Supporting Information:
Nonelectrostatic Adsorption of Polyelectrolytes
and Mediated Interactions between Solid Surfaces

Christopher Balzer,†§ Jian Jiang,‡§ Ryan L. Marson,¶ Valeriy V. Ginzburg,‖ and Zhen-Gang Wang*,†

†Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
‡Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
¶Research and Development, The Dow Chemical Company, Midland, Michigan 48674, USA
‖These authors contributed equally.

E-mail: zgw@cheme.caltech.edu
Figure S1: Adsorbed amount as a function of the depth of the nonelectrostatic potential for varying salt concentrations with no electrostatic correlation. (a) Adsorption on like-charge surface with $Q = -0.1 \, \text{e/\text{nm}^2}$. (b) Adsorption on neutral surface. The curves for $\rho_{\text{salt},b}\sigma^3 = 0.0$ and $\rho_{\text{salt},b}\sigma^3 = 1 \times 10^{-4}$ are indistinguishable in both panels. The inset in (b) shows the transition region for the salt effects. The bulk polyelectrolyte monomer density is $\rho_{p,b}\sigma^3 = 0.01$; and the polymer chain length is $N = 50$ and the valency of the polyelectrolyte is $Z_p = -0.5$.
Varying Monomer Bulk Concentration - Adsorption

Figure S2: Adsorbed amount as a function of the depth of the nonelectrostatic potential for varying salt concentrations for a negatively charged surface ($Q = -0.1\, \text{e/nm}^2$). Each panel is for a different bulk concentration. The curves for $\rho_{\text{salt},b}\sigma^3 = 0.0$ and $\rho_{\text{salt},b}\sigma^3 = 1 \times 10^{-4}$ are indistinguishable in most panels. The polymer chain length is $N = 50$ and the valency of the polyelectrolyte is $Z_p = -0.5$.

\[\times 10^{-6}\, p_{p,b}\sigma^3 = 0.01 \]

\[\times 10^{-6}\, p_{p,b}\sigma^3 = 0.05 \]

\[Q = -0.1\, \text{e/nm}^2 \]

\[\times 10^{-6}\, p_{p,b}\sigma^3 = 0.1 \]

\[Q = -0.1\, \text{e/nm}^2 \]

\[\times 10^{-6}\, p_{p,b}\sigma^3 = 0.15 \]

\[Q = -0.1\, \text{e/nm}^2 \]
Figure S3: Adsorbed amount as a function of the depth of the nonelectrostatic potential for varying salt concentrations for a neutral surface. Each panel is for a different bulk concentration. The curves for $\rho_{\text{salt},b}\sigma^3 = 0.0$ and $\rho_{\text{salt},b}\sigma^3 = 1 \times 10^{-4}$ are indistinguishable in most panels. The polymer chain length is $N = 50$ and the valency of the polyelectrolyte is $Z_p = -0.5$.
Varying Monomer Bulk Concentration - Interaction

Figure S4: Polyelectrolyte-mediated force between surfaces as a function of surface separation for varying strengths of nonelectrostatic attraction to the surface without the Hamaker attractive potential. The bulk salt concentration is $\rho_{\text{salt}, b} \sigma^3 = 0.0$; the polymer chain length is $N = 50$; the valency of the polyelectrolyte is $Z_p = -0.5$; and the surface carries a negative charge of $Q = -0.1 \text{ e/nm}^2$.

S-5
Figure S5: Polyelectrolyte-mediated force between surfaces as a function of surface separation for varying strengths of nonelectrostatic attraction to the surface with the Hamaker attractive potential. The Hamaker constant is 5×10^{-20} J. The bulk salt concentration is $\rho_{\text{salt},b} \sigma^3 = 0.0$; the polymer chain length is $N = 50$; the valency of the polyelectrolyte is $Z_p = -0.5$; and the surface carries a negative charge of $Q = -0.1 \text{ e/nm}^2$.

\[
\rho_{p,b} \sigma^3 = 0.01
\]

\[
\rho_{p,b} \sigma^3 = 0.05
\]

\[
\rho_{p,b} \sigma^3 = 0.1
\]

\[
\rho_{p,b} \sigma^3 = 0.15
\]
Figure S6: Polyelectrolyte-mediated force between surfaces for varying bulk concentrations of added salt. The polymer chain length is \(N = 50 \); the valency of the polyelectrolyte is \(Z_p = -0.5 \); and the surface carries a negative charge of \(Q = -0.1e/\text{nm}^2 \).