2103.07403v1 [cs.RO] 12 Mar 2021

arxXiv

Generating and Characterizing Scenarios for Safety Testing of
Autonomous Vehicles

Zahra Ghodsi', Siva Kumar Sastry Hari?, Turi Frosio?, Timothy Tsai?, Alejandro Troccoli?,
Stephen W. Keckler?, Siddharth Garg', and Anima Anandkumar?
INew York University 2NVIDIA Corporation

Abstract— Extracting interesting scenarios from real-world
data as well as generating failure cases is important for the
development and testing of autonomous systems. We propose
efficient mechanisms to both characterize and generate testing
scenarios using a state-of-the-art driving simulator. For any
scenario, our method generates a set of possible driving paths
and identifies all the possible safe driving trajectories that can
be taken starting at different times, to compute metrics that
quantify the complexity of the scenario. We use our method
to characterize real driving data from the Next Generation
Simulation (NGSIM) project, as well as adversarial scenarios
generated in simulation. We rank the scenarios by defining
metrics based on the complexity of avoiding accidents and
provide insights into how the AV could have minimized the
probability of incurring an accident. We demonstrate a strong
correlation between the proposed metrics and human intuition.

I. INTRODUCTION

Research and development of Autonomous Vehicles (AV)
has surged in recent years thanks to advances in perception
and planning, with many companies starting on-the-road
testing [1]. Despite these breakthroughs, a successful uptake
of this technology remains challenging due to safety concerns
and its complexity. While AVs are being tested in the real
world, comprehensive testing requires prohibitive driving
times because the occurrence of unsafe conditions is rare [2].
Such testing is also expensive and hazardous. Fast methods
to uncover unsafe driving conditions that are challenging for
the AV systems at a reasonable cost are therefore valuable
for making AVs safe.

Physics-based simulators enable comprehensive testing of
the AV under conditions similar to the real world, and photo-
realistic simulators allow testing of the perception modules
in the AV stack. Significant advancements have been made
in developing such simulators [3]-[5] providing a scalable
and safe environment for testing AVs. Custom scenarios
and corner cases can be tested in simulation under various
conditions that are often hard to encounter in reality but are
valuable for safety testing. Prior research proposed methods
to generate scenarios for safety testing of AVs [6], [7].
Potentially unsafe scenarios are generated using reinforce-
ment learning or optimization methods that aim to reduce
the distance between the AV and an attacker (e.g., car or
pedestrian). In these methods, a scenario is considered useful
if it involves a collision or a near collision. However, not
all scenarios that end in an accident are useful because the
AV may not be able to avoid the accident given minimum

SafePathinv
UnsafePercent
AvgEffort
MinEffort
Narrowlnv
CriticalTime

poancn

(@) (b)

Fig. 1: (a) depicts a generated unsafe scenario, with trajec-
tories for all vehicles from 1.5s before to 1s after collision.
The base trajectory of the AV (resulted in collision) as well
as safe driving paths found are shown. The breakdown of
characterization metrics for this scenario is shown in (b).

required times for object perception, processing, and actuator
command issuance by the AV software and for the car to
execute the evasive maneuver and physically move.

Instead, we consider a scenario as interesting if the AV
can avoid the collision in at least one way. Testing the AV
using this scenario allows us to identify shortcomings and
bugs in the AV system that when addressed, can avoid the
collision. Additionally, we need the ability to characterize the
generated scenarios based on the varying levels of difficulty
(possibility of avoiding the collision) such that the scenarios
can be prioritized for AV debugging or for learning methods.

The contributions of this work are twofold. First, we
develop a method to characterize driving scenarios used
for safety testing of AVs. To the best of our knowledge,
characterizing unsafe scenarios based on the avoidability of
the accident has never been explored. We define metrics to
characterize scenarios based on the following factors for the
AV: the number of safe driving paths, total paths in the
scenario, narrowness of safe paths, and the effort required
to follow each safe path. We enumerate and store the set of
paths using a computationally efficient tensor representation
and calculate the above metrics in the tensor space. We
show that our characterization method can extract interesting
scenarios from real driving data [8].

Second, we develop a method for generating unsafe sce-
narios which can take an initial executed driving scenario
as input (generated randomly, from traffic models, or even
from real data) and introduce perturbations such that the
likelihood of an unsafe condition increases. Our method

models dynamic actors who act as attackers (or distracted
drivers) for a fixed time with constraints on acceleration and
steering. The attacker aims to create an unsafe condition
by reducing the distance between itself and the AV. Our
proposed scenario generation method can create a variety
of scenarios with varying levels of difficulty using multiple
modes for generating a scenario with constraints on accelera-
tion and steering controls of the attacker actor. This method is
not constrained to a specific AV policy and can dynamically
generate unsafe scenarios for any AV under test. We generate
approximately 240 scenarios per hour on a single system
with up to 80 accidents using our method. Results suggest
that more than 90% of the generated accidents are avoidable
with appropriate actions taken (by an ideal AV system)
approximately 2 seconds before the collision.

Fig. [1) shows the typical output of our scenario generation
and characterization method. In this example, two attackers
try to hit the AV from behind. The computed safe paths
are shown in green in Fig. [Ta] which suggest that changing
the lane after detecting the accelerating rear vehicles can
avoid the accident. The breakdown of our metrics is shown
in Fig. where UnsafePercent represents the percentage
of trajectories available to the AV that are unsafe, and
NarrowInv represents the narrowness of a safe trajectory
and the precision required to navigate through it. The large
UnsafePercent indicates that most of maneuvers from the
AV inevitably lead to a collision, and only a few trajectories
lead to changing the lane and a safe outcome. A large
Narrowlnv also indicates that the AV has to take a precise
action, i.e., change lane at the very beginning of the scenario,
to avoid collision. If the AV is not designed to take this
action, the information from this scenario can be used to
improve the driving policy. Similarly, our characterization
method for different scenarios can help developers gain a
better understanding of the AV performance and prioritize
these scenarios in AV policy development and improvement.

II. GENERATING AND CHARACTERIZING SCENARIOS

We define a driving scenario such that it includes the
description of the environment, number of actors, initial
states of the actors, and the driving policies of all actors
except for the AV. Such a definition allows using a scenario
to test or benchmark different AV policies. A driving scenario
includes the following. (1) A set of descriptors to characterize
the environment, e.g., the number of lanes, their widths, and
the road curvature. (2) A set of N vehicles {w;};—1. n and
their states {s;(t9)}i=1..v at time to; the state includes the
vehicle position x;, orientation 6;, and speed v;; the size of
each vehicle is also provided. (3) A set of driving policies
{m;}i=1..n associated with each non-AV vehicle. (4) One AV
indicated with w4y and its state at time ¢, sav (to).

We use the term sequence to indicate a temporal succes-
sion of states of all the vehicles. Therefore, in a sequence
the trajectories of the vehicles are fixed. Sequences can be
extracted from real-world data or from driving simulations.
To create a scenario, we can extract the state of a set of
vehicles (including the AV) at time ¢ in a sequence. We

0.5m

— Possible AV
> positions for next
@ time-step based on
AV acceleration and
steering constraints

Centers of quantized cells
® Valid @ [nvalid

Fig. 2: The quantized region on the map where the AV
can travel in the next time-step based on maximum allowed
steering and acceleration

initialize the state of all the vehicles in the scenario with
these sampled states, and assign policies to all of them but
the AV. A simple policy is to follow the trajectories that have
been measured in the sequence. More complicated policy
implementations such as those described in Section [[I-C
can also be considered. We point out that not all sampling
times result in interesting scenarios, e.g., the corresponding
scenario can be easy to solve when the AV is far from the
other cars. As stated in the Introduction, we instead look
for interesting scenarios, where a collision or near collision
happens, and the AV can avoid it in at least one way.
This is because if the collision is unavoidable, there is no
solution independent of the AV policy. We sample interesting
scenarios by starting from collision time ¢. and moving back
in time to find ¢y such that the AV can follow at least one
safe path to avoid the collision (more detail in Section
[A). It is worth noting that our characterization method can
characterize any scenario, and can also be used to identify
interesting or diverse scenarios.

A. Characterization method

Once a scenario is defined, we want to characterize how
difficult it is to be solved by the AV, i.e. how many safe paths
exist and how hard is it to follow them. A naive approach
to find a safe path for the AV in a scenario would be to
run simulations with different driving policies, which would
incur unacceptable runtime overheads. Instead, starting from
a given ty (e.g., three time-steps before the sequence end
time t.,q), we calculate a set of possible locations of the
AV in the next time-step. We compute the possible locations
by calculating the annulus sector (shown in light blue color
in Fig. 2) corresponding to all the possible locations for
the center of the vehicle, based on the maximum possible
acceleration (positive or negative) and steering of the AV at
its current state. We discretize the 2D sector with a grid with
0.5m spacing between the cells (different spacing can also
be used).

An approach to compute all safe paths would be to build
a tree with all the possible trajectories that can be executed
by the AV (starting at tp). Each node in the tree at depth
1 corresponds to a valid state of AV at time-step ¢; defined
by AV coordinates (x,y), orientation #, and velocity v. Each
node stores the corresponding AV state along with the state
of other actors in the scenario at ¢;. The children of each

Next possible
AV states

[x1, i, v1,64]

V = Upin

1| Determine valid\{

states from map
matrix and x

collision tensor

(@)

x
Tensor at time ¢;

UV = VUnmin

: x
Tensor at time ;.

5 vmnx

UV = VUnmin

| map
matrix

_V

collision
tensor
at t;

(b)

Fig. 3: Scenario scoring based on search for safe driving policy. (a) represents the propagation of tensor representing AV state
from time t; to time t;, by computing next possible AV states for each valid state at ¢y, and determining next valid states
based on map matrix and collision tensor. (b) depicts pre-calculation of map matrix and collision tensor from a scenario.

node are computed by recording the state of the AV for cells
whose centers fall into the annulus in Fig. 2] The cells whose
centers are either off-road or result in a collision with another
vehicle correspond to invalid AV states and are discarded.
Valid state coordinates and invalid state coordinates for AV
are shown as green and red dots in Fig. |2| respectively. For
each new valid AV state, we create a node in the tree and
iterate the procedure until we reach the time-step ¢.,,4. In this
structure, a safe trajectory is equivalent to a path from the
root to a leaf in the tree (all tree nodes correspond to valid
AV states). If no safe path exists, we would move back one
time-step from ¢y and repeat the procedure until a safe path
is found. This approach could also be used to find a critical
scenario, i.e., a scenario beginning from time-step ty that
results in a collision with the AV at ¢., and includes a safe
path from ¢y to t.,q = t. + 1 such that the AV can avoid
the collision, but there are no safe paths at ¢y + 1. Critical
scenarios are interesting in that they include a collision with
the AV and also a safe trajectory to avoid the collision.

In this approach, each node can store the state of all
vehicles independently of other nodes. This would allow
actors to follow an active policy, and react to actions taken by
the AV during scenario characterization, which enumerates
all possible trajectories for the AV in the scenario. Each
trajectory representing the AV states will then store the state
of other actors as they react to the specific action taken by
the AV in that trajectory. We implemented this tree-based
approach and found it to have limited scalability, high storage
needs, and challenging to parallelize, all of which are major
practical limitations.

Alternatively, we can fix the trajectories of all actors other
than the AV (each actor follows a passive policy), and obtain
a more efficient implementation based on tensor represen-
tations. This preferred tensor-based approach quantizes the
space, speed, and orientation of the AV. In this representation,
a 4D tensor (where dimensions are coordinates (x,y), speed
v and orientation) keeps track of all possible valid states
for the AV at ¢, represented by cells, as shown in Fig. [3{a).
For each valid state (marked in green) at t¢;, the next
reachable states at ;1 are computed as explained before, by
calculating the annulus sector in Fig. |2| and quantizing the
AV state in those cells including the coordinates, orientation

and speed of the AV. To determine next valid states from
all reachable states, we need to check each state with road
boundary and collision with other actors, determined by actor
states at ¢;,1. The next AV states that are valid are then
marked in the state tensor at ¢;4; as shown in Fig. a).
We speed up the computation of valid states from reachable
states by precomputing a map matrix for the scenario and
a collision tensor for each ¢; in the scenario as shown
in Fig. B3[b) to store invalid states for the AV. The map
matrix stores the invalid coordinates (x, y) based on road
boundaries, and the collision tensor stores the state of AV
(z, y, and @) that would be in collision with other actors
based on their trajectory. As mentioned before, the tensor
method assumes that the trajectories of other actors are fixed
(either taken from real data or as obtained from simulation
based on the trajectory taken by the AV). Therefore, each
actor’s occupancy is known beforehand and can be used to
compute the collision tensor. Compared to the tree approach
which stores the state of all actors in a node, the tensor
approach only stores the state of AV in the 4D state tensor
and assumes a fixed trajectory for other actors, stored as the
collision tensor. We discuss the distinctions between tensor-
based and tree-based approaches further in Section

The propagation of AV state tensor is repeated for all time-
steps, and the final tensor at t.,q gives the total number of
safe paths for that scenario. Each cell in the final tensor has
a non-negative integer value, indicating the number of safe
trajectories which end in that state for time-step t.,q (if two
trajectories converge to a state, the cell value would be > 1).
Therefore, the summation of all the cells in the final tensor is
equal to the total number of safe paths. We define the metrics
in the next section, with the first metric computed directly
from the number of safe paths, and the rest computed using
a similar propagation strategy in the tensor space.

B. Characterization Metrics

We define the following set of metrics to characterize
a given scenario with the last metric (CriticalTime) only
defined for critical scenarios that include a collision with
the AV in the sequence. These metrics are defined such that
a higher metric value indicates a more challenging scenario.

o SafePathInv (1/#p): Inverse of the number of safe

paths (#p) available to the AV until ¢.,,q. When 1/#p is
one, the AV is constrained to follow a single trajectory
to stay safe on the road. As 1/#p tends to zero, the AV
has many ways to avoid the accident.

« UnsafePercent (p.%): The percentage of paths leading
to a collision within a given scenario, among all the
paths that do not lead the AV off-road, in absence of
other vehicles.

o AvgEffort (E[e;]): We compute the AV effort to navi-
gate from one cell to the next in state tensor as the sum
of the absolute values of the steering and acceleration
controls. To compute the effort needed to navigate a
safe path (e;), we add effort values of all the cells
in the path. We compute the average effort for all
the safe paths found to obtain AvgEffort (Eles]). A
large value indicates that, on the average, high-effort
navigations (i.e. complex maneuvers) are needed to
avoid the accident.

o MinEffort (minfes]): The minimum effort required to
navigate through a safe path. If MinEffort is zero, the
AV does not have to take any action to avoid the
collision.

o NarrowInv (1/E[min[cs]]): We define a branching
factor for each cell at time t; as the number of cells
that can be reached in the tensor at time ¢;; from
that cell, and measure how narrow a safe path is by
computing the minimum number of branches for each
cell on a safe path (s). We refer to it as min[cs], where
¢s indicates the number of branches of a cell along the
path. E[min[c,]] is the average of the minimum number
of branches for all safe paths; its inverse (referred to as
NarrowInv) is one (or close to one) when the AV has
only one (or few) options to navigate through a safe
path. A narrow path suggests that an evasive maneuver
requires precision during execution.

o CriticalTime (¢.,it;cq;): For critical scenarios, the min-
imum time (in seconds) required before . such that the
accident can be avoided by an AV. A large t.,;ticq; Value
implies that the AV should take an action early to avoid
the collision.

Each metric is assigned a corresponding tensor and is
computed using tensor propagation, i.e., propagating the
metric through the tensor at each time-step from ¢y to tenq-
SafePathInv is directly computed from the total number of
safe paths as explained before, by summing all the cells in
the final state tensor at t.,4. Similarly, a tensor is assigned to
on-road paths in which each cell keeps track of the number of
all paths reachable to that cell which are on the road (and can
potentially be in collision with other actors). In propagating
this tensor at each time-step, only the map matrix is used
and the collision tensor is not considered. We compute the
second metric, UnsafePercent, from the total number of safe
paths (obtained from the first tensor) and the total number
of on-road paths (obtained from the second tensor).

The tensor corresponding to AvgEffort stores at each
cell (corresponding to a state) the effort required to move

from the previous state to the current state. If two or more
trajectories converge in one state, the effort for that cell is
computed as the sum of all efforts from prior states. To
compute AvgEffort, the values of all the cells for the tensor
at t.nq are added and then divided by total number of safe
paths computed previously. The tensor for MinEffort prop-
agates the effort for each trajectory, and when two or more
trajectories converge in one state, picks the smallest value to
update the corresponding cell. The minimum effort of all the
safe paths is then picked from the tensor at time-step teyq as
MinEffort. The NarrowInv tensor propagates the minimum
number of branches for each cell on a path. Therefore, if a
future cell along the path has fewer branches, that number
will be propagated, otherwise the current state number will
be propagated. We obtain the average by summing all the
values in the final tensor divided by total number of safe
paths. To find CriticalTime for critical scenarios, we compute
the number of safe paths from one time-step (0.5s) before
collision time ¢.. If a safe path is found, critical time is one
time-step. Otherwise, we compute the number of safe paths
from two time-steps before collision time and so on until a
safe path is found. The corresponding time-step would be
the CriticalTime, which is the latest time-step the AV can
take an action to avoid collision.

Creating metrics for scenario characterization allows us to
compute a difficulty score for scenarios in testing, as well
as to measure their diversity for creating non-trivial datasets.
The definition of a distance function between two scenarios,
e.g., based on the characterization metrics introduced in our
paper, may be useful to guarantee diversity in training and
testing sets, but it is left for future investigation.

C. Generating Unsafe Scenarios

In a simulated driving sequence, environment and states
of actors at any time ¢ can be used to seed a new scenario.
An uninformed selection of the vehicles’ driving policies as
well as a random pick of the seeding time ¢ rarely leads to
the identification of interesting scenarios that are challenging
for the AV. We propose to assign the policy of at least
one vehicle in the scenario, such that the probability of an
accident with the AV increases.

We use NVIDIA DRIVE Sim [3], which enables photo-
realistic driving simulation and integration of NVIDIA’s AV
software stack for testing perception and planning modules.
While we use DRIVE Sim, the techniques described here can
be applied on any driving simulator. A sequence is simulated
in DRIVE Sim by spawning an AV and other vehicles on the
map at random initial positions and with random velocities,
and assigning to each vehicle (including the AV) a simple
but realistic driving policy (for freeway driving). This policy
can be described by a simple Markov chain where vehicles
continue to drive on the same lane, or make a maneuver
(with a probability 0.5). A maneuver involves changing lane
(with probability 0.6) or speed (with probability 0.4). Once
a maneuver is initiated, the actor attempts to complete it and
continues to drive on the lane unless a collision with another

. (,0(\ y Attacking mode:
4 ’
CDV\'X tan 8AT// @ (1) max steer, max accel
Q
NG max(tan §,.) .
Q}'L 4 (2) max steer, min accel
X ’
S
%3V“ \ /,"" _>aAT (3) min steer, max accel
’ | |
7 | @ unrealizable policies
L’ max(a,;)

Fig. 4: The constraint to minimize the distance between the
AV and attacking vehicle divides the (tan(da7),asr) plane
into attacking (green) and non-attacking (red) regions. Within
the attacking region, we use different attacking modes.

vehicle is imminent and an evasive maneuver (breaking or
steering adjustment) is executed.

To create an unsafe scenario with high probability of
collision, we first generate an unsafe sequence. Starting from
the initial sequence, we change the policy of a vehicle that
is closest to the AV after 3 seconds from the beginning of
the sequence. With probability 0.5, we select and change
the policy of the second closest vehicle. For a subsequent
period that is randomly selected between 3 to 5 seconds,
we allow the selected vehicles to violate safety and move
them towards the AV to increase the chance of a collision.
We refer to such a vehicle as an attacking vehicle and
indicate it with war. With some abuse of notation, we
define a subset of the state of war as saT(t) = [v; 0;];
the attacking policy defines the rate of change of saT as
dsd‘;T = aar %flf“)], where a7 and d 47 are the the
acceleration and steering angle of w47, whereas L 47 is the
wheelbase. We want the attacking policies to minimize the
distance between the AV and attacking vehicle at positions
xav and xaT, respectively. So, the objective is to minimize
the cost function v =|| zar — Tav ||3. We can achieve this
by decreasing y at each time-step or by setting the constraint
% < 0. We have:

0 oy d oy d
oy _ 07 dsar n Y dsav <0, 1)
ot Osat dt Osay dt
which can be simplified as:
Braar + Batan(dar) < k, (2)

where the constants 31, 82, and k are function of the current
position, speed and orientation of way and war.

The attacking policy for actor w4r is thus defined by
steering angle § 47 and acceleration a,p. In the 2D space
(tan(dar),aar), Eq. 2| defines an attacking hemispace
(Fig. A). Additionally, we put constraints on the maximum
values of steering angle and acceleration (blue rectangle
in Fig.). Since any point in space (tan(dar),aar) that
satisfies the above constraint can be used as a control
command for w4, we propose three different atracking
modes: (1) maximum acceleration and steering, or maximum
effort, (2) minimum acceleration and maximum steering,
and (3) minimum steering and maximum acceleration. These

~ —
LA B

|" -, ¥ “r r:m " 7 - -'_
|ira - = i gy M - wey B
= = e g g
g o= o = SO NI S e SRS L SRR S
Fig. 5: Sample image of video data from NGSIM showing

vehicle positions along with vehicle identification numbers
and extracted vehicle dimensions.

policies are obtained by selecting the corresponding point
on the blue rectangle in Fig.] Note that depending on
the constraint line defining the attacking hemispace, not all
attacking policies might be available or realizable in practice
for all scenarios. These policies that fall in the non-attacking
hemispher are also shown in Fig. [d] as unrealizable policies.

These controllers can be used to control the aggressiveness
of the attack, and ensure that the generated adversarial sce-
narios are more realistic. For example, maximum braking can
simulate a driver who suddenly brakes in reaction to some-
thing they see, or maximum steering can be set to simulate
a distracted driver drifting to the next lane. Additionally, we
can seed this generator from real driving scenarios. Starting
from a recorded real-world scenario, we can modify the
behavior of one driver for 3 seconds to generate an incident.
It is worth noting that even if this may be a pessimistic
scenario, it is still acceptable for benchmarking as it can
compare the performance of different AV systems without
requiring that all scenarios must be safely navigated.

To create a critical scenario for characterization, we freeze
the trajectories of all the vehicles except for the AV and
attacker(s) in the sequence up to t.. Since the attacker can
abruptly stop because of the accident at ¢, in the sequence,
we go back in time one step and extrapolate the trajectory to
continue with the same speed after the accident. The scenario
is created by moving back in time from ¢, until we find the
time to such that the AV can find at least one safe path to
avoid the collision.

III. EVALUATION

We use our metrics to characterize real-world driving
scenarios extracted from the Next Generation Simulation
(NGSIM) [8] dataset, as well as scenarios generated by our
method described in Section [[[=C] that creates adversarial
(unsafe) scenarios with attacking actors.

A. NGSIM Scenario Characterization

We use the dataset in NGSIM which provides vehicle
trajectory data on the Interstate 80 (I-80) Freeway in the
San Francisco Bay area covering a 500 meter length area,
and a total of 45 minutes. Fig. [5] shows a snapshot of the
video data in NGSIM. The vehicle trajectory data includes

(a)

SafePathinv
UnsafePercent
AvgEffort
MinEffort
Narrowlnv

(b)

Fig. 6: Score and metric break down of (a) scenarios from NGSIM, and (b) generated adversarial scenarios with accidents.
While the average scores are close between NGSIM and adversarial scenarios, the standard deviation for the set of adversarial
scenarios is higher, indicating a more diverse set in terms of total score.

Attacker constraints: Attacking Mode

Steering (S), Acceleration (A)

Max S Max S Min S

Max A Min A Max A
Max steering=0.2, acceleration=0.8 37 36 34
Max steering=0.1, acceleration=0.4 26 26 23
Max steering=0.2, acceleration=0.1 9 9 8

TABLE I: Number of accidents in scenarios generated for
different attacker constraints and attacking modes.

the coordinates, size, velocity, acceleration, and type (motor-
cycle, automobile, and truck) for each vehicle. We extracted
3 second scenarios from the trajectory data between 4:00pm
to 4:15pm and picked a random vehicle as AV each time.

We compute 5 characterization metrics for the extracted
scenarios (omitting CriticalTime for non-critical scenarios
of constant length). We assign a score as the sum of the
metrics, after normalization based on the range of values over
a set of scenarios. For normalizing each metric, each value is
subtracted with the minimum in set and then the difference
is divided by the range of that set. This normalization is
done across the set of scenarios being compared. The break
down of our metrics for scenarios extracted from NGSIM
is depicted in Fig. [6] sorting scenarios by the score. Total
scenario score can also be extracted from this graph by
reading the aggregate score, and the average and standard
deviation are computed over the entire set of scenarios.

NGSIM contains crowded highway data at rush hour,
with vehicles that can only make little movement at some
instances of time, and a lot of braking is required to
avoid collision. As can be observed from this plot, this
translates into large AvgEffort and MinEffort for navigating
the extracted scenarios. Overall, the NGSIM scenarios are
homogeneous with a small standard deviation for total score
and variation in metrics due to similar driving conditions for
recorded data.

B. Adversarial Scenario Characterization

To characterize adversarial scenarios using our character-
ization method, we create 70 random initial sequences in
DRIVE Sim. For each of them, we generate 9 sequences with
our unsafe scenario generation algorithm using three attacker
constraints (limiting attacker acceleration and steering to a
maximum amount) and three attacking modes, as described
in Table m We use the intelligent driver model for the AV [9].
Table [l shows the number of accidents we observe out of a
total of 630 sequences. Generating these scenarios takes less
than 3 hours on a system with an Intel Core 17-7800X CPU, 2
NVIDIA RTX 2080 GPUs, and 32GB memory. Using these
configurations, we could create 208 accidents with the AV
vehicle. Table [I] shows the breakdown for each attacking
mode. As expected, increasing the maximum acceleration
and steering limits leads to a higher number of accidents
(first row). We also observe that attacking with the minimum
steering mode is less effective (last column).

Similar to scenarios extracted from NGSIM, we compute
5 metrics for adversarially generated scenarios as shown
in Fig. [[b). For these scenarios, SafePathlnv is large only
for the most challenging scenarios (1 — 17 in the graph)
which have an extremely small number of safe paths. For
the same scenarios, MinEffort is consistently high, indicating
the effort required to navigate through the available safe
paths is high. Additionally, there are few possible trajectories
to avoid the collision and all of them require a significant
number of evasive maneuvers. Narrowlnv is also high for the
most challenging scenarios (1 — 73), suggesting that the safe
paths require at least one precise maneuver for navigation.
AvgEffort is large for both the challenging (1 —17) and easy
to solve (177 —218) scenarios. For the challenging scenarios,
few safe paths with a complex geometry are present, which
makes the average effort high. For easy scenarios, on the
other hand, the existence of many safe paths (including the
complex ones) makes the average effort high. UnsafePercent
is almost constant for scenarios 1 — 150 and then decreases,
indicating that any on-road trajectory followed by the AV is

<—m

ttac

e s e e s ()] . e,) . e

(a) () (©)

| |
AV safe paths :

|

|

Do
3.5/ Mmm SafePathinv
[UnsafePercent -
: 3.0{ mmm AvgEffort
| [MinEffort
| : 2.51 =7 Narrowlinv
I\l o B CriticalTime
s 2.0
(9]
(V2]
Pl s -
|
| 1.0
I —
| 0.5
|
|
| 0.0 - - "
| scenario a scenario b scenario C

(@

Fig. 7: Examples of generated scenarios with low (a, 1.68), medium (b, 2.58), and high (c, 3.61) scores. Panel (d) shows

the values of the six metrics for each of them.

a safe for the low-scored scenarios.

As can be observed from Fig. [6] the NGSIM scenarios
have slightly higher average score, but adversarial sce-
narios have higher standard deviation in total score. This
indicates more variety in scenario difficulty for adversarial
scenarios with different attacking modes, compared to more
homogeneous real-world highway driving. The most diffi-
cult scenario in NGSIM has a score of 3.22, whereas the
highest score in adversarial scenarios is 3.95. Adversarial
scenarios have higher UnsafePercent for all scenarios, which
is explained by the presence of the attacking vehicle(s). On
the other hand, NGSIM scenarios are very similar on the
AvgEffort and MinEffort metrics.

C. Characterization Metrics Intuition

To better demonstrate the effectiveness of the proposed set
of metrics in guiding the selection of challenging scenarios
for safety testing, we sample and analyze three generated
scenarios with low, medium, and high scores. For these
scenarios, we compute the total score using our 6 character-
ization metrics. Intuitively, scenario (a) in Fig.[/|is a simple
scenario where the AV can avoid the car attacking from the
left by moving to the open space in the right lane (small
SafePathInv). While the AvgEffort is not minimal due to
the variety of the possible safe paths, the MinEffort is small,
suggesting that the AV can follow a simple trajectory to solve
the scenario. Scenario (b) is comparatively more challenging
with an attacker blocking the lane in front and the other
attaching the AV from the back. In this case, the safe driving
paths exist by driving the AV to the left. CriticalTime for
this scenario is higher compared to Scenario (a), suggesting
an action has to be taken earlier to avoid collision. A high
Narrowlnv also suggests that most of the available safe paths
require a precise maneuver for navigation. Finally, Scenario
(c) is the most challenging scenario among the three, where
two attackers are moving behind and in front of the AV. Most
of the paths are unsafe (high UnsafePercent), and the road
boundary limits the total number of paths (high SafePathInv).

Fig. [Td shows the metrics of the three scenarios, which
allows an immediate multi-dimensional comparison of their
characteristics. The height of the stacked bar shows the score.

D. Limitations, Applications, and Future Directions

To generate an unsafe scenario with our scenario gen-
eration method, we change the policy of the attacker(s),
while making no alterations to the driving policies of other
vehicles. It is possible that other vehicles would react to the
changed behavior of the attackers. Prior research proposed
methods to generate traffic based on real data, including
reactive actors models [10] which can be combined with our
unsafe scenario generation as an interesting future direction.

Similarly, other vehicles including the attacker(s) can react
to the change in the AV’s driving policy explored during
scenario characterization. In this work, when we compute
metric tensors, we fix the trajectories of all the non-AV
vehicles based on the initial sequence. While our tensor
method makes this assumption to speed up computation and
improve scalability, the tree method for computing metrics
can incorporate such reactions from actors, albeit at the cost
of storage and scalability. The tree representation can store
all actors’ states in each node, enabling the method to capture
actor reactions to different AV policies enumerated during
characterization. However, the tree approach is slow with
memory consumption that grows with the number of steps,
while it stays constant in the tensor approach.

The set of metrics defined in this work can be expanded.
For example, a safety metric can be added based on distance
or time to collision at each time-step. With this metric, we
can search for paths that maximize safety and minimize ef-
fort. By replacing scenario trajectories with actor predictions,
this metric can be used for developing a driving policy.

In addition to propagating the state tensor for computing
characterization metrics, we can “go back in time” to place
the AV in critical states that would likely result in a crash.
This could be used for generating scenarios which have
specific characteristics for safety testing. We also note that

propagating the metrics at each time-step can be seen as a
convolution operation on the tensor, which is an operation
that has been optimized and could be leveraged for scenario
characterization with our formulation.

IV. RELATED WORK

There has been some progress in generating unsafe driving
scenarios, fueled by recent advancements in the driving sim-
ulators and real-traffic data-sets. In [11], a base distribution
representing standard traffic behavior is learned from data.
An adaptive importance sampling method is applied to learn
alternative distributions from the base distribution, that can
generate accidents more frequently. This method is limited
to the road segments and types of scenarios present in the
dataset, unlike our generation method. The scenarios are
ranked based on their likelihood under the base distribution,
without considering the avoidability of the accident, which is
another key criteria for testing. In [7], authors use Bayesian
Optimization to generate adversarial scenarios that increase
the risk of collision with pedestrians and vehicles. This
method scales poorly with the increasing number of actors.
Our greedy and gradient-based approach to generating unsafe
scenario performs much faster. In [6], the authors model
the problem of finding failure cases as a Markov decision
process and use reinforcement learning to solve it. Methods
based on reinforcement learning need long training times
for each new configuration, which limits their applicability.
We require no training to generate an unsafe scenario. None
of these techniques characterize generated scenario based on
accident avoidability. Our method can be applied to scenarios
generated by any of the above techniques.

Fault injection methods [12] study resilience to hardware
errors, and do not focus on scenario generation or clas-
sification for AV testing. Falsification methods [13], [14]
introduce perturbations in a frame or configuration of a
scenario to falsify a defined specification, but do not pro-
vide a method to categorize and differentiate the generated
scenarios. Importance sampling [15] accelerates rare event
generation based on a learnt distribution, but does not provide
more detail on the event or explanation on avoiding it,
critical for safe AV development. Scenic [16] provides a
probabilistic programming language for describing scenarios
and generating them by constrained sampling, or manual
definition of hard scenarios.

To the best of our knowledge, none of prior work can
compare scenarios based on whether the unsafe condition
can be avoided by a narrow path and/or quick reaction to
the hazard. We found [17] to be the closest work to ours. In
this work, Chou et. al. define interesting cases as the ones
where ensuring safety is hard but not impossible, and it can
also benefit from providing feedback to developers on failing
case characteristics using our characterization method.

V. CONCLUSION

This paper presented a novel characterization method that
quantifies the difficulty of a scenario based on several defined
metrics. We characterize a scenario by enumerating possible

safe paths to navigate through the scenario, and computing
metrics such as the narrowness of safe paths, and the effort
required to follow them. These metrics provide insights into
how the AV could have avoided potential collisions, which
is key to developing a safer AV. We characterize scenarios
extracted from pre-recorded real world data (NGSIM), as
well as adversarial scenarios that we generated. We develop
a fast method to generate potentially unsafe scenarios and
demonstrate that it can generate 240 potentially unsafe
scenarios per hour with more than a third of the scenarios
resulting in collisions on a state-of-the-art driving simulator.

REFERENCES

[1] NHTSA AV TEST Initiative. https://www.
nhtsa.gov/automated-vehicles-safety/
av-test—-initiative-tracking-tool, 2020.

Nidhi Kalra and Susan M Paddock. Driving to safety: How many miles

of driving would it take to demonstrate autonomous vehicle reliability?

Transportation Research Part A: Policy and Practice, 2016.

[3] NVIDIA DRIVE Sim. https://developer.nvidia.com/

drive/drive—constellation, 2018.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,

and Vladlen Koltun. CARLA: An open urban driving simulator. In

Proceedings of the 1st Annual Conference on Robot Learning, 2017.

[5] LGSVL Simulator — An Autonomous Vehicle Simulator. https:

//www.lgsvlsimulator.com, 2019.

Anthony Corso, Peter Du, Katherine Driggs-Campbell, and Mykel J

Kochenderfer. Adaptive stress testing with reward augmentation for

autonomous vehicle validatio. In 2019 IEEE Intelligent Transportation

Systems Conference (ITSC), 2019.

Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek.

Generating adversarial driving scenarios in high-fidelity simulators. In

International Conference on Robotics and Automation (ICRA), 2019.

[8] U.S. Federal Highway Administration. Next Generation
Simulation (NGSIM). http://ops.fhwa.dot.gov/
trafficanalysistools/ngsim.htm, 2006.

[9] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic
states in empirical observations and microscopic simulations. Physical
review E, 2000.

[10] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive
policy learning with uncertainty regularization for driving in dense
traffic. arXiv preprint arXiv:1901.02705, 2019.

[11] Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake,
and John C Duchi. Scalable end-to-end autonomous vehicle testing via
rare-event simulation. In Advances in Neural Information Processing
Systems, 2018.

[12] Saurabh Jha, Subho S Banerjee, James Cyriac, Zbigniew T Kalbar-
czyk, and Ravishankar K Iyer. Avfi: Fault injection for autonomous
vehicles. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), 2018.

[13] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. Compo-
sitional falsification of cyber-physical systems with machine learning
components. Journal of Automated Reasoning, 2019.

[14] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim,
Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia.
Verifai: A toolkit for the formal design and analysis of artificial
intelligence-based systems. In International Conference on Computer
Aided Verification, 2019.

[15] Ding Zhao, Henry Lam, Huei Peng, Shan Bao, David J LeBlanc,
Kazutoshi Nobukawa, and Christopher S Pan. Accelerated evalua-
tion of automated vehicles safety in lane-change scenarios based on
importance sampling techniques. IEEE transactions on intelligent
transportation systems, 2016.

[16] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia. Scenic: a lan-
guage for scenario specification and scene generation. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2019.

[17] Glen Chou, Yunus Emre Sahin, Liren Yang, Kwesi J Rutledge, Petter
Nilsson, and Necmiye Ozay. Using control synthesis to generate corner
cases: A case study on autonomous driving. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[2

—

[4

=

[6

=

[7

—

https://www.nhtsa.gov/automated-vehicles-safety/av-test-initiative-tracking-tool
https://www.nhtsa.gov/automated-vehicles-safety/av-test-initiative-tracking-tool
https://www.nhtsa.gov/automated-vehicles-safety/av-test-initiative-tracking-tool
https://developer.nvidia.com/drive/drive-constellation
https://developer.nvidia.com/drive/drive-constellation
https://www.lgsvlsimulator.com
https://www.lgsvlsimulator.com
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

	I Introduction
	II Generating and Characterizing Scenarios
	II-A Characterization method
	II-B Characterization Metrics
	II-C Generating Unsafe Scenarios

	III Evaluation
	III-A NGSIM Scenario Characterization
	III-B Adversarial Scenario Characterization
	III-C Characterization Metrics Intuition
	III-D Limitations, Applications, and Future Directions

	IV Related Work
	V Conclusion
	References

