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Two-vortex solutions from the mean field equations respecting all conservation laws of the Euler equations
in two dimensions are calculated in a unit disk. These states are compared to symmetric and off-center
single-vortex solutions. A thermodynamic stability analysis is used to determine their stability and a critical
separation for stable two-vortex states is found from the crossover to instability. This could explain the merging
critical ratios observed in numerical simulations and experiments.

PACS number(s): 47.20.—k, 05.20.Gg, 52.25.Kn, 92.90.+x

Vortex mergings are important in two-dimensional turbu-
lence. For two-dimensional (2D) high-Reynolds-number flu-
ids with random initial conditions, numerical simulations [1]
have shown that beyond an early stage during which many
coherent vortices are formed, the evolution is dominated by
mergings of like sign vortices. A turbulence model has been
proposed based on a description of vortex merging [2]. Many
studies have been done on the merging of two identical vor-
tices, as a first step to understand the evolution of turbulence.
In numerical simulations different methods have been used
to study the dynamics of two-vortex initial distributions
[3.4]. A 2D pure electron plasma in a high magnetic field has
also been used to model a 2D ideal fluid (the Euler equa-
tions) [5]. These dynamic studies find that two vortices will
remain separate if their initial separation is greater than a
critical value and below it they will quickly merge together.
Equilibrium calculations for a pair of uniform vortices [6]
are consistent with this picture because no steady state solu-
tions are found for small vortex separations.

In this paper we look at the vortex merging problem using
the mean field theory which respects all conserved quantities
of the Euler equations [7]. The mean field statistical mechan-
ics theory completely specifies the final equilibrium states by
the values of the infinity of conserved quantities (integrals of
any function of the vorticity), which in turn are determined
by the initial condition. This approach has been used previ-
ously [8-10] to study single coherent vortices. Here we
solve the two-vortex solutions of the equations in a disk and
determine their thermodynamic stability properties. Some
two-vortex solutions in a disk are found in Ref. [11] but they
do not test their stability. The stability is crucial in explaining
these states and mergers observed in experiments and simu-
lations. A major assumption, as in any statistical mechanics,
is that of ergodicity, i.e., that the dynamics samples all the
phase space consistent with the conservation laws. There is
increasing evidence [12] that for geometrically simple initial
conditions the dynamics may not be mixing strongly enough
for this assumption to be a good approximation. In the
present work we separate the stability eigenvectors of a par-
ticular thermodynamic solution into those that might be ex-
pected to be strongly mixing, and those that are not. In par-
ticular the nonmixing eigenvectors take on rather small
magnitudes, and in the infinite system limit correspond to
collective symmetry motions of the vortex pair (translations
and rotations). We then identify the passage of the eigen-
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value of a “‘mixing” eigenvector through zero as indicating
vortex merging in the dynamics.

The mean field equations for a two-dimensional ideal
fluid is a set of differential-integral equations for a distribu-
tion function ny(r,o) and the coarse-grained equilibrium
vorticity field wy(r) is defined as [ony(r,o)do. The equa-
tions depend on the infinite number of conserved quantities:
S yof(w(r))dr, for any path d7(¢) moving with the fluid
and arbitrary function f. If we choose for simplicity a two-
level (O and ¢) initial vorticity field, the equations become

(7]
—q
1+exp[ B(g o+ Qri—p)]’

Here ¢4(r) is the equilibrium stream function. Also w, (2,
and B are constants to be determined by the total vorticity
Q, angular momentum M, and energy E:

V24o(r)= = wy(r)= (1

Q=f w, dr, M=J r?wydr,

1
E= EJ l//owodl'.

The entropy is calculated as

o) Sl

In the following calculations g is always set to one (a choice
of normalization).

We use an iterative method to solve Eq. (1) in a unit disk
with the boundary condition: ¢(r=1)=0. Starting with a
guessed w,(r) with a two-vortex character, Poisson’s equa-
tion V2¢,= — w, is solved. Substituting the stream function
¢, into the right-hand side of Eq. (1), («,Q,8) is found
using a root-finding algorithm to get a new w, with required
Q, M, and E. The calculation is then iterated until conver-
gence. Similiarly we can also iterate at a fixed B8 and then
calculate E afterward. Entropy could also replace energy as
one of the prescribed quantities.

We plot two typical two-vortex distributions with
0=0.2 in Fig. 1. On the left two vortices are well separated
and rotating around the disk center. The rotation frequency,
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FIG. 1. Vorticity distributions for Q=0.2 and $=0.25. On the
left graph, M =0.05; on the right, M =0.0373. Contour levels are
0.9,0.347,0.134,0.0518,0.02. Arcs indicate the disk boundaries.

which is just 20, is very close to the frequency of two point
vortices sitting at the centers of mass of the vortices. As the
two vortices get closer as shown on the right, the levels of
contour lines joined together become larger. More vorticity is
in the exchange band, so called because vorticity here will
move back and forth in time between the two vortices. A
numerical simulation [4] also observes this property. From
Fig. 1 we also see that the aspect ratio (defined analogously
to the aspect ratio of an ellipse) increases as the separation
decreases, similar to previous calculations of equilibrium
constant vorticity ellipses [6].

It is known that the mean field equations can have mul-
tiple solutions. In a disk two kinds of single vortices have
been previous studied: symmetrical at the disk center and
off-center [8,10]. In Fig. 2 we compare the thermodynamic
properties of the two-vortex states with these single vortices.
Usually solutions are described by E and S with fixed Q and
M, but for two-vortex solutions it is more informative to fix
Q and S and vary M to get similar states with different
separations since M and the vortex separation are simply
related. (E also changes with M.) These reference states are
plotted in the figure as a solid line. We then use the physical
parameters (Q,E,M) of each two-vortex solution on the
solid line to find the corresponding symmetric and off-center
vortices, plotted as the dashed and dotted lines respectively
in Fig. 2. For two-vortex solutions, the vortex separation
decreases with M and finally reaches a value below which no
solutions could be found, i.e., the iterative algorithm failed to
converge to a two-vortex solution and always converged to a
single vortex. This suggests a critical separation for two vor-
tices to merge, but could also reflect a failure of the root-
seeking algorithm. Compared with symmetric vortices, the
two-vortex states have higher entropies at large M, but the
entropy becomes lower as M decreases. Lower entropy
means a thermodynamically less probable state. But as long
as they are local entropy maxima we could expect stable
two-vortex states to rise in dynamical situations from nearby
initial distributions. Off-center vortices (the dotted line) al-
ways have the largest entropies. We suspect that they are
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FIG. 2. Entropies for states with Q=0.2. Solid: two-vortex ref-
erence states. Dashed (symmetric vortex) and dotted (off-center
vortex) lines have the same E(M) as the solid line.

absolute entropy maxima for this system.

The mean field equations are obtained by requiring the
vorticity distribution to be an entropy extremum. A question
arises naturally whether a particular solution is a maximum,
minimum, or saddle point. Only a maximum is expected to
be stable. To determine the thermodynamic stability of a so-
lution, a small variation dén(r,o) is added to a solution
no(r,o) and the entropy change is examined. This idea has
been used in Refs. [8,13] to calculate the stability of a single
vortex in a disk for the point vortex model. It has also been
used on the mean field theory to estimate the instability of a
shear layer to a coherent vortex [9]. Here we use this idea to
calculate the thermodynamic instability of two-vortex solu-
tions. The change én(r,o) of course needs to conserve Q,
M, E, and all the other conserved quantities. In the case of a
two-level initial vorticity field, the perturbation is just the
addition of a small variation Jw(r) to wy(r) and
V268yy=— Sw. The changes in the total vorticity, angular
momentum, and energy are

5Q=j Swdr, 6M:f r’éw dr, )

5E=j (Yobw+ +SYdw)dr=SEV + SEP. (3)

The entropy change, up to the second order, is

(Sw)?
2w0(g—w0)

55=p f Yodwdr— f (4)

Since SE=0 we could use 65— BSE instead of &S to get a
quadratic form. Also because &S is only evaluated to the
second order, for the energy constraint we only need to im-
pose SEV=0. To calculate these quantities we use the fol-
lowing procedure which could be used on any general 2D
distribution. First dw(r) is expanded in a complete set of
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FIG. 3. Eigenvalues for different modes. Circle: even-real mode;
diamond: even-imaginary; square: odd-real; triangle: odd-
imaginary.

orthonormal functions ¢,(r): dw(r)=2,a;¢;(r). Then 5Q,
SM, SEV, and 65— BSE can be expressed as

5Q:2 Qia;, 5M:z M;a;,

5E(1)—_-2 Ea;, 55—,35E=2 Sijaa;.
1 Y

Here Q;, M;, and E; are vectors and S;; is a matrix depend-
ing only on wy(r). Now we make an arbitrary linear trans-
formation transforming a; to b; but requiring b;=2,0;a;,
b,=3;M;a;, and by=%,E;a;. The constraints can now be
satisfied with b;=b,=>b3=0. In this new coordinate system,
S;; changes to another matrix T;; and 6S— B6E becomes
2,j>3T;jb;b;. By removing the first three rows and columns
from T,;;, we can perform the analysis without worrying
about the constraints. If all the eigenvalues of the new T;; are
negative, the state (wq,t) will be an entropy maximum.
When the largest eigenvalue reaches zero as system param-
eters change, the state becomes an entropy saddle point.

For the two-vortex solutions we expand dw(r) in Fourier
modes in the azimuthal direction and in Chebyshev polyno-
mials in the radial direction:

Amn T,,(r)ei”“g.

m+n=even

Here m+n even is required to give the correct parity for
each m mode. Because we have the two vortices sitting ex-
actly at =0 and 6=, the expansion components of
wo(r) are nonzero only for even m and all real. From Egs.
(2)—(4) we can see that for dw this separates even m from
odd m and also the real part of a,,, from the imaginary part.
Thus the space for a,,, separates into four subspaces: even-
real(cosine), even-imaginary(sine), odd-real(cosine), and
odd-imaginary(sine) modes.
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FIG. 4. (a) Vorticity distribution for Q=0.2, M =0.0373, and
S$=0.25. (b) Eigenvector for the even-real mode. (c) Eigenvector
for the even-imaginary mode. See text for contour levels.

In Fig. 3 we show the largest eigenvalue for each of the
four subspaces for different values of M and fixed Q=0.2
and S=0.25 (the solid line in Fig. 2). The even-imaginary
mode produces a rotation about the disk center [see Fig.
4(c)], and the eigenvalues (the diamonds) are zero as ex-
pected since the rotational symmetry persists in the finite
system. The odd-real and odd-imaginary modes correspond
to collective translational motions of the two vortices (along
and perpendicular to the line joining the vortices) [14] which
will give zero eigenvalues in the infinite system size limit. In
the finite system the motion corresponding to these modes is
not likely to be strongly mixing, so that the thermodynamic
stability analysis may not be a reliable guide to the behavior
in dynamics. In a pure electron plasma experiment [15] on
two symmetric vortices in a disk, vortices are observed ro-
tating around their symmetric equilibrium positions (with the
equilibrium positions also rotating around the disk center).
Their phases are such that the rotation is similar to a time-
varying combination of the odd-real and odd-imaginary
modes. Their result that the frequency and stability of the
rotation could be explained by the dynamics of two point
vortices confirms our conjecture about the nonmixing nature
of these two modes. In a finite disk, the odd-imaginary mode
moves the vortices closer by reducing their azimuthal sepa-
ration with the corresponding eigenvalues (the triangles) al-
ways positive. This is not surprising since this motion is in
the direction to form single off-center vortices which have
larger entropies (see Fig. 2). The odd-real mode (the squares)
has weakly positive eigenvalues at small M, and as M in-
creases the eigenvalues decrease and then become negative.
This can be understood because the vortices then sit closer to
the boundary and feel its repulsive influence more.

The last mode is the even-real mode corresponding to a
symmetric deformation of the two vortices. The eigenvalues
of this mode take on larger magnitudes than the other modes,
and we would expect the dynamics of this motion to be more
strongly mixing. The eigenvalues (the circles in Fig. 3) are
all negative. We identify the extrapolation of this eigenvalue
to zero as indicating the merging of the vortex pair in the
dynamics. This happens at a critical separation ratio
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(separation/average vortex diameter), which for the particu-
lar case in Fig. 3 occurs at about 1.7. This value lies in the
range of values obtained by different papers [3—6].

We plot in Fig. 4 the mean field vorticity distribution and
the even-real and even-imaginary mode eigenvectors of the
leftmost point in Fig. 3. The state is plotted with nine con-
tours from 0.1 to 0.9 with 0.1 increment. The ten contour
levels for the eigenvectors are equally spaced with dotted
lines for negative values. (The absolute amplitude is arbi-
trary.) We can clearly see that the effect of the even-real
eigenvector in (b) is to move the two vortices closer, i.e., the
mode produces a vortex merger. In fact, by adding the right
combination of the even-real and even-imaginary eigenvec-
tors to the mean field solution, we can get a vorticity distri-
bution similar to the early stage of a two-vortex merger ob-
served in a numerical simulation [4]. Finally we see (c) gives
a small rigid-body rotation of (a).

It is reasonable to expect the critical ratio to be indepen-
dent of the vortex size and this is normally the case in simu-
lations and experiments. In the mean field theory, however,
the vorticity field wg(r) is required to be a function of
Y(r)=1o(r)+Qr?. For a two-vortex distribution ¢, is
peaked at the centers of the vortices and then, since 1>0,
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after a minimum somewhere outside the vortices, increases
for larger distances until cut off by the boundary. Thus for a
large disk an unphysical vorticity ring is produced at the
boundary and this ring will influence the stability calculation.
For even larger disks the two-vortex solutions do not exist,
but similiar states are still observed in experiments and simu-
lations. We believe the reason is that in dynamics it is ener-
getically unfavorable for vorticity to move across the mini-
mum of ¢, and the region outside will be unsampled. Hence
in a free space two-vortex equilibrium could exist as a meta-
stable state. We choose a small enough disk so that the
boundary is not too far beyond the position of minimum
4. and the vortex ring is negligible. However the effect leads
to a roughly 10% uncertainty on the critical ratio.

In conclusion we have calculated two-vortex mean field
solutions in a disk. A thermodynamic stability analysis ex-
plains the existence of the stable two vortex states as local
entropy maxima. Critical separations for their existence are
also found from the crossing of the eigenvalues to positive
values and with results consistent with previous work.
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