lu-
minous galaxies across the redshift range. The magnitude
limit and sliding cut are shown in the middle panel of Fig.
1.

This sliding cut is combined with the cuts in equations
1d and 1e, which are shown in the right panel of Fig. 1, to
remove low-redshift (z . 0.4) galaxies and select intrinsically
red galaxies. These selection cuts yield roughly uniform co-
moving number density in the redshift range of 0.4 < z . 0.8.

2.2 Bright star masks

Objects near bright stars are likely to have inaccurate flux
measurements due to contamination. Such contamination
causes many objects to be selected as LRGs although their
true fluxes do not satisfy the selection cuts. The inaccuracies
in the WISE PSF modeling lead to overestimated fluxes for
objects near even moderately bright stars, and this is a sig-
nificant source of imaging systematics for the LRG sample.
Another issue is that extremely bright stars produce imag-
ing artifacts such as ghosts and diffraction spikes which are
poorly modeled. Such artifacts in the optical imaging, which
is used for source detection, cause spurious sources as well
as inaccurate flux measurements. Therefore we apply masks
surrounding the positions of bright stars for both optical and
WISE imaging when constructing the LRG sample.

Three different sets of masks are used. First, we use the
“bright-star-in-blob“ column in the catalog. As defined in the
DR7 catalog, a blob is a “contiguous region of pixels above a
detection threshold and neighboring pixels” 2 , and an object
is flagged if it is in the same blob as a Tycho-2 star (Høg
et al. 2000). Second, we use the unWISE masks described in
the appendix of Meisner et al. (2019) to remove areas around
bright stars selected from AllWISE (Cutri et al. 2013) and
2MASS (Skrutskie et al. 2006). Third, we develop and apply
a set of WISE masks that include fainter AllWISE stars that
are not in the unWISE masks but still cause significant con-
tamination. The third set of masks is specifically optimized
for the LRGs. More about the WISE masks can be found
in Appendix A. The three sets of masks combined remove
∼ 12% of the objects from the LRG sample but only ∼ 4% of
the total area; it is clear that most of the sources masked do
not truly belong in the sample.

In addition to the bright star masks, we also remove re-
gions that are affected by very bright stars or other imaging
artifacts. We identify such regions by examining areas with

2 http://legacysurvey.org/dr7/description/#glossary

a high density of LRGs that have very large (> 0.05) esti-
mated photo-z errors. Since real LRGs typically have much
smaller photo-z errors, these objects are mostly either spu-
rious sources or real sources that are not included in the
photo-z training such as stars and quasars; however, only
the spurious sources are likely to be highly concentrated on
the sky (e.g., around very bright stars). Such concentrations
are identified efficiently with the DBSCAN cluster analysis
routine in scikit-learn (Pedregosa et al. 2011) and the corre-
sponding HEALPix pixels are flagged as bad regions.

The final LRG sample has 2.74 million objects spanning
5655 sq. degrees. Fig. 2 shows the sky distribution.

2.3 Randoms

The calculation of correlation functions requires uniformly
distributed random points with the same survey geometry
as the LRG sample. We use the publicly available random
catalog for DECaLS DR7 3. The same number of exposure
requirements, footprint cuts, and bright star masks are ap-
plied on the randoms as are used in constructing the LRG
sample.

3 PHOTOMETRIC REDSHIFTS

We compute photometric redshifts using the random for-
est regression method (Breiman 2001), a machine learning
(ML) algorithm based on decision trees. For our dataset, the
ML methods have several advantages over template-fitting
methods: there are abundant spectroscopic observations of
galaxies covering the magnitude and color space of the LRG
sample that can be used for training, and in this regime ML
methods consistently out-perform template-fitting methods;
ML methods can trivially incorporate non-photometry in-
formation such as galaxy shapes, which we exploit here; and
ML methods do not require physical and representative SED
templates, which are not trivial to obtain especially for the
wavelength range of the WISE pass-bands. Among the nu-
merous ML methods, random forest provides good perfor-
mance and is very computationally efficient, so we use it
here.

3.1 Imaging data

We include r-band magnitude as well as g−r, r−z, z−W1 and
W1−W2 colors as inputs. The photometry has been corrected
for Galactic extinction. Soo et al. (2018) showed that while
morphological information only provides mild improvements
in photo-z accuracy when full ugriz photometry is available,
the improvement is substantial when only grz photometry
is available. Motivated by that result, we include as inputs
three morphological parameters: half-light radius, axis ra-
tio (ratio between semi-minor and semi-major axes), and a
“model weight” that characterizes whether a galaxy is better
fit by an exponential profile or a de Vaucouleurs, similar to

3 http://legacysurvey.org/dr7/files/
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Figure 1. Color-color and color-magnitude diagrams for 20,000 objects randomly selected from the LRG sample. The points are color-

coded according to their photometric redshifts (see section 3). The dashed lines represent the selection boundaries listed in equations 1a

to 1e. The first panel shows the stellar-rejection cut using z −W1 color; in this panel we also plot point sources with zmag < 20.41, the
majority of which are stars, in black to show the stellar locus; the stellar-rejection cut removes stars very effectively. The second panel

shows the sliding color-magnitude cut and the z-band magnitude cut. The third panels shows the cuts that remove low-redshift (z . 0.4)

objects.

Figure 2. Sky coverage of the final LRG sample that is used in the clustering analysis. The grayscale represents the surface density.

The “holes” in the NGC footprint and parts of the SGC footprint have been removed from the sample due to contamination from very

bright stars or other known imaging artifacts.

the definition in Soo et al. (2018):

p =
dχ2

deV

dχ2
deV
+ dχ2

exp

; (2)

where dχ2 is the difference in χ2 between the model fit and
no source. The inclusion of the three morphological parame-
ters reduces the photo-z scatter (normalized median absolute
deviation, or NMAD) by ∼ 19% and the 10% outlier fraction
by ∼ 42% for objects with zmag < 21 in the training set.

3.2 Redshift “truth” dataset

For machine learning photo-z methods, redshift “truth” val-
ues are needed for the training process. Various redshift sur-
veys overlap with the DECaLS footprint, and we compile a
redshift truth dataset using spectroscopic and many-band
photometric redshifts from ten different surveys.

3.2.1 2dFLenS

The 2-degree Field Lensing Survey (Blake et al. 2016) is
a spectroscopic survey performed at the Anglo-Australian

Telescope, and observed two galaxy samples: a sample of
LRGs, and a magnitude limited (r < 19.5) galaxy sample.
We apply the following quality cuts to this sample:

(Q == 4) AND (z > 0), (3)

where Q is the quality flag.

3.2.2 AGES

The AGN and Galaxy Evolution Survey (Kochanek et al.
2012) is a spectroscopic survey performed with the Hec-
tospec instrument at the MMT telescope. Targets were se-
lected with optical and IR imaging down to I ' 20 (Vega
magnitude). Only objects from the galaxy targets are used,
and we required z > 0.

3.2.3 COSMOS2015 photo-z’s

The COSMOS2015 catalog (Laigle et al. 2016) is a photo-
metric redshift catalog covering the 2deg2 COSMOS field.
To select objects with accurate photo-z’s, we apply the fol-

MNRAS 000, 1–25 (2019)
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lowing quality cuts, motivated by the cuts applied in Tanaka
et al. (2018):

(i) FLAG PETER is false (no bad photometry)
(ii) TYPE == 0 (only galaxies)
(iii) (ZPDF H68 − ZPDF L68)/(1 + z) < 0.02 (limit photo-z

errors to 1%)
(iv) (CHI2 BEST < CHIS) AND (CHI2 BEST/NBFILT < 5)

(fits are reasonable and better than stellar alternatives)
(v) ZP 2 < 0 (no secondary peaks)
(vi) MASS MED > 7.5 (stellar mass recovery successful)
(vii) DEC > 1.46 (removing some apparent imaging arti-

facts near the lower boundary)
(viii) z > 0.006 (remove the lowest redshift bin)
(ix) z < 3 (redshift upper limit)

3.2.4 DEEP2

DEEP2 (Newman et al. 2013) is a spectroscopic redshift sur-
vey performed with the DEIMOS instrument on the Keck
2 telescope. Targets were selected down to RAB = 24.1
with color cuts to exclude z < 0.7 galaxies in 3 of the 4
fields surveyed. We require that z > 0 and the quality flag
ZQUALITY > 3.

3.2.5 GAMA DR3

The Galaxy And Mass Assembly (GAMA) survey (Baldry
et al. 2018) is a spectroscopic survey performed at the Anglo-
Australian Telescope with magnitude limited target selec-
tion down to r ' 20. We require that the quality flag nQ == 4
and z > 0.002.

3.2.6 OzDES

OzDES is a spectroscopic follow-up survey (Childress et al.
2017) of the DES supernova fields performed at the Anglo-
Australian Telescope. Various types of targets were selected,
such as supernova hosts, AGNs and LRGs. For our purposes,
we only use objects that were targeted as “LRG”, “bright
galaxy”, “ELG”, “photo-z”, “RedMaGiC” or “cluster galaxy”.
We also require that the quality flag Q == 4 and z > 0.

3.2.7 SDSS DR14

We use spectroscopic redshifts from SDSS DR14 (Abol-
fathi et al. 2018), including the SDSS Main Galaxy Sample
(Strauss et al. 2002), Baryon Oscillation Spectroscopic Sur-
vey (BOSS) sample (Dawson et al. 2013), and the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS) sample
(Dawson et al. 2016). To select objects with accurate photo-
z’s, we apply the following quality cuts:

(i) ZWARNING == 0 (no known problems)
(ii) CLASS == GALAXY (classified as galaxy)
(iii) z > 0.0003 (remove spurious galaxies at very low red-

shift)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
redshift

0

10000

20000

30000

40000

50000

60000

70000

80000

N

Full truth dataset
Downsampled truth dataset

Figure 3. Redshift distribution of the redshift truth dataset. N(z)
is the total number of objects in each ∆z = 0.02 bin. The peaks

at z = 0.1 and z = 0.5 in the full set are attributed to the SDSS

Main Galaxy Sample and BOSS, respectively, both of which are
downsampled significantly to avoid biasing the output photo-z’s

to favor these redshifts.

3.2.8 VIPERS

The VIMOS Public Extragalactic Redshift Survey (Scodeg-
gio et al. 2018) is a spectroscopic survey performed at the
ESO VLT. The sample is magnitude limited to i = 22.5 with
color cuts to exclude z < 0.5 galaxies. To ensure redshift
quality, we require 3.4 6 zflg < 5 where zflg is the quality
flag, and z > 0.

3.2.9 VVDS

The VIMOS VLT Deep Survey (Le Fevre et al. 2013) is a
spectroscopic survey performed at the ESO VLT. The sam-
ple is i-band selected, down to i = 22.5 in the wide field and
i ' 24 in the deeper field. We require that the quality flag
ZFLAGS == 4 and z > 0.

3.2.10 WiggleZ

The WiggleZ Dark Energy Survey (Parkinson et al. 2012)
is a spectroscopic survey performed at the Anglo-Australian
Telescope that aims to measure the baryon acoustic oscilla-
tions (BAO) signal with emission-line galaxies. We require
that the quality flag Q == 4 or 5, and we also require z > 0.

3.3 Combined truth dataset and downsampling

The redshift catalogs are cross-matched to DECaLS with a
search radius of 1′′. Fig. 3 shows the redshift distribution of
the cross-matched redshift truth dataset. Table 1 lists the
number of objects from each survey.

Most of the truth objects are from four surveys: SDSS,
BOSS, GAMA and WiggleZ. These surveys either apply
specific color selections (BOSS, WiggleZ) or are limited to
shallow magnitudes (SDSS Main Galaxy Sample, GAMA).
This leads to sharp peaks in the redshift distribution and
discontinuities in the density of objects in color/magnitude
space. Such a non-uniform training sample can cause sys-
tematic biases in the photo-z’s; e.g., photo-z algorithms can

MNRAS 000, 1–25 (2019)
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Table 1. Number of objects from each redshift survey that are

cross-matched to DECaLS.

Survey Full dataset Downsampled dataset

BOSS 678370 224345
SDSS 449386 186666

WiggleZ 122907 47334

GAMA 109790 55990
COSMOS2015 53973 53972

VIPERS 44175 44175

eBOSS 23549 23549
DEEP2 15994 15994

AGES 11235 11235

2dFLenS 8102 8102
VVDS 5490 5490

OzDES 1407 1407

develop tendency to favor placing objects at redshifts which
are over-represented in training set. To make the training
sample more uniform and also to speed up computation, ob-
jects from these four large surveys are downsampled. This
downsampling is based on the object density in the two-
dimensional space of r-band magnitude (used as a proxy for
luminosity at fixed redshift) vs. redshift, with a bin size of
∆z = 0.01 and ∆rmag = 0.01. For rmag-redshift bins that have
more galaxies than a specific threshold (which are 400, 400,
70 and 20 for SDSS, BOSS, GAMA and WiggleZ, respec-
tively), the objects are randomly downsampled so that the
density is reduced to the threshold level. In this way we re-
duce the overall number of galaxies while preserving a good
sampling of galaxies over the full range of luminosity, in par-
ticular retaining the rare most luminous galaxies, many of
which are LRGs. The redshift distribution of the downsam-
pled truth dataset is shown in Fig. 3. Hereafter, we refer to
the downsampled truth catalog simply as the truth catalog.

3.4 Random forest method

We compute photo-z’s using the random forest regression
routine in Scikit-Learn (Pedregosa et al. 2011). As we have
described previously, we use the following eight parameters
as input: r-band magnitude, g− r, r − z, z−W1 and W1−W2
colors, half-light radius, axis ratio and shape probability.

The redshift and magnitude distributions of the photo-
z training sample are not uniform due to the various selec-
tions of the spectroscopic surveys. In the presence of pho-
tometric errors, the gradients in the color and magnitude
distributions cause objects in higher density regions in the
multi-dimensional color/magnitude space to be scattered
into lower density regions. Therefore in the neighborhood
of each point in the color/magnitude space, it is more likely
to find objects from higher density locations, and since colors
and magnitudes are correlated with redshift (which is why
photo-z algorithms work), this causes the photo-z estimates
to be biased towards the redshifts of objects in higher density
regions in the parameter space. Such bias is particularly sig-
nificant at the high-redshift end of the redshift distribution,
where the photo-z estimates are consistently biased low. To
mitigate this bias, we assign weights to each training object
based on its spectroscopic redshift (or photometric redshift,
in the case of COSMOS): the weight is proportional to the

inverse of the number of training objects at that redshift
(with a cut-off value to prevent excessively large weights).
As a result, objects at very low or very high redshifts are as-
signed larger weights than other objects. These weights are
incorporated into our random forest calculation by requiring
a minimum of 25 objects to split an internal node, and then
using the weighted average of the redshifts for all training
objects in a leaf as its predicted z.

We randomly select 90% of the truth dataset for train-
ing, and reserve the other 10% for testing purposes. To es-
timate the photo-z error for each object, we perturb the
photometry by adding to the observed flux in each band a
random value from Gaussian distribution whose standard
deviation is set by the photometric error. This is similar to
Kind & Brunner (2013), although in that work the photome-
try of the training sample, rather than the sample of objects
to which the algorithm is applied as here, was perturbed. For
each of the 50 individual trees in the random forest that we
generated, we repeat the perturbation 20 times. The mean
and standard deviation of the resulting 1000 (50×20) redshift
estimates are used as the photo-z and photo-z error, respec-
tively. Note that the photometric noise is only added when
computing the final photo-z’s used for clustering analysis;
the random forest is trained with the original unperturbed
photometry.

3.5 Photo-z performance for LRGs

Here we describe the photo-z performance for our LRG sam-
ple. For the photo-z performance of the overall spectroscopic
training sample, see Appendix B.

To assess the photo-z quality of the LRG sample, we
cross-match the LRG sample to the truth catalogs in the
multi-dimensional space of r-band magnitude and g−r, r− z,
z −W1 and W1 −W2 colors; redshift information is not used
in the matching. Each LRG is matched to the single nearest
neighbor in the truth catalog, and we count the number of
LRGs that each truth object is matched to. We use this
number as the weight for the photo-z vs. spec-z plot in Fig.
4. We quantify the photo-z accuracy using the normalized
median absolute deviation (NMAD), defined as σNMAD =
1.48×median(|∆z |/(1+zspec)) where ∆z = zphot−zspec (we follow
the same NMAD definition as in, e.g., Dahlen et al. 2013).
This is a robust estimator of scatter as it is not sensitive
to outliers. We also measure the fraction of outliers defined
as objects with |∆z | > 0.1 × (1 + zspec). From the weighted
spec-z objects, we estimate that the average photo-z scatter
σNMAD for the LRG sample is 0.021 and the outlier rate is
1%. The weighted spec-z objects are also used for estimating
the comoving number density which we use as an observable
in our HOD modeling (see section 5).

3.5.1 Photo-z error estimates

Our photo-z error estimation assumes that the photo-z er-
rors are solely due to the photometric errors, and that the
photometric error estimates are accurate. This ignores the
effect of incompleteness in the training data and the uncer-
tainties in the morphological values.

We validate the photo-z errors using objects with spec-
troscopic redshifts. Fig. 5 shows how well the real photo-z

MNRAS 000, 1–25 (2019)
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Figure 4. Top panel: Photo-z vs. spec-z for truth objects that

are weighted to approximate the photo-z performance of the LRG

sample. Lower panel: photo-z offset (in ∆z/(1 + zspec) vs. spec-z;
the red solid line and the yellow dashed line are the Hodges-

Lehmann mean and NMAD, respectively, of the photo-z offset in

bins of spec-z. The photo-z’s are mostly well constrained with few
outliers for this sample.

errors can be approximated by a Gaussian distribution with
a width equal to the estimated photo-z error. We find that
the real photo-z errors are roughly consistent with a Gaus-
sian distribution, but the photo-z errors are generally over-
estimated by a factor which depends on the redshift range.
Because we do not have representative spectroscopic data
to estimate this scaling factor accurately, we treat it as nui-
sance parameter in the HOD modeling (see section 5.2).

4 CLUSTERING MEASUREMENTS

4.1 Redshift bins

In order to study the redshift dependence of the sample
properties, we divide the LRG sample into four photometric
redshift bins of width ∆z ' 0.1, covering the ranges [0.41,
0.5], [0.5, 0.61], [0.61, 0.72], [0.75, 0.83], [0.84, 0.93]. These
bins have been chosen such that they are centered at the
redshifts of the snapshots of the halo catalogs from the N-
body simulation (see section 5). Fig. 6 shows the estimated
comoving number density vs. redshift for the LRG sample;
the shaded regions represent the redshift ranges for each
bin. The volume-averaged comoving number densities for
each bin are listed in Table 2. The densities estimated from
photo-z’s are consistent with the estimates from weighted
spec-z’s. Densities estimated using spec-z’s weighted as de-
scribed in section 3.5 are used in modeling.

4 2 0 2 4
(zphot zspec)/ z

0.0
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Figure 5. The distribution of (zphot − zspec)/σz , where σz is the

estimated photo-z error, in different redshift bins. Here µ (ver-
tical line) and σNMAD (1-σ width of the curve) are the median

and the normalized normalized median absolute deviation of the
distribution, respectively, and the smooth curves show the cor-

responding Gaussian distributions. A non-zero µ value indicates

that the photo-z’s are biased, and any deviation of σNMAD from
unity indicates over- or under-estimation of the photo-z errors.

The fact that σNMAD values are consistently less than unity indi-

cates that the our photo-z errors are over-estimated.

Table 2. The redshift bins. The second column lists the redshifts

of the snapshots of the N-body simulation. The third column

lists the comoving number densities in units of h3Mpc−3; these
values are used in the HOD fitting with 10% assumed Gaussian

uncertainty.

Redshift zsim n(z)

0.41 < zphot < 0.50 0.4573 6.32 × 10−4

0.50 < zphot < 0.61 0.5574 6.16 × 10−4

0.61 < zphot < 0.72 0.6644 6.15 × 10−4

0.75 < zphot < 0.83 0.7787 4.41 × 10−4

0.84 < zphot < 0.93 0.8594 2.14 × 10−4

Fig. 8 shows the redshift distribution (surface density)
for each redshift bin estimated by convolving the photo-z’s
with their photo-z error.
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Figure 6. Redshift-dependent comoving number density of the

LRG sample. The dashed line shows the densities estimated with

photo-z’s convolved by the estimated photo-z error. The solid
line shows the densities estimated from the weighted spec-z’s de-

scribed in 3.5; these weighted spec-z’ are also used for deriving

the comoving number densities for the clustering analysis. The
colored bands represent the redshift bins. The fact that the two

lines are consistent with each other indicates that our comoving

density estimates are relatively robust.

4.2 Projected correlation function

Ideally, one would like to measure the correlation function
ξ(r), the excess probability of finding a pair of galaxies
separated by distance r, but the large uncertainty in ra-
dial distances precludes its direct measurement. For imaging
datasets, it is common to measure instead the angular cor-
relation function, typically in bins of photometric redshifts.
However, in doing so the information on relative distances
between galaxies contained in the photo-z’s is not utilized.
For spectroscopic datasets, due to the presence of redshift-
space distortions, the small-scale clustering is usually mea-
sured with the projected correction function, effectively in-
tegrating out the effects of redshift-space distortions:

wp(rp) =
∫ πmax

−πmax
ξ(rp, π)dπ, (4)

where ξ(rp, π) is the 3-D correlation function, rp is the trans-
verse distance and π is the line-of-sight distance.

Here, to better exploit the photo-z information, we mea-
sure the projected correction function (Equation 4), using
distances derived from the photo-z’s. Fig. 7 illustrates our
method of measuring wp(rp). We adopt a relatively large πmax
of 150h−1Mpc to account for the large radial distance uncer-
tainties from the photo-z’s. This large πmax is comparable to
the width of the redshift bins (160 − 210h−1Mpc). However,
the photo-z errors cause many galaxy pairs to be lost due
to one of the galaxies being outside of the redshift bin in a
generic auto-correlation measurement, thus complicating the
modeling and resulting in a lower clustering signal-to-noise.
To address this issue, instead of counting pairs within the
redshift bin zi (i.e., measuring a simple auto-correlation), we
define a wider redshift bin zwide,i that encloses zi , and count
pairs between galaxies in zi and galaxies in zwide,i . The wider
redshift bin zwide,i extends from zi by πmax in both directions,

πmax

zmin

zmax

zwide, max

zwide, max

Figure 7. Illustration of our method for measuring wp(rp) with
photo-z’s; differences in the redshift direction are shown to scale

for the 0.61 < zphot < 0.72 redshift bin. Left panel : galaxies with

accurate redshifts. The dashed lines show the redshift bin bound-
ary, and the galaxies inside and outside the redshift bin are color-

coded in red and blue, respectively. Right panel : the same galax-

ies with the same color coding as the left panel, but with real-
istic redshift (photo-z) uncertainties added. A significant num-

ber of galaxies cross the redshift boundaries. The arrows show

the ±πmax range with πmax = 150h−1Mpc used in counting pairs
and calculating wp(rp). The dash-dotted line shows the wider red-

shift bin used in the “padded” wp(rp) calculation; by construction
it includes all objects that are within ±πmax of any object with

0.61 < zphot < 0.72.

so that for all galaxies in zwide,i , all their pairs within πmax
will be counted. Besides boosting the clustering S/N, this
“padded” auto-correlation approach decouples the clustering
measurement from any effects associated with the boundary
of the redshift bin, and thus simplifies the measurement and
modeling of the projected correlation function.

To compute this “padded” wp(rp), we adopt the cross-
correlation form of the Landy-Szalay estimator (Landy &
Szalay 1993):

wp(rp) = 2πmax ×
(D1D2 − D1R2 − D2R1 + R1R2)

R1R2
, (5)

where each term denotes the pair count between two sam-
ples; D1 denotes the data (galaxy sample) in a redshift bin
defined in section 4.1 and D2 denotes the data in the wider
redshift bin; and R1 and R2 denote sets of random points
with the same angular and redshift distribution as D1 and
D2, respectively. The redshifts of the randoms are randomly
drawn from the redshifts of the data, so they have the same
redshift distribution as the data, by construction. In each
redshift bin the ratio of the number of randoms to data is
20. The measurement is done using the TreeCorr package
(Jarvis et al. 2004). We tested this estimator on mocks that
resemble our redshift bins, and we confirmed that it pro-
duces the same wp(rp) as that for mocks in a cubic volume
with periodic boundary conditions using the simple auto-
correlation estimator.

We measure wp(rp) in 12 logarithmically-spaced bins

covering the range from 0.11h−1Mpc to 19.5h−1Mpc (comov-
ing). We also made measurements at smaller and larger
scales, but these measurements were not used for the mod-
eling. Fig. 9 shows the measured projected correlation func-
tions for the five redshift bins. The two bumps, correspond-
ing to the one-halo (from galaxy pairs within the same dark
matter halo) and two-halo (from galaxy pairs in two different
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Figure 8. The estimated redshift distributions (surface density

in redshift bins) of the LRG sample. The y-axis is the number

of objects per sq. degree in the redshift bin of width 0.1. The
filled histograms show the redshift distributions estimated from

weighted spec-z objects. The unfilled histograms are distributions

of stacked photo-z’s that are convolved with photo-z errors (how-
ever, objects are assigned to a given redshift bin based only upon

their random forest point estimates). The samples in different

redshift (photo-z) bins overlap due to photo-z errors. Note that
1) we use the original photo-z error estimates, which as seen

in Fig. 5, are probably overestimated; and 2) simply stacking
the photo-z probabilities produces broader redshift distributions

than the mathematically correct procedure (Malz et al., in prep.,

https://github.com/aimalz/chippr/).

halos) regimes of the correlation function, are clearly visible
in all the redshift bins. It should be noted that the photo-
z errors effectively smooth out sharp features in the radial
direction, and as a result these wp(rp) measurements using
photo-z’s have lower amplitude than the intrinsic clustering
signal that one can measure with spectroscopic redshifts.

As shown in Fig. 8, the sample in each redshift bin does
not contain all the objects in that redshift range, and it also
includes objects whose true redshift is in other bins.

4.3 Jackknife resampling and covariances

We compute the covariance matrices of correlation functions
with jackknife resampling: we divide the footprint into Nsub
subregions, and we resample the dataset with one of the
subregions removed. There are a total of Nsub resampled
datasets, and the correlation function is measured for each
one. The covariance matrix is given by

Cov(wi,wj ) =
(Nsub − 1)

Nsub

Nsub∑
l=1

(
wl
i − wi

) (
wl
j − w j

)
, (6)

where wl
i

is the projected correlation function at the i-th
distance bin measured from the l-th jackknife sample, and
wi is the mean from all jackknife samples.

The DECaLS survey was not yet completed by DR7.
This, combined with the masks and quality cuts, results in
the irregular survey geometry, making it difficult to manu-
ally divide the footprint into compact subregions with equal
areas. To solve this problem, we developed an automated

routine. The relevant Python codes can be found online 4 .
The routine involves three steps:

(i) The objects (in our case randoms) in the survey foot-
print are divided into HEALPix pixels. This significantly
reduces the number of points and speeds up computation;

(ii) Initial grouping of the HEALPix pixels is performed
using a clustering algorithm (specifically, we use k-means
clustering; see Hartigan & Wong 1979) with the object count
in each pixel as weights to account for fractional occupation
of the pixels;

(iii) We change the group labels of a specific fraction of
boundary pixels, which were of randomly selected, to the
labels of their neighboring group(s), and only keep these
changes if they improve the “score” which is a weighted sum
of the compactness (defined as the average of the standard
deviations of the angular distances, in arcseconds, between
the positions of all objects in a subregion and its center) and
uniformity of the areas (defined as the standard deviation
of the areas of the subregions);

(iv) We repeat this step until the desired score is achieved.

Specifically, in each iteration the fraction of changed bound-
ary pixels is 0.15%; and equal weights were given to unifor-
mity and compactness for calculating the score.

Applying this procedure, we divide the footprint into
120 jackknife subregions of 47.1 sq. degrees each (within
∼ 2% variation), shown in Fig. 10. The areas of the subre-
gions are uniform to ∼ 1%. The area of the subregions is large
enough to cover the entirety of angular scales of interest, and
small enough to produce enough subregions to compute co-
variance matrices accurately. The size of each subregion is
much larger than the largest angular scale of ∼ 1 degree in
the correlation function, therefore the jackknife resampling
accounts for cosmic variance in addition to shot noise and
imaging systematics.

5 MODELING

In this section we present our analysis of the galaxy-halo con-
nection for the LRG sample using the HOD framework. The
galaxy-halo connection determines the clustering properties
of the galaxy sample, such as the large-scale bias, which
is useful for forecasting DESI BAO constraints. Predictions
of the locations of galaxies from simulations of dark mat-
ter alone also forms the basis of mock galaxy catalogs that
can be used for estimating covariances between measured
large-scale-structure statistics. In this work we fix the cos-
mological parameters and only allow the HOD parameters
to vary, but in principle the method presented here can be
incorporated into a more flexible modeling framework that
constrains both cosmology and galaxy-halo connection pa-
rameters.

5.1 HOD model

We fit the measured clustering signal with an HOD model
(e.g., see Berlind & Weinberg 2002 which also lists earlier
literature on HOD; see also Wechsler & Tinker 2018 for a

4 https://github.com/rongpu/pixel_partition
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Figure 9. The projected correlation function multiplied by the transverse distance. The points are measurements with error bars from

jackknife. The points in the gray shaded area are not used for modeling to avoid possible systematics. The orange curve is the best fit

from HOD modeling. The green band is the [16th, 84th] percentile range of the intrinsic clustering signal, i.e., the clustering that would
have been measured according to the fit parameters if perfect distance measurements (rather than photo-z’s) were available. The larger

uncertainty in the intrinsic clustering in the higher redshift bins is mostly due to the larger photo-z errors for them.

Figure 10. Sky distribution of the LRGs with color coding to show the 120 subregions for jackknife resampling. Note that nonadjacent
“patches” with the same color are different subregions. Each subregion has the same area (within ∼ 2% variation) and is compact by

design.

more general review on the galaxy-halo connection), which is
widely used to model luminosity-threshold galaxy samples.
In this framework, dark matter halos from N-body simula-
tions are populated by central and satellite galaxies with a
probabilistic prescription. In its basic form which we have

adopted, the central galaxy probability (denoted by Ncen)
and the mean number of satellite galaxies (denoted by Nsat)
for a given a halo are determined solely by the halo mass.
There are several slightly different mathematical prescrip-
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tions for this. We adopt the one in Zentner et al. (2019); we
briefly summarize it below.

In this formulation, the central galaxy probability is
given by a step-like function

〈Ncen |Mvir〉 =
1
2

(
1 + erf

[
log (Mvir) − log (Mmin)

σlog M

] )
, (7)

where Mvir is the virial mass of the dark matter halo; Mmin
is the mass threshold above which halos are populated by
central galaxies; and σlog M defines the smoothness of this
transition;

The number of satellite galaxies in a halo follows the
Poisson distribution with a mean given by a power law

〈Nsat |Mvir〉 =
(

Mvir − M0
M1

)α
, (8)

where M0, M1 and α are free parameters of the HOD model.
We impose that there are no satellite galaxies in halos with
Mvir < M0. We allow satellite galaxies to exist in halos with
no central galaxies.

The spatial distribution of satellite galaxies is assumed
to follow the NFW profile (Navarro et al. 1997), with the
scale radius Rs given by the value for the parent halo in the
N-body catalog. We ignore the effect of velocity dispersion
on redshift since it is negligible compared to photo-z errors.

5.2 Mock galaxies

To constrain the HOD model parameters, we measure the
clustering of mock galaxies generated from a set of as-
sumed values for these parameters and compare with our
measurements from real LRGs. We use the halo catalog
from the MultiDark Planck 2 (MDPL2) simulation (Klypin
et al. 2016), which used Rockstar (Behroozi et al. 2013)
to identify the halos. The MDPL2 simulation adopts the
Planck 2013 cosmology (Planck Collaboration et al. 2014):
Ωm = 0.307115, ΩΛ = 1 − Ωm = 0.692885, Ωb = 0.048206,
h = 0.6777, σ8 = 0.823, and ns = 0.96. The size of the cu-
bic simulation box is 1h−1Gpc, and the mass resolution is
1.51 × 109h−1M�. We designed the redshift bins of the LRG
sample so that they center at the redshifts of five snapshots
of the simulation, as listed in Table 2. We use halotools
(Hearin et al. 2017) for populating the halos with galaxies
using the pre-defined Zheng et al. (2007) prescription (note
that we use the default halotools definition of 〈Nsat |Mvir〉
which is is slightly different from Zheng et al. 2007).

To emulate the effect of photo-z’s on the clustering sig-
nal, we perturb the position of the galaxies along the line-
of-sight direction, i.e., the direction along one of the axes
of the simulation box. For each galaxy, this distance per-
turbation is drawn from a Gaussian distribution, the width
of which is randomly drawn from the rescaled photo-z er-
ror estimates of the LRGs in the corresponding redshift bin.
As discussed in section 3.5.1, the true photo-z errors are as-
sumed to differ from the estimated errors by a scaling factor
Sz which we do not have good constraints on. Thus Sz is
included in the model as a nuisance parameter. We use the
Corrfunc software package (Sinha & Garrison 2017) for
measuring wp(rp) of the mock galaxies because it is better
optimized than TreeCorr for cubic boxes with periodic
boundaries conditions.

Table 3. The ranges of the flat priors on model parameters.

Parameter Prior Interval

log(Mmin) [11.0, 14.0]

σlog M [0.001, 1.5]

α [0.0, 2.0]
log(M0) [11.0, 14.0]

log(M1) [11.5, 15.5]
Sz [0.6, 1.4]

5.3 MCMC sampling of parameters

The HOD model used here has five free parameters:
log(Mmin), σlog M , α, log(M0), and log(M1). Additionally, we
have the nuisance parameter Sz to account for uncertainties
in the photo-z error estimation. We adopt flat priors for all
these parameters, and the ranges for the priors are listed in
Table 3. We set the lower limit of Sz at 0.6, which is much
lower than the values inferred from spectroscopic redshifts
(see Fig. 5).

To obtain the posterior probability distributions of the
HOD parameters, we perform Markov Chain Monte Carlo
(MCMC) sampling using the emcee package (Foreman-
Mackey et al. 2013). The likelihood function used is given

by L ∝ e−χ
2/2, where χ2 is given by

χ2 = ∆wi

[
Cov−1

]
i j
∆wj +

(
nmeas − nmock

)2

σ2
n

, (9)

where ∆wi = wmeas
p (rp) −wmock

p (rp) is the difference between
the measured projected correlation function and the one
from the mocks at the i-th distance bin; Cov−1 is the in-
verse of the covariance matrix from jackknife resampling (see
section 4.3); nmeas and nmock are the comoving number den-
sities of the data and the mock, respectively; and σn is the
uncertainty in the comoving number densities. The comov-
ing number densities are estimated from the weighted spec-z
objects as described in 3.5. We have compared these density
estimates with the densities estimated from the photo-z’s,
and the standard deviation of the differences in the five red-
shift bins is ∼ 7%. We adopt a larger density uncertainty of
σn = 10% to account for any additional unknown systemat-
ics in the photo-z’s.

6 RESULTS

The posterior distributions of the model parameters are
shown in Fig. 11 and Fig. 12. These plots have been made
using a modified version of the corner.py software pack-
age (Foreman-Mackey 2016). The mean, median and best-fit
values of the parameters and the 16% and 84% percentiles
are listed in Table 4. The derivation of the best-fit param-
eters is described in Appendix C. The first four redshift
bins have very similar HOD parameters, indicating that the
LRGs have similar host halo properties over the redshift
range of 0.4 < z < 0.8.

The highest-redshift sample has much wider contours
on the model parameters than lower redshift samples. This
could be due to a combination of several factors, including
the larger photo-z errors at higher redshifts, a smaller sam-
ple size, and a broader redshift distribution that dilutes the
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Figure 11. The one- and two-dimensional marginalized posterior probability distributions of the model parameters from MCMC for
the first three redshift bins. The inner contour and outer contour are the 68% and 95% confidence regions, respectively. All parameters
except Sz are HOD parameters; the parameter Sz is the scaling factor for the photo-z errors. The mass parameters are in units of h−1M�.

clustering signal. Despite the larger errors, the differences
in the model parameters between this and lower redshift
samples are statistically significant. Such deviation is caused
by the selection effect of the apparent magnitude limit (see
the middle panel of Fig. 1): at redshifts higher than ∼ 0.7,
the luminosity-threshold established by the sliding cut is re-
placed by the apparent magnitude limit, and as a result more
luminous galaxies are more and more preferentially selected
as redshift increases. This qualitative change of the sample
at high redshift will need to be considered when analyzing
and interpreting DESI spectroscopic data.

At lower redshifts where the photo-z errors are small,

the HOD parameters are not sensitive to the photo-z er-
ror rescaling factor Sz , since most of the galaxy pairs are
still within πmax = 150h−1Mpc in the line-of-sight direction.
At higher redshifts the photo-z errors are much larger, and
the clustering signal from the mock galaxies is much more
sensitive to the Sz , thus resulting in the strong correlation
between some of the HOD parameters and Sz . Nevertheless,
the value of Sz is poorly constrained by the data, although
the posterior prefers Sz . 1 at all redshifts, which is con-
sistent with the results of the photo-z error validation with
spectroscopic redshifts.

Fig. 13 shows the halo occupation functions. Fig. 14
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Figure 12. Same as Fig. 11, but for different redshift bins. We include the results of 0.61 < zphot < 0.72 (which was also shown in the
previous plot). The contours of the highest-redshift bin (0.84 < zphot < 0.93) are significantly different from those of the other redshift
bins.

shows the probability distributions for the host halo masses
in each redshift bin. In both figures, the solid lines are the
best-fit results, and the dashed lines are for parameters ran-
domly selected from the MCMC chains to show the possible
range of halo occupations allowed by the data. The partic-
ularly sharp transition (quantified by the σlog M parameter)
in the central galaxy population might be due to insufficient
flexibility in the HOD model or inaccuracy in the σ8 param-
eter we assumed, and the strong correlation between σlog M

and the photo-z error rescaling factor also suggests the pos-
sibility of biased σlog M estimates due to additional photo-z
systematics that is not accounted for by the rescaling factor.

Ideally, we would compute the galaxy bias by compar-
ing the clustering amplitudes of galaxies and dark matter
particles in the N-body simulation as below

b =
(
ξgal/ξmatter

)1/2
, (10)

where ξgal and ξmatter are the two-point correlation functions
of galaxies and matter, respectively. (The galaxy bias is a
function of scale, and at large scale it asymptotes to the
large-scale bias value which we compute here; hereafter we
refer to the large-scale bias simply as the galaxy bias and
denote it as b.) However, due to the lack of access to the
MDPL2 dark matter particle catalog, we instead use the an-
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Figure 13. The halo occupations, i.e., the average number of galaxies that are hosted by a halo of a certain mass. The occupations of

centrals, satellites and the full occupation are plotted separately. The solid lines are from the best-fit parameters. The dashed lines are

from 100 sets of parameters randomly selected from the MCMC chain (only the satellite and full occupations are plotted for clarity).

alytic halo bias-halo mass relation from Tinker et al. (2010),
implemented by the Colossus software package (Diemer
2018). Specifically, we obtain the galaxy bias by averaging
over the bias of all halos weighted by the number of galaxies
in each halo,

bgal =
1

Ngal

∑
i

bhalo(Mvir,i)Ngal(i) (11)

where Ngal is the total number of galaxies, Mvir,i is the virial
mass of the i-th halo, and Ngal(i) is the number of galaxies
(central and satellites) in the i-th halo.

There is a strong degeneracy between Sz and galaxy
bias, as shown in Fig. 15, which leads to large uncertainties
in galaxy bias at high redshift. This degeneracy is expected,
since a stronger clustering signal could be due to either a
higher bias or smaller photo-z errors.

The evolution of galaxy bias with redshift, shown in Fig.
16, is consistent with the galaxy bias evolution of a sample
with constant clustering amplitude, and it can be written as
b(z) = 1.5/D(z), where D(z) is the linear growth factor. The
factor 1.5 is slightly smaller than the factor 1.7 assumed in
the DESI Final Design Report (DESI Collaboration et al.
2016b).

The BOSS CMASS sample (Dawson et al. 2013), which
has a median redshift of z ' 0.55, was selected with similarly-
motivated luminosity threshold cuts to yield roughly half the

comoving number density of our LRG sample. At z = 0.55,
our galaxy bias estimates is consistent with b ' 2.0 from
White et al. (2011) for the CMASS sample. The satellite
fraction of our DESI-like LRGs is roughly 15%, compared to
10% for CMASS. The fact that there are much fewer satellite
galaxies than central galaxies in LRG-like samples is a result
of the selection cuts: only the most luminous galaxies are
selected, and these luminous galaxies are much more likely
to be at the centers of dark matter halos.

The literature on HOD analysis for comparable LRGs at
higher redshifts is relatively scarce. The eBOSS survey tar-
geted LRGs in the redshift range of 0.6 < z < 0.9 (Prakash
et al. 2016), and Zhai et al. (2017) performed an HOD anal-
ysis on the combined BOSS+eBOSS sample in this redshift
range. However, the eBOSS LRG sample is significantly
different from the our DESI-like LRGs in certain aspects:
1) the comoving number density of the DESI-like LRGs is
more than 5 times that of the eBOSS LRGs, and 2) the
eBOSS LRG selection does not contain luminosity-threshold
cuts, resulting in a wider range of luminosity. Therefore one
should not expect the two samples to have the same HOD
or derived parameters. The galaxy bias of DESI-like LRGs
at ∼ 0.7 (median redshift of eBOSS) is ∼ 2.15, compared to
2.3 for eBOSS LRGs. The DESI-like LRGs have a satellite
fraction similar to the 13% for eBOSS LRGs. The DESI-like
LRGs have much smaller scatter in the halo mass thresh-
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Figure 14. Similar to Fig. 13, but showing the probability distribution of host halo mass for a randomly selected galaxy in each redshift

bin, with the solid lines showing the best-fit results and dashed lines showing parameters from the MCMC chain. The green curve shows

the host halo mass distribution for all galaxies (centrals+satellites) normalized as the probability per logM ; the blue and orange curves
show the central and satellite components. The centrals in the highest-redshift sample have a much smoother low-mass cut-off than in

the lower redshift samples.

old (σlog M ) compared to eBOSS (which has σlog M = 0.82).
Lower values of σlog M for the our LRG sample is expected
since the sample selection includes a luminosity-threshold
cut (whereas the eBOSS LRG selection does not), but as we
discussed earlier, our estimate might suffer from inflexibility
in the HOD model or photo-z systematics.

The α parameter shows little variation with redshift and
is slightly larger than unity; this value is roughly consis-
tent with SDSS (Zehavi et al. 2011; Zentner et al. 2019)
and BOSS (White et al. 2011) results. It is significantly
larger than the value from Zhai et al. (2017) which esti-
mated α ∼ 0.4, although this difference could be attributed
to the aforementioned differences in the sample selection.

Since the HOD model is probabilistic, even if the HOD
parameters are fixed, each HOD realization yields a differ-
ent set of mock galaxies and thus slightly different clustering
statistics. This effectively adds a noise to the likelihood func-
tion in the MCMC. So long as this noise has mean of zero, it
can be shown that as the number of steps becomes large the
distribution of points in the chain should still converge to
the correct posterior. However, this “realization noise” does
cause the likelihoods associated with each step of the MCMC
chain to have values which are biased high (or, equivalently,
χ2 to be biased low), since each “walker” is less likely to

move away from a point whose likelihood was evaluated to
be higher than average, and more likely to move away from
one which fluctuated low. We show the impact of this bias
in Appendix C. When the realization noise is significant (as
here), one cannot directly use the likelihood values from the
chain to find the best-fit point or to assess its χ2; instead, it
is necessary to average over repeated realizations of the same
model parameters. This could be done at every step of the
chain to reduce realization noise, but that is computationally
expensive; instead, we adopt an alternative approach.

Specifically, we can exploit the fact that even though
the likelihood value associated with each point in the chain
is noisy and biased, the set of positions in parameter space
that make up the chain do converge to match sampling from
the posterior distribution. As a result, the density of points
in the chain is highest where the posterior probability is
greatest, even when the likelihood values assigned to those
points may be inaccurate. We therefore select a small set of
steps from the chains which lie in the highest density region
of the parameter space; this set is highly likely to contain
the points in the chain closest to the best-fit parameters.
We then compute the χ2 values for each of these sets of
parameters, averaging over a large number of realizations;
from this we can find the point in the chains which truly
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Figure 15. Two dimensional posterior distribution of galaxy bias vs. the photo-z error rescaling factor Sz (a nuisance parameter in our

analysis) at different redshifts. The correlations are much stronger at higher redshifts due to the overall larger photo-z errors that dilute

the clustering signal.
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Figure 16. The evolution of galaxy bias for our LRG samples.

The error bars show the 16% and 84% percentiles. The trend is
consistent with the bias evolution that would be obtained if one

assumed constant clustering amplitude, as shown in the dashed
line.

has the highest likelihood. We describe this procedure in
more detail in Appendix C.

Table 4 lists the best-fit parameters and the correspond-
ing averaged χ2 values averaged over 1000 realizations. The
table also lists the one-sided p-values corresponding to each
χ2 value; i.e., the probability of observing a χ2 larger than
the observed value purely by chance (if we find p < 0.05, the
hypothesis that the best-fit HOD model matches the data
should be rejected). We compute this p-value using the num-
ber of degrees of freedom Ndof = Ndata − Nparam = 13 − 6 = 7,
where Ndata is the number of rp bins plus one additional con-
straint from the comoving number density, and Nparam is the
number of free parameters. In every case, the HOD model
returns a satisfactory fit.

7 DISCUSSION AND CONCLUSION

We have made a number of methodological improvements for
galaxy clustering analysis with the HOD model using photo-
z’s. We have developed a method that divides the irregular
survey footprint into uniform subregions that allowed us to
apply the jackknife resampling technique on this dataset.
Our methods of correlation measurements using the pro-
jected correlation function and the “cross-correlation” L-S
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Table 4. Results from the HOD fitting with MCMC for the five redshift bins. For each redshift bin, the first row lists the mean values

and the 16th and 84th percentiles; the second row (in italics font) lists the median values; and the third row (in bold font) lists the best-fit

values in the six-dimensional HOD parameter space (these need not match the peak of each marginalized posterior distribution). The
parameters log(Mmin), σlog M , α, log(M0) and log(M1) are free parameters. The bias b and satellite fraction fsat are derived parameters.

We also list the χ2 for the best-fit parameters and the corresponding one-sided p-value; the fit quality is acceptable for all five redshift

bins (values of p < 0.05 would indicate statistically significant differences between the model and the data).

Redshift log(Mmin) σlog M α log(M0) log(M1) b fsat χ2 (p-value)

12.90+0.05
−0.05 0.17+0.13

−0.13 1.28+0.09
−0.10 12.13+0.64

−0.71 13.99+0.05
−0.05 1.89+0.03

−0.03 0.15+0.02
−0.02

0.41 < zphot < 0.50 12.89 0.16 1.31 12.19 14.00 1.88 0.15

12.85 0.03 1.29 12.41 13.97 1.89 0.15 4.57 (0.71)

12.92+0.03
−0.04 0.12+0.09

−0.09 1.11+0.22
−0.21 12.73+0.40

−0.46 13.98+0.07
−0.07 2.04+0.02

−0.02 0.13+0.01
−0.01

0.50 < zphot < 0.61 12.92 0.11 1.14 12.88 13.98 2.04 0.13

12.89 0.00 1.10 12.92 13.95 2.04 0.13 9.87 (0.20)

12.86+0.05
−0.05 0.20+0.13

−0.13 1.31+0.06
−0.06 11.94+0.58

−0.62 13.92+0.04
−0.04 2.07+0.03

−0.03 0.16+0.01
−0.01

0.61 < zphot < 0.72 12.85 0.19 1.33 11.97 13.92 2.07 0.16
12.86 0.28 1.32 11.96 13.91 2.04 0.16 6.86 (0.44)

12.97+0.08
−0.08 0.29+0.19

−0.20 1.28+0.12
−0.12 12.05+0.69

−0.71 14.00+0.05
−0.05 2.24+0.07

−0.08 0.14+0.02
−0.02

0.75 < zphot < 0.83 12.95 0.28 1.33 12.06 14.00 2.24 0.14

12.90 0.02 1.38 12.18 13.98 2.31 0.14 3.29 (0.86)

13.26+0.13
−0.13 0.45+0.20

−0.22 1.20+0.31
−0.42 12.33+0.91

−0.90 14.31+0.07
−0.12 2.48+0.15

−0.15 0.10+0.02
−0.02

0.84 < zphot < 0.93 13.24 0.48 1.34 12.34 14.25 2.47 0.10

13.40 0.70 1.38 11.70 14.24 2.28 0.10 6.65 (0.47)

estimator recover many galaxy pairs straddling the bound-
aries of the redshift bins, and prevent the counting of pairs
which are too far apart in photo-z to have significant clus-
tering but are still placed in the same redshift bin. Both
effects boost the S/N in clustering measurements compared
to a purely angular clustering analysis. The methods also al-
low for straightforward and consistent modeling by assigning
photo-z errors from the estimated error distribution to the
mock galaxies.

With these aforementioned improvements, we have
demonstrated that it is possible to obtain good constraints
on HOD parameters using only photometric data. Specif-
ically, we have measured the clustering and performed an
HOD analysis for DESI LRG target galaxies. We have found
that the LRGs are found in massive halos (and especially so
for high-z LRGs); this is expected since these are massive
and red galaxies, which are only found in the densest en-
vironments (e.g., see Blanton & Moustakas 2009). We have
also found that the host halo properties are very similar for
all except the highest-redshift bin. The galaxy bias steadily
increases with redshift, increasing from b ' 1.9 at z ' 0.45
to b ' 2.3 at z ' 0.9. This trend can be approximated by
b = 1.5/D(z), implying constant clustering amplitude over
time. The fits prefer a relatively small scatter in the halo
mass threshold, suggesting that the LRG selection is effi-
cient in selecting galaxies in massive dark matter halos. At
high redshift, the host halos are significantly more massive;
this is due to the selection effect of the apparent magnitude
limit on the galaxy sample.

The results of this paper can be used to create improved
mock galaxy catalogs for DESI. The upcoming spectroscopic
data from DESI will eliminate the uncertainties from photo-
z’s and provide tests of our results, although there will in-
stead be systematics from fiber collisions to be dealt with.

The spectroscopic redshifts will also enable the accurate
measurements of the rest-frame colors and luminosity, and
it would be interesting to study the color and luminosity
dependence of the galaxy clustering; results from such stud-
ies can provide important insights into the formation and
evolution of these massive galaxies.

The overall methodology of HOD modeling with photo-
z’s presented here can be easily implemented with existing
analysis codes such as halotools, and it can be adopted
for future imaging surveys such as LSST for studying the
galaxy-halo connection. There are several aspects where our
methods can be further improved upon by adding more so-
phistication, which we discuss below.

First, the approximation of Gaussian photo-z errors is
not always appropriate. In our case, the LRGs have promi-
nent spectral features such as the 4000Å break and the 1.6
micron bump that result in unambiguous photo-z’s. There-
fore, we are able to treat each PDF as a simple Gaussian
distribution, and to assume that the photo-z errors are domi-
nated by photometric uncertainties; these simplifications are
supported by spectroscopic validation. However, in many
other cases, the Gaussian approximation is not sufficient,
and one needs to take the full photo-z PDFs as input in the
fitting process; this can be important for galaxies that have
skewed or multimodal PDFs or for datasets that have weak
constraining power on redshifts.

Second, although in our case the uncertainty in the cal-
ibration of photo-z errors (quantified by Sz) is subdominant
at lower redshifts, at higher redshift it causes significant un-
certainties in HOD parameters and galaxy bias. Therefore,
in the presence of relatively large photo-z errors, better pri-
ors on the calibration of photo-z uncertainties would signif-
icantly reduce the uncertainties in the model parameters.
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This can be achieve using a small spectroscopic subsample
that is representative of the full photometric sample.

Third, in this work we have assumed that the our galaxy
sample has the same intrinsic photo-z error properties, and
the distribution of actual photo-z errors are solely due to
the variation in the S/N of the photometry; therefore we can
randomly draw from the estimated photo-z errors and assign
the resulting values to each mock galaxy. This assumption
might not hold for a sample of galaxies that are more diverse
than the LRGs; for example, in a pure luminosity threshold
sample, the blue and red galaxies will have very different in-
trinsic photo-z errors/PDFs. Nevertheless, the method can
account for such differences by treating differently halos with
different properties when assigning photo-z errors to the cor-
responding galaxies.

Finally, since the correlation function is measured with
relative distances, it is insensitive to an overall offset in
photo-z’s so long as the offset is the same for all galaxies
in the sample. Our model does not account for higher order
offsets, and light-cone mocks would be required to simulate
such effects.

With these improved methods and enlarged samples
from future surveys, fully photometric HOD modeling will
be a powerful tool for studying the galaxy-halo connection
with future imaging surveys such as LSST.
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tain with particular significance to the Tohono OâĂŹodham
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APPENDIX A: WISE BRIGHT STAR MASKS

This appendix provides some technical details of the WISE
bright star masks that we described in section 2.2. The
WISE bright star masks are geometric masks around stars
in the AllWISE catalog with W1AB < 16.0. The masks con-
sist of two components: circular masks for the “core” of a
bright star, and rectangular masks for the diffraction spikes.
The size of the masks vary with the W1 magnitude of the
bright star, and the size-magnitude relation is shown in Fig.
A1. To obtain the size-magnitude relation, we cross-correlate
the positions on the sky between LRGs and bright stars in
magnitude bins of ∆W1AB = 0.5, and locate (by hand) the
distance where the LRG density starts to noticeably devi-
ate from the densities further away from the stars. This way
the majority of the contaminated objects in the LRG sample
are masked. Fig. A2 shows the cross-correlation between the
LRG sample and AllWISE stars with 6 < W1AB < 8 with the
masks overlaid.

APPENDIX B: PHOTOMETRIC REDSHIFTS
FOR LEGACY SURVEYS DATA RELEASE 8

Accompanying this paper we have released an updated ver-
sion of the photometric redshifts used to conduct the large-
scale-structure analyses we have presented. This constitutes
the Photometric Redshifts for the Legacy Surveys (PRLS)
catalog; it is built using the most recent DR8 dataset of the
Legacy Surveys5. Data Release 8 includes data from both

5 http://legacysurvey.org/dr8/
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Figure A2. Left panel: Cross-correlation between LRGs and AllWISE bright stars with 6 <W1AB < 8 in ecliptic coordinates. The colors

represent the fractional over/under-density of LRGs compared to the overall average density (as a result the values cannot drop below
−1). Right panel: the boundaries of the WISE masks at W1AB = 6 and W1AB = 8 are overplotted.

Table B1. Number of objects from each redshift survey that are

cross-matched to Legacy Surveys DR8 (before downsampling).
For datasets that have been downsampled for photo-z training, we

also list percentages of the remaining objects after downsampling.

Survey DR8 North DR8 South

2dFLenS – 28416
AGES 16197 4057

BOSS 377769 (39.6%) 951829 (33.3%)

COSMOS2015 – 62510
DEEP2 Field 2, 3, 4 14401 20602

DEEP2 Field 1 + DEEP3 13355 –

GAMA – 123293 (52.9%)
OzDES 244 5174

SDSS 281636 (46.0%) 574767 (43.9%)
VIPERS – 47328

VVDS – 6321

WiggleZ 1627 144963 (32.6%)
eBOSS 31330 38459

the DECaLS survey in the southern portion of the planned
DESI footprint (DEC 6 34◦) and the BASS and MzLS sur-
veys in the northern sky (DEC > 32◦). The two regions have
slightly different effective response curves due to variations
in filter transmission, detectors (for the g and r bands), etc.,
and thus photo-z algorithms for each must be trained sep-
arately. Table B1 lists the redshift surveys used as training
samples in each region. In addition to the redshift catalogs
used for training the DR7 photo-z’s (described in §3.2), in
the BASS/MzLS region we can also utilize redshifts from the
DEEP3 Galaxy Redshift Survey (Cooper et al. 2012; Zhou
et al. 2019). The method for computing the DR8 photo-z’s
is the same as described in section 3; as a result the photo-z
performance in DR8 South is very similar to the DR7 photo-
z’s used in this paper.

The columns of the PRLS photo-z catalog are described
in Table B2.

To assess the photo-z accuracy for the spectroscopic

training sample, we employ 5-fold cross-validation. To do
this we randomly divide the dataset into 5 equal chunks;
we can then combine 4 chunks for training and evaluate the
performance with the remaining chunk. We repeat this pro-
cedure until all 5 chunks have been used for testing. In this
way the entire truth dataset can be utilized for testing with-
out biasing the assessment of performance.

Fig. B1 shows the relationship between photo-z and
spec-z for zmag < 21.0 objects in the truth catalog in DR8
South (the DECaLS region). For the (unweighted) objects,
the photo-z scatter is ∼ 0.013 and the outlier rate is 1.5%,
although it is worth noting that this sample is dominated by
bright galaxies from surveys like SDSS and BOSS and there-
fore the numbers do not represent the photo-z accuracy of a
magnitude limited sample with zmag < 21.0. Fig. B2 presents
the equivalent plot for DR8 North (the BASS/MzLS region).

To show how the photo-z’s start to systematically break
down beyond zmag ' 21, we plot photo-z vs spec-z for zmag >
21.0 objects (in DR8 South) in Fig. B3. The failure of the
photo-z’s is due to the limitations in our imaging data: W1
and W2 are too shallow to be useful for the fainter galaxies,
so for these galaxies we are effectively limited to only the
three optical bands, grz, which are not sufficient to constrain
the photo-z’s. The shallow W1/W2 imaging is particularly
problematic for galaxies with z . 0.5, as their 1.6 micron
bump is still far from the W1 band, causing their photo-z’s
to fail catastrophically.

APPENDIX C: IDENTIFYING
MAXIMUM-LIKELIHOOD VALUES IN NOISY
MCMC

Here we provide more details on the treatment of noisy
MCMC that we discussed in the last part of section 6.

First, to demonstrate that the likelihoods (or, equiva-
lently, χ2 values, since we use flat priors and Gaussian like-
lihoods) at each step from the MCMC chain are indeed bi-

MNRAS 000, 1–25 (2019)
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Table B2. Descriptions of the columns in the PRLS photometric redshift catalog.

Name Description

z phot mean photo-z derived from the mean of the photo-z PDF

z phot median photo-z derived from the median of the photo-z PDF

z phot std standard deviation of the photo-z’s derived from the photo-z PDF

z phot l68 lower bound of the 68% confidence region, derived from the photo-z PDF

z phot u68 upper bound of the 68% confidence region, derived from the photo-z PDF
z phot l95 lower bound of the 95% confidence region, derived from the photo-z PDF

z phot u95 upper bound of the 68% confidence region, derived from the photo-z PDF

z spec spectroscopic redshift, if available
survey source of the spectroscopic redshift

training whether or not the spectroscopic redshift is used in photometric redshift training

Figure B1. Photo-z vs. spec-z plot similar to 4, but for zmag <
21.0 objects with spec-z training objects in DR8 South (the region
covered by the DECaLS survey) without any weighting (cross-

validation is used to avoid biasing errors low). The photometric

redshifts are generally well-behaved in this regime.

ased, we randomly select 100 points from the chain (where
each point corresponds to a set of model parameters), and
for each of these points we rerun 100 HOD realizations to
obtain the average χ2 value. Figure C1 shows the difference
between the χ2 value taken from the MCMC chain and the
mean χ2 value averaging over 100 realizations for the same
position in parameter space, drawn from the fits for the red-
shift bin of 0.61 < z < 0.72 (the same redshift bin is used
for all other figures in this section). Clearly the χ2 values
from the chain are biased low compared to the averaged val-
ues. This bias is caused by noise in the MCMC likelihood
function, as discussed in section 6.

To demonstrate the difficulty of using the likelihood
from the MCMC chain for finding the best-fit parameters

Figure B2. As B1, but for DR8 North (the BASS/MzLS survey

region).

in the presence of realization noise, here we show that the
points selected to have the highest likelihood values have a
very wide distribution in the parameter space. In MCMC
the chain positions are correlated, and sometimes a walker
can get “stuck” at the same position for many steps; to re-
duce such effects, we divide the chain into 500 segments,
and select the highest likelihood point in each segment, and
plot their positions in parameter space in Figure C2. Even
though these points have higher likelihoods in the chain than
99.95% of the sample, they span a large range in parameter
space.

As selecting the best-fit parameters using the chain like-
lihoods does not yield good results, we adopt an alternative
approach. The distribution of points in the chain should
converge to follow the posterior. As a result, the density
of points in the chain should be greatest where the posterior
is highest. We can therefore select points in the regions of

MNRAS 000, 1–25 (2019)
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Figure B3. Same as B1 but for zmag > 21.0 objects in the truth

catalog. In this regime the photo-z’s are poorly constrained, es-

pecially for objects with z . 0.5.

12.5 10.0 7.5 5.0 2.5 0.0 2.5
2
MCMC
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Figure C1. Histogram of the difference between the χ2 value

from the MCMC chain and the mean χ2 value averaging over 100

realizations for the same set of HOD parameters. The vertical
line highlights the location of zero difference. The χ2 difference

is clearly non-zero on average, indicating that the χ2 values from
the MCMC chain are biased low.

highest density and they are likely to be near the likelihood
peak. Below we describe the method in detail.

First we downsample the MCMC chain by selecting ev-
ery 50th point from the chain to reduce the effects of cor-
relations, and then for each point compute the distance to
its 500th nearest neighbor (after downsampling). These dis-

tances should anti-correlate strongly with the local density.
For the nearest neighbor search and distance calculation,
the parameter space is normalized by the 16-84% percentile
range along each dimension. We also perform “reflection” on
σlog M and Sz dimensions at their lower boundaries in their
prior to remove the boundary effect: each point in the chain
is duplicated with the same parameters except for σlog M

which adopts the value of 0 − σlog M where 0 is the lower
boundary of σlog M ; subsequently the same procedure is also
performed for Sz , so in the end we have 4 times the original
number of points.

We select the 500 points with the smallest neighbor dis-
tances. The distribution of these points are shown in Figure
C3; note that these points have a much more compact dis-
tribution than those in Figure C2. For each of these points,
we generate 100 HOD realizations and determine the χ2 for
each. We then compute the averaged χ2 using the Hodges-
Lehmann estimator (Hodges & Lehmann 1963). Since there
is still some scatter in the averaged χ2, we again select the
10 points with the smallest averaged χ2 and generate 1000
HOD realizations to get more accurate χ2 values. The point
with the smallest averaged χ2 is selected as the set of best-fit
parameters. In some redshift bins, the distributions of the
10 points are more compact than the 500 points; in other
bins, the distributions are rather similar.
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Figure C3. The distribution of 500 points that are in the highest density region in parameter space. The contours of the full MCMC
chain are also shown. The distribution of these points is much more compact than the distribution of points selected directly from MCMC
likelihoods which is shown in the previous plot.

Lang D., 2014, The Astronomical Journal, 147, 108

Lang D., Hogg D. W., Mykytyn D., 2016, p. ascl:1604.008

Le Fevre O., et al., 2013, Astronomy & Astrophysics, 559, A14

Meisner A. M., Lang D., Schlafly E. F., Schlegel D. J., 2019,

arXiv:1909.05444 [astro-ph]

Navarro J. F., Frenk C. S., White S. D. M., 1997, The Astrophys-
ical Journal, 490, 493

Newman J. A., et al., 2013, The Astrophysical Journal Supple-
ment Series, 208, 5

Parkinson D., et al., 2012, Physical Review D, 86

Pedregosa F., et al., 2011, Journal of Machine Learning Research,
12, 2825

Planck Collaboration et al., 2014, Astronomy & Astrophysics,

571, A16

Prakash A., Licquia T. C., Newman J. A., Rao S. M., 2015, The
Astrophysical Journal, 803, 105

Prakash A., et al., 2016, The Astrophysical Journal Supplement

Series, 224, 34

Scodeggio M., et al., 2018, Astronomy & Astrophysics, 609, A84

Sinha M., Garrison L., 2017,

Skrutskie M. F., et al., 2006, The Astronomical Journal, 131, 1163

Soo J. Y. H., et al., 2018, Monthly Notices of the Royal Astro-

nomical Society, 475, 3613

Strauss M. A., et al., 2002, The Astronomical Journal, 124, 1810

Tanaka M., et al., 2018, Publications of the Astronomical Society
of Japan, 70

MNRAS 000, 1–25 (2019)

http://dx.doi.org/10.1088/0004-6256/147/5/108
https://ui.adsabs.harvard.edu/abs/2016ascl.soft04008L
http://dx.doi.org/10.1051/0004-6361/201322179
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1088/0067-0049/208/1/5
http://dx.doi.org/10.1088/0067-0049/208/1/5
http://dx.doi.org/10.1103/PhysRevD.86.103518
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1088/0004-637X/803/2/105
http://dx.doi.org/10.1088/0004-637X/803/2/105
http://dx.doi.org/10.3847/0067-0049/224/2/34
http://dx.doi.org/10.3847/0067-0049/224/2/34
http://dx.doi.org/10.1051/0004-6361/201630114
http://dx.doi.org/10.1086/498708
http://dx.doi.org/10.1093/mnras/stx3201
http://dx.doi.org/10.1093/mnras/stx3201
http://dx.doi.org/10.1086/342343
http://dx.doi.org/10.1093/pasj/psx077
http://dx.doi.org/10.1093/pasj/psx077


LRG clustering with photo-z’s 25

Tinker J. L., Robertson B. E., Kravtsov A. V., Klypin A., War-

ren M. S., Yepes G., Gottlober S., 2010, The Astrophysical
Journal, 724, 878

Wechsler R. H., Tinker J. L., 2018, Annual Review of Astronomy

and Astrophysics, 56, 435
White M., et al., 2011, The Astrophysical Journal, 728, 126

Wright E. L., et al., 2010, The Astronomical Journal, 140, 1868

York D. G., 2000, The Astronomical Journal, 120, 1579
Zehavi I., et al., 2011, The Astrophysical Journal, 736, 59

Zentner A. R., Hearin A., van den Bosch F. C., Lange J. U., Vil-

larreal A., 2019, Monthly Notices of the Royal Astronomical
Society, 485, 1196

Zhai Z., et al., 2017, The Astrophysical Journal, 848, 76
Zheng Z., Coil A. L., Zehavi I., 2007, The Astrophysical Journal,

667, 760

Zheng Z., Zehavi I., Eisenstein D. J., Weinberg D. H.,
Jing Y. P., 2008, arXiv:0809.1868 [astro-ph 10.1088/0004-

637X/707/1/554

Zhou R., et al., 2019, Monthly Notices of the Royal Astronomical
Society, 488, 4565

This paper has been typeset from a TEX/LATEX file prepared by

the author.

MNRAS 000, 1–25 (2019)

http://dx.doi.org/10.1088/0004-637X/724/2/878
http://dx.doi.org/10.1088/0004-637X/724/2/878
http://dx.doi.org/10.1146/annurev-astro-081817-051756
http://dx.doi.org/10.1146/annurev-astro-081817-051756
http://dx.doi.org/10.1088/0004-637X/728/2/126
http://dx.doi.org/10.1088/0004-6256/140/6/1868
http://dx.doi.org/10.1086/301513
http://dx.doi.org/10.1088/0004-637X/736/1/59
http://dx.doi.org/10.1093/mnras/stz470
http://dx.doi.org/10.1093/mnras/stz470
http://dx.doi.org/10.3847/1538-4357/aa8eee
http://dx.doi.org/10.1086/521074
http://dx.doi.org/]
http://dx.doi.org/10.1093/mnras/stz1866
http://dx.doi.org/10.1093/mnras/stz1866

	1 Introduction
	2 Data
	2.1 Sample selection
	2.2 Bright star masks
	2.3 Randoms

	3 Photometric redshifts
	3.1 Imaging data
	3.2 Redshift ``truth'' dataset
	3.3 Combined truth dataset and downsampling
	3.4 Random forest method
	3.5 Photo-z performance for LRGs

	4 Clustering measurements
	4.1 Redshift bins
	4.2 Projected correlation function
	4.3 Jackknife resampling and covariances

	5 Modeling
	5.1 HOD model
	5.2 Mock galaxies
	5.3 MCMC sampling of parameters

	6 Results
	7 Discussion and conclusion
	A WISE bright star masks
	B Photometric Redshifts for Legacy Surveys Data Release 8
	C Identifying Maximum-Likelihood Values in Noisy MCMC

