A Caltech Library Service

Superconducting Properties of Copper Oxide High-Temperature Superconductors

Chen, Guanhua and Langolis, Jean-Marc and Gou, Yuejin and Goddard, William A., III (1989) Superconducting Properties of Copper Oxide High-Temperature Superconductors. Proceedings of the National Academy of Sciences of the United States of America, 86 (10). pp. 3447-3451. ISSN 0027-8424. PMCID PMC287153. doi:10.1073/pnas.86.10.3447.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


The equations for the magnon pairing theory of high-temperature copper-oxide-based superconductors are solved and used to calculate several properties, leading to results for specific heat and critical magnetic fields consistent with experimental results. In addition, the theory suggests an explanation of why there are two sets of transition temperatures (Tcapprox 90 K and Tcapprox 55 K) for the Y1Ba2Cu3O6+x class of superconductors. It also provides an explanation of why La2-xSrxCuO4 is a superconductor for only a small range of x (and suggests an experiment to independently test the theory). These results provide support for the magnon pairing theory of high-temperature superconductors. On the basis of the theory, some suggestions are made for improving these materials. The agreement with experiment for various properties predicted by using the magnon pairing model of superconductivity provides strong support for the validity of this model for the Cu--O systems. All quantities are related to the fundamental parameters of the system (Jdd, JOCu, band structure). Some approximations have been made in the solutions to these equations. Nevertheless, the fundamental parameters are well defined, and hence improved calculational approximations will eventually lead to precise predictions of all properties. In this theory, the superconducting properties are related to fundamental structural, chemical, and physical properties, allowing one to use qualitative reasoning in contemplating how to improve the properties.

Item Type:Article
Related URLs:
URLURL TypeDescription CentralArticle
Goddard, William A., III0000-0003-0097-5716
Additional Information:© 1989 by the National Academy of Sciences. Contributed by William A. Goddard III, February 9, 1989. This research was supported by the Office of Naval Research with assistance from the Donors of the Petroleum Research Fund, administered by the American Chemical Society. The calculations were carried out on the Alliant FX8/8 computer and also on a DEC VAX 8650 computer. These computer facilities were provided by the Defense Advanced Research Projects Agency/Office of Naval Research, National Science Foundation (Division of Materials Research, Materials Research Groups), Department of Energy/Energy Conversion and Utilization Technologies, and the National Science Foundation (Division of Chemistry). This is contribution no. 7881 from the Arthur Amos Noyes Laboratory of Chemical Physics. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
Funding AgencyGrant Number
Office of Naval Research (ONR)UNSPECIFIED
American Chemical Society Petroleum Research FundUNSPECIFIED
Defense Advanced Research Projects Agency (DARPA)UNSPECIFIED
Department of Energy (DOE)UNSPECIFIED
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Arthur Amos Noyes Laboratory of Chemical Physics7881
Issue or Number:10
PubMed Central ID:PMC287153
Record Number:CaltechAUTHORS:CHEpnas89
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:10891
Deposited By: Archive Administrator
Deposited On:15 Jun 2008
Last Modified:08 Nov 2021 21:12

Repository Staff Only: item control page