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Learning-based Approaches for Controlling Neural Spiking
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Abstract— We consider the problem of controlling popula-
tions of interconnected neurons using extrinsic stimulation.
Such a problem, which is relevant to applications in both basic
neuroscience as well as brain medicine, is challenging due to the
nonlinearity of neuronal dynamics and the highly unpredictable
structure of underlying neuronal networks. Compounding this
difficulty is the fact that most neurostimulation technologies
offer a single degree of freedom to actuate tens to hundreds
of interconnected neurons. To meet these challenges, here we
consider an adaptive, learning-based approach to controlling
neural spike trains. Rather than explicitly modeling neural
dynamics and designing optimal controls, we instead synthesize
a so-called control network (CONET) that interacts with the
spiking network by maximizing the Shannon mutual informa-
tion between it and the realized spiking outputs. Thus, the
CONET learns a representation of the spiking network that
subsequently allows it to learn suitable control signals through
a reinforcement-type mechanism. We demonstrate feasibility
of the approach by controlling networks of stochastic spiking
neurons, wherein desired patterns are induced for neuron-to-
actuator ratios in excess of 10 to 1.

I. INTRODUCTION

Networks in the brain are composed of neurons that
propagate information through impulsive electrical signals
known as action potentials, or ‘spikes’ [1]. Understanding the
precise mechanisms of how spiking dynamics mediate infor-
mation processing is a fundamental neuroscience question.
One approach to studying this question is to use extrinsic
‘neurocontrol’ [2] to stimulate populations of neurons in
vivo, so as to observe consequent changes in animal be-
havior. In this context, stimulation can be understood as
an experimentally delivered input (e.g., an electrical field,
or optical illumination) that excites the actuated region of
the brain. Given the prevalence of such technologies in
both clinical and basic scientific domains, there is interest
in using neurostimulation technologies [3], [4] to induce
spiking patterns in neural populations and networks.

In this vein, there has been as desire for theoretical
and engineering schema that address the neurocontrol prob-
lem [3]. These approaches generally follow optimal control
frameworks towards objectives such as desynchronizing a
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Fig. 1. Control network concept. (A) The spike-selective neurocontrol prob-
lem seeks to design stimulation inputs u* that can produce spatiotemporally
specific patterns of spiking activity. Here, stimulation can be understood as
an extrinsic input that actuates a network of cells. (B) The approach explored
in this paper involves the design of a recurrent control network (CONET)
that interfaces with the (generally unknown) plant network and learns to
control it.

neural population (e.g., [5], [6] and the references therein),
or selectively firing specific neurons within a population in
ordered sequences [3], [7] or in a time-optimal fashion [8].
Other approaches have taken a probabilistic view of the neu-
rocontrol problem, focusing on manipulating the likelihood
of neural spiking [9], [10], subject to input constraints.

The above approaches are useful insofar as they enable
basic and important insights into fundamental limitations
associated with neurocontrol. For example, in [8] it is shown
that heterogeneity in the dynamics of neurons is essential
for enabling temporally precise spiking objectives. How-
ever, from a practical perspective, these approaches suffer
from needing a well-parametrized model (either a dynamical
systems-based or statistical) of the network that is being
controlled. This presents a major analytical challenge, since
the dynamics within neuronal networks are usually highly
non-linear and stochastic. Thus, performing formal control
analysis and design on systems larger than a few neurons
rapidly becomes intractable.

Compounding this difficulty is the fact that for many
technologies, the degrees of actuator freedom are quite re-
stricted (e.g., a single actuator that can deliver only piecewise
constant inputs). In other words, individual neurons do not
receive independent inputs, but rather are simultaneously
controlled through a single stimulating device (see Figure
1 for schematic).

In this work we attempt to obviate some of these chal-
lenges through a non-classical, model-free control design
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approach. Specifically, here we consider the problem of
inducing neural spike trains by means of learning, wherein
the ‘controller’ is itself a network of simulated neurons.
This control network, or CONET, resides beside the target
spiking network and learns to control it without a prior
dynamical model. This approach is appealing at a conceptual
level, since it conforms quite directly to the internal model
principle of control [11]. If successful, our controller would
mirror the system being controlled(i.e, a network controlling
a network).

From a technical perspective, our approach can be viewed
as a model-free control design using an artificial neural
network. Such a framework has a long history of success in
a variety of control applications (see, e.g., [12]). However,
unlike conventional neural networks, the CONET has a fully
recurrent connectivity and is probabilistic in its output. Our
principal objective is to find a learning rule for the (recurrent)
connection weights so that the desired control objective is
met. To do so, we build on our recent developments in
network-based information maximization [13], wherein we
developed a pairwise learning rule that allows a recurrent
network to retain information about its inputs over time. In
this paper, we exploit this framework for the purposes of
control by: (i) tailoring the architecture of the CONET so that
it maximizes the information between its activity and that
of the plant network, and (ii) endowing the overall learning
rule with a reinforcement mechanism, towards enabling the
CONET to issue control signals that realize tracking of the
desired spike pattern. It turns out that this overall framework
is remarkably effective in generating controls that can induce
nontrivial spiking patterns.

The remainder of this paper is organized as follows. In
section II we formalize the control problem we consider and
introduce the model used for our study. Section III provides
the main technical results, and we show several examples
illustrating the efficacy of the CONET. Section IV concludes
the paper.

II. FORMULATION AND PRELIMINARY RESULTS
A. ‘Plant’ Spiking Network

Our goal is to induce prescribed spiking patterns in a
network of spiking neurons by means of extrinsic stimula-
tion. For clarity, and in concordance with control-theoretic
parlance, we will heretofore refer to this controlled network
as the ‘plant’ network. For simplicity, we will model the
plant network in discrete time wherein the i® neuron is
characterized by a variable z! = {0,1} at time ¢t € N¥.
Neurons are linked by synaptic coupling weights @w;;. The
variable Z! is obtained as P(z! = 1) = gg(v!), where v}
is an underlying state variable that aggregates input from
pre-synpatic neurons via

Np

—t __ E — =t—1 t—1

v; = wijxj +u y (1)
j=1

and u'~! is the control input, Np represents the number

of neurons in the plant network and gg(-) is a sigmoidal

function:

g95(0;(t — 1)) = , where 0 = —20(7;(t — 1)).

1+ exp(6)
(2)
Thus, at a given time, each neuron is either spiking
(x* = 1) or silent (z* = 0), governed by a time-varying

Bernoulli process. Importantly, the entire network receives a
single input ut, which mimics the scenario described in the
Introduction wherein actuation is common to many neurons
in a population.

B. CONET Description

The control network (CONET) is modeled in a similar
fashion to the plant network. Here, the it" neuron is specified
in terms of z! = {0, 1} at time ¢, and is obtained as P(z! =
1) = gg(v}), where v} is

wijay t+ I 3)

@eu-
I

1
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and [, ffl is an extrinsic input. Since the CONET is entirely
simulated, this input can be indexed by i. N represents the
number of neurons in the CONET and gs(-) is a sigmoidal
function, similar to (2).

It is critical to note the conceptual point that the plant
network and the CONET are distinct entities. The former is
the object being controlled, while the latter is the object gen-
erating control signals. Several points are worth emphasizing
here:

o The CONET is fully recurrent, since any neuron can be
connected to any other.

e The CONET does not assume any knowledge of the
plant network. In fact, the plant network does not need
to modeled as in (1). Most notably, the number of
neurons in the plant network can be different from the
number of neurons used in the CONET (i.e., Np # N),
though for reasons that will soon be clear, we will
generally assume that N > Np.

 The (recurrent) connections of the CONET (w;;) do not,
a priori, have any relationship with the with connections
of the plant network (which are assumed unknown to
the CONET).

C. CONET Design

The CONET interacts with the plant network in two ways:

a) Spike feedback: We assume that the CONET can
observe the spiking activity of the plant network and use it
as a feedback signal, via

[L1(t), ..., In(t)] = h(X"), @)

where x* = [z}, ..., % ] and h(-) € RV*NP is a feedback
function.

2828

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 19,2021 at 23:19:35 UTC from IEEE Xplore. Restrictions apply.



Feedback function ~ N\

(h0))

Fig. 2. Schematic of CONET design structure.

b) Control signal read-out (decoder): The CONET
generates a control signal that will be fed back to the plant
network. To simplify this design, we will implement two
dedicated subsets of neurons: one that receive spike feedback
from the plant network and another that provides the control
signal readout. We will assume that the N — Np read-out
neurons in the CONET generate a control signal that is
decoded from the read-out neurons via

u(t) = r(xhy,), (5)

where x!,, = [z}, ,q,...,a%] and r(:) € RN"NP s a
decoding function. This decoding structure presumes that
the CONET has more neurons than the plant network, as
schematically depicted in Figure 2. Our specific design of
the decoding function will be presented in Section III.

The remaining inner neurons in the CONET will enable
learning of the intended control objective.

The overall question is thus: How should the connectivity
weights of the CONET be set or adaptively learned in order
to enable the CONET to issue effective control signals? In
particular, we would like u(t) to produce desired patterns of
spiking in the plant network.

Towards this objective we will exploit the idea of in-
formation maximization, wherein the CONET will try and
maximize information between the target and achieved spike
patterns. An important preliminary result towards this goal
is provided below.

D. Learning for Maximization of Mutual Information

Denoting the state vector of the whole CONET as x! €
R¥, and the history of the network from ¢; to t; by X/ €
RN*(t2=t1) " we consider the basic problem of maximizing
the cumulative information retention within the CONET over
time. Mathematically, this can be written as:

max MI(x'; X1, (6)
where w denotes the network connectivity weights. And
_ , P(xt| X1
MI(x5 X = P(x!, Xi™ 1 log ———L 2
1 Xt%;_l 1 P(xt)
(7

that is, the Shannon mutual information between the current
state of the network and its history (X f_l) over the horizon
t — 1 time steps.

The underlying idea behind this maximization is that
since the CONET will receive feedback from the plant

network, such optimization might allow it to learn a latent
representation of the plant network dynamics that can then
enable control.

In our prior work [13], we used a typical gradient approach
to derive a learning rule that solves (6), understanding
that the non-convexity of the objective means that global
solutions are not assured. The derived rule can be written in
the form of

Aw; =2Exe [o}5(1) + 03 ()], )

where v is the gradient-based learning rate. Borrowing ter-
minology from neuroscience, gb?j (t) is known as a Hebbian
modification function [14] since it promotes co-activation
of neurons, while ¢¢,(t) is anti-Hebbian. Each of them is
composed of two components as follows:

1) = (0" (0, ot 2571 + ¢ (ph, 1 - af, 257Y)
5() = (" (ph o, a5 + 0 (0, 1 — w257 1)

where p! = P(xz! = 1). More specifically, the anti-Hebbian
¢ (t) has:

©))

J

¢a(p§7x§’$§71) — 923 (E[(Pﬁ)z] - E[Pf]) xtflfé_'_

_ E[(p!
O R Gt

P 0~ o)+ 28(p)al (1 - ).

Similarly, the Hebbian part qbfj (t) consists of:

t
_ Dt _
"ot ) =26 (1= gty tow g ) 1t

—pt
01 =t ) =28 —ptlom( ) ) 71— o
1D

The information-optimal learning rule (8) thus promotes
either correlation or de-correlation between neurons, through
alternations between Hebbian and anti-Hebbian variables
(9). Intuitively, the Hebbian component strengthens connec-
tions during correlated firing and thus helps ‘memorization’.
Oppositely, the anti-Hebbian term promotes forgetting or
correction through connection weakening.

The derived information-optimal plasticity rule (8) con-
tains ‘global’ variables, such that each variable in (10) and
(11) require knowledge of all other neurons of the entire
network (since the expectations are taken with respect the
joint distribution of the entire network). Thus, this form
of learning is computationally arduous and does not scale
gracefully.

However, in [13], by assuming ergodicity in the recurrent
activity, we developed a local, nested recursive estimator for
the expectations of gi)?j (t) and ¢y, (t), expressed as &)Z (t) and

¢; () such that
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Awg; = [635(s() + 655" (s(1)] , (12)
where s(t) = (51,7, 55,4, 55, 51,0+ 55,1;» 56.5;) and
t t t
Thoey 520N ¢ S2,i — Sl ¢
(1) = (Sii)sug‘ - (1_7831) 4,ij> (13)

¢;ja(t) = ngg + +Sg,ij'

These surrogate state variables evolve according to:

TiAsy ;= =8y +g(v));

T2Ash ;= — s, Ll + (g(v))%;

TBAsg,i = *531‘ +g( ?) t

T4Asi7ij = 84 i T4 531 2 1,

7'5A527ij = —st; Ul + (—g(v}) Sg,ﬂ;_l"‘

t (14)
<1—gwb>mg<g@>>s§x§1

51

TGASé,ij = _37(55,7 —g(v ))

<—md»mg<1_s

Here, sf ;, sb ;, s4 ; are variables that depend on the state
of the post-synaptic neuron (i.e., the neuron on the end of
the connection), while s} ;;, st ,;, s, are variables that
depend on the pairwise activity of the pre- and post-synaptic
neurons. Each of these variables can be understood in terms
of performing a particular step toward the overall estimation
of the joint distribution, through purely pairwise operations.
In essence, (12)-(14) can be viewed as a scheme to perform
recurrent information optimization in a computationally ef-
ficient, distributed fashion.

ITII. RESULTS

We proceed with our CONET design in two steps. First,
we begin by showing the ability of the CONET to learn
the latent structure of the plant network, consistent with the
internal model principle. We then extent the capability of the
CONET by incorporating a reinforcement mechanism that
naturally fits with the learning dynamics in (12)-(14).

A. Latent Structure Inference of ‘Plant’ Network

In this section, we demonstrate the CONET capability of
inferring the plant network dynamics based on the observa-
tion of output spike trains. As an example, we construct the
plant as a network of 20 interconnected neurons with each
neuron modeled as a spiking unit based on equations (1) and
(2). For neurophysiological consistency, the network con-
sists of dedicated inhibitory neurons and excitatory neurons
and an approximately balanced ratio of excitatory-inhibitory
connection weights [15]-[17]. In particular, there are fewer
inhibitory neurons than the excitatory, but the inhibitory links
are on average stronger than the excitatory links. Here, the
plant network has 6 inhibitory neurons and the rest are exci-
tatory. In the network, we can distinguish these two types of
neuron populations according to the connections emanating

from them: inhibitory neurons emanate only negative links,
while excitatory neurons connect to other neurons through
only positive links (Figure 3A).

For ease of illustration, all the inhibitory connections
are of strength —2, and all the positive connections are 1.
Neurons are not connected if the link between them is 0. Note
that neurons do not produce self-excitation or self-inhibition.

We construct the CONET to be a 20-neuron network,
where each neuron reads the spiking activity directly from
one of the neurons in the plant network via the feedback
function

Il = az! — a/2,

15)

where o = 4. This feedback function scales the amplitude
of the binary Tt so as to be commensurate with the neuronal
input ZJ 1 Wij J* in (3).

With this feedback function we expect that, when endowed
with the learning rule (12)-(14), the CONET is able to learn
the latent structure from the plant network based on obser-
vation of the spikes. Indeed, this is precisely what occurs.
The connectivity of the CONET after learning is illustrated
in Figure 3B. To emphasize the point, we thresholded the
learned CONET weights, such that all the positive links
larger than 0.1 are rounded to 1 and all the negative links
—0.1 are set to —2 (Figure 3C).

B. CONET learning algorithm

In Section II, we derived a learning rule for recurrent
information optimization within the spiking network activity
(i.e., (6)). We have shown that the learning rule is capable
of correlating and decorrelating actions through the Hebbian
and anti-Hebbian learning components, respectively, when
either is favorable for optimality.

However, the derived learning rule does not yet consider
the optimization with respect to the a prescribed control
objective, or this case a desired spike patterns. Therefore,
expanding on (8), we introduce an augmented learning rule
by employing a reinforcement mechanism such that can
modulate the alternations between the Hebbian and anti-
Hebbian regimes based on an external objective function.

More specifically, the alternation is guided through two
real reinforcement coefficients cf,cf, such that the new
learning rule is:

Awt; = ylchdi;" (£) + chbi " (8)]. (16)

The coefficients ¢}, ¢, adjust the weights of Hebbian and
anti-Hebbian learning components in the synaptic learning
rule according to:

ThAcf1 = —cz + (1 — 1)Qt;
(1. — DQ".

Here, Q' is our reward function at time ¢, which is
calculated based on the /o distance between the network
output X? and the desired pattern at time t:

= V/Np/2 - [Vx =¥,

17
ToAc = —cl — 17

(18)
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Fig. 3.
(B) The CONET connectivity matrix after learning and (C) thresholding.

where X represents the (observed) plant network activity and
y! is the desired spiking pattern at time t. The reward Q*
takes value over a range of [—v/Np/2,1/Np/2]. This form
of reward function allows for small distance between X* and
y! to generate positive reward, whereas large distance leads
to negative reward..

We note that the reinforcement mechanism in (17) differs
from the conventional reinforcement learning algorithms that
usually address the reward optimization problem directly
[18]-[20], e.g., via explicit gradient ascent on the objective
function. Here, we do not have a closed form solution of the
reward function @ in terms of the network dynamics (recall
that 7! comes from the plant network, whose dynamics are
opaque to the CONET). Thus, optimization methods that rely
on functional manipulation of Q! [21], [22] are difficult to
apply in this setting. Instead, here we approach our problem
by incorporating the reward and its history within the derived
synaptic learning (16) through its dynamics (17).

In particular, (17) implements a basic filtering operation on
the reward Q*, which in turns modulates either the strength-
ening of weakening of connections within the Hebbian/anti-
Hebbian learning framework. The time constants 7,7, in
(17) represent a forgetting factor in the low-pass-filtering
dynamics in (17). They imply how much immediate reward
Q! is preserved in determining the alternations between
Hebbian and anti-Hebbian regimes. Larger time constants
lead to actions that benefit more immediate outcome.

C. Control in a population of neurons

The addition of the reinforcement dynamics of (16) -
(18) enables the CONET to learn to manipulate the plant
network spike trains to a target pattern. To demonstrate
the capacity of the new learning rule, here we consider an
example of controlling an 11—neuron network to produce
an hourglass-shaped pattern (Figure 4A) via a single control
input. In this case, we augmented the CONET used in the
previous inference example with an additional output layer
that provides control signal readout (i.e., consistent with
Figure 2). We define the decoding function of (5) as:

15 I I 15 I I

-i
I

20

The CONET learns the latent structure of the plant network from the plant spiking activity.(A) Actual connectivity of the plant network.

recalling that without loss of generality, the last (N — Np)
neurons of the CONET are designated as the readout layer.
The readout u(t), by aggregating the spikes from the output
layer, reflects the instantaneous firing intensity of the output
population in the CONET. Here, we emphasize that neurons
in both layers are all recurrently connected such that the
CONET is a recurrent network as a whole. The connections
in CONET adapt according to the learning rule given in (16)
- (18) during the learning process.

For the above scenario, we simulated learning by repeat-
edly presenting the pattern to the CONET 128 times. We
observed that the CONET converges at around ¢ = 300 steps,
reflected by the average reward in Figure 5. Since the initial
condition of the CONET is randomized, the initial reward
is usually negative. From Figure 5, we see that the reward
increases rapidly from this initial negative value to positive,
and then grows until it converges to around Q* = 0.6.
We note that the theoretical maximal level of the reward,
based on (18), is Qmaxz = VNp/2 =~ 1.66 (for a plant
network with Np = 11). Although it may appear to us that
the maximal reward in simulations @Q* is far less than the
theoretical ()42, the result indicates that the error between
x! and y*! after training is in fact, on average, one spike per
time step, since:

||Vit_yt‘|:Q7rzaw_Q*: \/]VP/Q_Q*%1 (20)

>
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Fig. 4. Averaged controlled spiking activity for a target hourglass
pattern in a population of 11 neurons. (A) The target spike sequence is

N used to control N = 11 connected neurons with unknown connection. (B)
u(t) = T(Xfm L) = Z xi, (19)  The mean spiking activity of the controlled plant network at the time of
k=Np+1 each spike.
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of neural dynamics, we explored the possibility of using
a learning-based approach, wherein an artificial network
05 ] construct interfaces with network being controlled via the
stimulator. We showed numerical proof-of-concept that such
an approach can be used to learn a control strategy on-the-
fly. More detailed investigation of this approach, including
study of convergence properties and efficacy for biophysical
neuronal networks, will be the subject of future work.
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o
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