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Spectral statistics in constrained many-body quantum chaotic systems
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We study the spectral statistics of spatially extended many-body quantum systems with on-site Abelian
symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In
the limit of large local Hilbert space dimension, we find that the spectral form factor K (t ) of Floquet random
circuits can be mapped exactly to a classical Markov circuit, and, at late times, is related to the partition function
of a frustration-free Rokhsar-Kivelson (RK) type Hamiltonian. Through this mapping, we show that the inverse
of the spectral gap of the RK Hamiltonian lower bounds the Thouless time tTh of the underlying circuit. For
systems with conserved higher moments, we derive a field theory for the corresponding RK Hamiltonian by
proposing a generalized height field representation for the Hilbert space of the effective spin chain. Using the
field theory formulation, we obtain the dispersion of the low-lying excitations of the RK Hamiltonian in the
continuum limit, which allows us to extract tTh. In particular, we analytically argue that in a system of length L
that conserves the mth multipole moment, tTh scales subdiffusively as L2(m+1). We also show that our formalism
directly generalizes to higher dimensional circuits, and that in systems that conserve any component of the mth
multipole moment, tTh has the same scaling with the linear size of the system. Our work therefore provides a
general approach for studying spectral statistics in constrained many-body chaotic systems.
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I. INTRODUCTION

Recent years have seen a surge of interest in under-
standing the foundations of quantum statistical mechanics.
A convergence of experimental progress in the engineering
and manipulation of ultracold atomic gases, which provide
excellent examples of isolated quantum systems [1], and
profound theoretical insight has brought to the forefront of
contemporary research the nature of closed quantum many-
body systems evolving under unitary dynamics. Research in
this direction has unearthed a plethora of novel nonequi-
librium phenomena, such as many-body localization [2–5],
quantum many-body scarring [6–12], and Hilbert space frag-
mentation [13–16], which provide examples of nonintegrable
interacting systems which fail to obey the eigenstate thermal-
ization hypothesis (ETH) [17–21]. Concurrently, ideas from
the dynamics of black holes have led to new perspectives on
characterizing quantum chaos and diagnostics thereof [22],
including the decay of out-of-time-order correlators [23–27]
and operator spreading [28–37]. These diagnostics comple-
ment familiar signatures of quantum chaos derived from the
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eigenvalue spectrum of Hamiltonian or Floquet systems, such
as level repulsion [38–40] and the spectral form factor (SFF)
[41]. These ideas rely on the widely held belief that dynamics
of generic many-body quantum chaotic systems beyond a
timescale tTh, dubbed the “Thouless time,” follow predictions
from random matrix theory (RMT) [42] i.e., their late-time
behavior resembles that of a random matrix chosen from an
ensemble consistent with the system’s symmetries [27,41,43].

Despite the significant difficulty in analytically studying
dynamics in generic many-body quantum systems, substantial
progress has been made in delineating the dynamics of chaos
in random quantum circuits via the two-point spectral form
factor K (t ), defined in terms of the spectral properties of the
evolution operator Ŵ as

K (t ) :=
〈

N∑
m,n=1

ei(θm−θn )t

〉
= 〈|Tr[Ŵ (t )]|2〉, (1)

where {θm} is the set of eigenphases of Ŵ , Ŵ (t ) ≡ Ŵ t de-
notes the t th power of Ŵ , N is the Hilbert space dimension,
and 〈·〉 denotes the average over an ensemble of statistically
similar systems. The SFF is the Fourier transform of the
two-level correlation function, with time t as the variable
conjugate to ω ∼ θm − θn, the (quasi)energy difference. For
Ŵ with Poisson-distributed eigenlevels, K (t ) = N for all t ,
while for Ŵ chosen as random matrices from the Circular Uni-
tary Ensemble (CUE), K (t ) = |t | (the “ramp”) for times well
below the Heisenberg time tHeis = N , after which it plateaus
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FIG. 1. Illustration of the SFF vs time on a log-log scale. The
dashed blue line is the CUE RMT behavior. The black solid line
is the generic behavior for many-body quantum chaotic systems,
characterized by the Thouless time tTh and the Heisenberg time tHei,
the latter of which scales exponentially with system size L. The
early time behavior of K (t ) depends on the details of the system,
particularly on whether the system is defined by a Floquet operator
or a Hamiltonian.

to K (t ) = N [41]. The SFF serves as a barometer for quantum
chaos, as the appearance of RMT predictions in the SFF pro-
vide a crisp timescale for characterizing the many-body chaos
in a finite system, which we take as defining the Thouless
time tTh

1; specifically, we define tTh as the time scale at which
the SFF approaches the CUE RMT behavior (see Fig. 1). In
contrast to nearest-neighbour level spacing distributions, the
SFF encodes spectral correlations at all time (equivalently,
energy) scales and is also relatively simple to analyze, as it
involves only two sums over the (quasi)energy eigenvalues.

One approach for analytically computing the SFF exploits
a self-duality present in certain models [44,45]. However,
the applicability of this approach is limited only to self-dual
circuits and does not extend to generic interacting circuits,
possibly with conserved quantities. A second, more generic
approach [46–50] studies Floquet random quantum circuits
(FRQCs) in the limit of large local Hilbert space dimension,
which are amenable to exact analytic calculations of the SFF
and hence enable one to study the implications of conserved
quantities on dynamics. For circuits with a globally conserved
U(1) charge, tTh was shown to scale diffusively as ∼L2, val-
idating the idea that RMT behavior is established only once
all conserved quantities have diffused through the system. In
contrast, for certain systems without any conserved charge,
tTh ∼ ln L [47]. In these latter systems, the SFF is not sensitive
to the slower “ballistic” dynamics due to locality and causality
which means the operator spreading differs from RMT dy-
namics up to longer times of order L.

Besides systems with conserved charges, there has been
growing interest in the dynamics of constrained nonin-
tegrable quantum systems with more general symmetries,

1In systems with diffusive or subdiffusive dynamics, this is ex-
pected to be a good estimate of the actual Thouless time, since it
is always slow compared to the operator spreading time.

driven partly by the discovery of their anomalous dynamics
[8,10,51–58], which resembles that of classical kinetically
constrained models [59]. Of particular interest are systems
which conserve both charge and dipole moment (or center of
mass) [13,15,16,60–64], symmetries which naturally appear
in systems subjected to strong electric fields [14,16,65] and
in fracton models [66,67]. Dipole moment conserving sys-
tems exhibit various novel dynamical phenomena including
operator localization [60] and Hilbert space fragmentation
[13,14,61], coexistence of integrable and nonintegrable sub-
spaces leading to a restricted form of ETH [16,62], presence
of topological edge modes in highly excited states [15], and
subdiffusive transport [64,68,69], which has been experimen-
tally observed [65].

In this paper, we develop a general approach for study-
ing features of the spectral statistics in constrained quantum
chaotic many-body systems, focusing on those with conserved
dipole and higher moments. Using the SFF K (t ) as a diag-
nostic for many-body chaos, we extract the scaling of this tTh

with system size L for one-dimensional (1D) FRQCs with a
local Hilbert space comprising q ‘color’ degrees of freedom
(DOFs) coupled with auxiliary spins through which the con-
straints are imposed. In the large-q (q → ∞) limit, we express
K (t ) in terms of a classical Markov circuit which inherits the
constraints of the underlying FRQC, as illustrated in Fig. 2(b).
Utilizing an established correspondence between classical
Markov processes and Rokhsar-Kivelson (RK) type Hamil-
tonians, we can equivalently relate K (t ) at late times to the
partition function of a positive-definite, frustration-free RK
Hamiltonian2 acting solely on the spin DOFs. Consequently,
a lower bound on tTh can be extracted from the spectral gap of
the RK Hamiltonian; this mapping hence allows us to borrow
techniques from equilibrium physics to establish dynamical
properties of the underlying circuit [71–73].

For circuits with conserved higher moments in one dimen-
sion, we find a continuum representation for the ground state
(GS) of the RK Hamiltonian in terms of generalized “height”
fields [see Fig. 2(c)], from which we identify a continuum
parent Hamiltonian for the corresponding GS and establish
a lower bound on tTh. We find a subdiffusive scaling of tTh ∼
L2(m+1) for circuits of length L with a conserved mth moment,
i.e., the timescale at which random matrix behavior ensues
in such systems is parametrically longer than in systems with
only a conserved U(1) charge, which spreads diffusively (m =
0: tTh ∼ L2). We also find similar results in higher dimensions
by constructing continuum representations of the ground state
and the RK Hamiltonian in terms of generalized tensor fields,
which predicts tTh ∼ L2(m+1) for a system with linear size L
with conserved mth moments in all directions. Note that while
the field theories are specific to higher-moment conserving
systems, the mapping from K (t ) to an emergent RK Hamil-
tonian in the large-q limit holds generally.

2As discussed later in Sec. III, we take “RK Hamiltonian” to mean
a quantum Hamiltonian that is proportional to the transition matrix
of a Markov process that satisfies detailed balance. This taxonomy
stems from the quantum dimer context [70], where the terms “RK
Hamiltonian” and “quantum dimer model at the RK point” are often
used interchangeably.
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FIG. 2. Summary of results. (a) We study a class of constrained Floquet random quantum circuits whose SFF in the large-q limit can be
related to the partition function of an RK Hamiltonian. (b) Graph representation of the RK Hamiltonian, with nodes representing an appropriate
set of basis states and links representing possible moves between them. (c) Generalized height field representation for each spin configuration,
with symmetries enforced via boundary constraints. The RK ground state is then written as an equal-weight superposition of height fields
(equivalently, as random walks in the space direction).

This paper is organized as follows. We start by defining the
class of FRQCs under consideration in Sec. II. In Sec. III, we
study these circuits in the limit of large local Hilbert space
and establish a mapping between the SFF of the FRQC and
the dynamics of a classical Markov chain, which we further
show is equivalent at late times to the partition function of
an emergent RK Hamiltonian. Through these mappings, we
find that the Thouless time tTh of the underlying circuit is
lower bounded by the spectral gap of this emergent Hamilto-
nian. Focusing on systems with conserved higher moments in
Sec. IV, we verify that tTh ∼ L2 in charge conserving systems
and provide numerical evidence for subdiffusive scaling of tTh

in systems that additionally conserve the global dipole mo-
ment. In Sec. V, we take the continuum limit of the emergent
RK Hamiltonian for systems which conserve all moments
up to the mth highest moment. We extract a bound on tTh

from the dispersion relation of the continuum Hamiltonian
and show that tTh ∼ L2(m+1). In Sec. VI, we generalize our
results to multipole conserving systems in higher dimensions.
We conclude in Sec. VII with a discussion of open questions
and future directions.

II. CONSTRAINED FLOQUET RANDOM
QUANTUM CIRCUITS

Our primary object of interest in this paper is the Thouless
time tTh of constrained many-body quantum chaotic systems,
where we define tTh as the timescale after which the behavior
of the SFF K (t ) closely approaches RMT predictions. To
probe K (t ), we consider one-dimensional L-site spatially ran-
dom FRQCs with local Hilbert space at each site of the chain
given by Hloc = Cq ⊗ C2s+1, where Cq and C2s+1 are the local
Hilbert spaces of the color and spin DOFs respectively. The
color DOFs facilitate Haar averaging and allow us to retain
analytical control in the q → ∞ limit [36,46,47]; the spins,
on the other hand, allow us to encode on-site Abelian symme-

tries, such as U(1) charge conservation (previously considered
in Refs. [36,48]), or impose local constraints on the dynamics.

More precisely, we consider Floquet circuits defined by a
time-evolution operator Ŵ over a single period composed of
unitary gates acting on a finite number � � �min of contiguous
sites, where �min is the “minimal” gate size for nontrivial
local dynamics under the symmetry or constraints of interest.
Without loss of generality, local dynamics on all sets of �

contiguous sites within a single time period can be ensured
by choosing Ŵ to be composed of � layers of operators {Ŵa},
where Ŵa is composed of r = 	L/�
 spatially random local
unitary gates {Û[ j, j+�−1]}, and has the form3

Ŵ =
�∏

a=1

Ŵa, Ŵa =
r⊗

n=1

Û[a+(n−1)�,a+n�−1], (2)

where a is the layer index. As shown in Fig. 2(a),
Û[a+(n−1)�,a+n�−1] labels the nth local gate in the ath layer and
acts nontrivially only on sites j ∈ {a + n� − �, . . . , a + n� −
1}, where 1 � n � r and the site index j is defined mod L for
periodic boundary conditions (PBC). Each of the local gates
has the following block-diagonal structure:

Û[ j, j+�−1] =
D⊕

α=1

u( j, α), (3)

where α denotes each set (block) of �-site spin-configurations
within this gate which are connected through local moves
permissible under symmetries or constraints, and D denotes
the total number of such blocks. Block α contains dα spin

3In certain cases, considering Floquet operators with m < � layers
per period is sufficient to ensure that nontrivial dynamics occurs in
all sets of � contiguous sites. However, this choice of m < � layers
leads to identical late-time dynamical features as that of operators
with � layers.
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configurations within this gate, with
∑D

α=1 dα = (2s + 1)�.
Note that we do not impose any constraints on the color
DOFs, only on the spins. Each u( j, α) is thus a dαq� × dαq�

unitary drawn independently from the Haar ensemble acting
on the states in block α, while it gives zero when it acts
on all other states. In particular, for systems without any
symmetries or dynamical constraints, the local gates Û[ j, j+�−1]

are (2s + 1)�q� × (2s + 1)�q� independent Haar random uni-
taries. The block diagonal structure of the local gates encodes
the symmetries or constraints of interest. Specifically for sys-
tems which have global symmetry sectors labeled by a set of
quantum numbers S = {s1, s2, . . . }, each local �-site gate Û
is block diagonal, with each block containing all spin states
with the same S . As a technical aside, we note that since we
are keeping the gate size � fixed while treating all transitions
involving those � sites on equal footing, this also includes all
allowed processes involving spin transitions on any subset of
those � sites.

As an example, let us consider an FRQC with s = 1/2
DOFs which preserves the total charge Q̂0 = ∑L

x=1 Ŝz
x of the

spins, where Ŝz
x is the Pauli-Z matrix acting on site x [48]. To

allow nontrivial dynamics, we choose � to be equal to �min =
2, such that each local gate Û is a 4q2 × 4q2 block-diagonal
matrix. Each local gate is composed of D = 3 blocks: two
q2 × q2 blocks act on the tensor product subspaces associated
with the spin configurations | ↑↑〉 and | ↓↓〉, and a single
2q2 × 2q2 block acts on the subspace associated with the spin
configurations | ↑↓〉, | ↓↑〉. Each of these three blocks locally
preserves the U(1) charge over two site and is an indepen-
dently drawn Haar random unitary.

In this paper, we mainly focus on circuits which conserve
not only the total charge, but also all higher moments up
to the mth moment Q̂m = ∑L

x=1 xmŜz
x ≡ ∑L

x=1 Q̂m(x). Such
circuits neatly fall into the larger class of FRQCs defined
earlier via Eqs. (2) and (3). For instance, for systems with
both charge and dipole moment conservation, we can consider
s = 1 DOFs and � = �min = 3 site gates, where each local gate
is a 27q3 × 27q3 block diagonal matrix, with each block cor-
responding to those spin configurations which are connected
under local (three-site) dipole moment preserving dynamics
(see Ref. [60] for details). It is straightforward to generalize
the above circuits to higher spins s, larger gate sizes �, and
higher moment conservation laws. While our primary focus
in this paper will be systems with higher conserved moments,
the FRQCs defined in Eqs. (2) and (3) define a much broader
class, including those with arbitrary on-site Abelian symme-
tries as well as circuits which obey dynamical constraints,
such as those present in the PXP model [56].

We characterize the spectral features of the above class
of FRQCs using the SFF defined in Eq. (1). For a circuit
Ŵ invariant under a set of global symmetries, corresponding
to a set of operators {Ŝ1, Ŝ2, . . . }, we have [Ŵ , Ŝi] = 0 ∀ i.
Therefore

Ŵ =
⊕
S

Ŵ (S ) (4)

is block-diagonal and quasienergy levels of Ŵ from blocks
Ŵ (S ), corresponding to distinct quantum number sectors S =
{s1, s2, . . . }, do not repel [21]. In addition, certain systems,

FIG. 3. Example of a Floquet operator exhibiting Hilbert space
fragmentation in the Z basis. Symmetry sectors are denoted by S and
Krylov subspaces K within symmetry sectors are denoted by K(S )

i .

such as those with higher moment symmetries, further ex-
hibit the phenomenon of Hilbert space fragmentation, wherein
the dynamics does not connect all products states in the Ŝz

(equivalently, charge) basis even within the same symmetry
sector [13,14,61,62]. As a consequence, within each symme-
try sector S there may exist up to exponentially many disjoint
“Krylov subspaces,” labeled by K(S )

i i.e.,

Ŵ (S ) =
D(S )⊕
i=1

Ŵ (K(S )
i ), (5)

where D(S ) denotes the number of disjoint Krylov subspaces
generated from product states with the same quantum num-
bers S . This fragmented structure of Ŵ is schematically
depicted in Fig. 3. Hence, given the possibility of Hilbert
space fragmentation in quantum many-body systems, we de-
fine the SFF restricted to a given Krylov subspace K:

K (t ;K) ≡ 〈|TrK[Ŵ t ]|2〉, (6)

where the subscript K denotes the restriction of Ŵ to a Krylov
subspace and 〈·〉 denotes averaging over the Haar random
unitaries in the FRQC. Note that this definition encompasses
systems with global symmetries but no fragmentation, since
in that case, each Krylov subspace K(S ) fully spans its global
symmetry sector S and all D(S ) = 1.

III. MAPPING TO CLASSICAL MARKOV CHAIN AND
EMERGENT RK HAMILTONIAN

Computing the SFF Eq. (6) for many-body quantum sys-
tems is analytically difficult in general. References [46–48]
developed a diagrammatic approach for evaluating the ensem-
ble averaging in (6), by effectively “integrating out” the color
DOFs for random quantum circuits with charge conservation.
In Appendix A, we generalize this technique to the general
class of constrained FRQCs discussed in the previous section
and find that, to leading order in the large-q limit,

K∞(t ;K) ≡ lim
q→∞ K (t ;K) = |t | TrK[M̂t ], (7)
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where the factor of |t | stems from |t | leading order diagrams
as q → ∞ [46]. The Markov matrix M̂ is a classical bis-
tochastic4 circuit acting only on effective spin-s DOFs and
is composed of local �-site gates. Furthermore, M̂ inherits the
circuit geometry, symmetries, and Krylov subspaces of Ŵ and
can be expressed as

M̂ =
�∏

a=1

M̂a, M̂a =
r⊗

n=1

m̂[a+(n−1)�,a+n�−1], (8)

where, in analogy with Eq. (2), a is the layer index and
m̂[a+(n−1)�,a+n�−1] labels the nth local gate in the ath layer,
acting on sites j ∈ {a + n� − �, . . . , a + n� − 1}. As before,
1 � n � r and j is defined mod L for PBC. However, unlike
the underlying gates Û , the �-site gates {m̂[ j, j+�−1]} are non-
random:

m̂[ j, j+�−1] =
D⊕

α=1

m(dα ), m(dα ) = 1

dα

⎡⎣1 1 . . .

1 1 . . .
...

...
. . .

⎤⎦
dα×dα

,

(9)

where the dα’s are the sizes of the blocks of �-site spin
configurations that are dynamically connected and D is the
number of dynamically connected blocks in m̂. The fact that
Eq. (9) retains the block-diagonal form with equal matrix
elements (within each block) is consistent with the fact that
the dynamical constraints are imposed via the spin DOFs and
that the local Haar random gates are invariant upon a change
of basis.

Since M̂ inherits the symmetries and Krylov subspaces
(Eqs. (4) and (5)) of Ŵ , and M̂ also has a block diagonal
structure (see Fig. 3), where each block is itself an irreducible
bistochastic matrix; hence, each block has a unique largest
magnitude eigenvalue 1 by the Perron-Frobenius theorem
[74]. Restricting our attention to the subspace K of inter-
est, let us denote the eigenvalues of the corresponding block
by {�(K)

j }, with �
(K)
1 = 1 and ordered such that |�(K)

j | �
|�(K)

j+1| ∀ j.5 We can then write

K∞(t ;K) = |t | TrK[M̂t ] = |t |
(

1 +
∑
j>1

(
�

(K)
j

)t

)
. (10)

At sufficiently long times6 t � 1, we can then expand Eq. (10)
as

K∞(t ;K) = |t |(1 + d (K) exp
(−t �

(K)
M̂

) + · · · )
, (11)

where |�(K)
2 | = exp (−�

(K)
M̂

) is the magnitude of the second

largest eigenvalue of M̂ restricted to the subspace K and d (K)

4An N × N nonnegative matrix M is called bistochastic if∑N
i=1 Mi, j = 1 ∀ j and

∑N
j=1 Mi, j = 1 ∀ i.

5Note that the eigenvalues of M̂ can be complex since is not a
symmetric matrix due to the brick-wall structure of the circuit.

6Technically, we require that tH � t � 1, but the so-called Heisen-
berg time tH proportional to the inverse level spacing is infinite in the
large-q limit.

is a constant factor encoding its degeneracy along with any
complex phases.

Using Eq. (11), we see that the SFF K∞(t ;K) approaches
the linear in |t | RMT behavior after a time

t � 1

�
(K)
M̂

(L)
≡ t (K)

Th . (12)

Thus we have shown that extracting the scaling behavior of
tTh with system size L is equivalent, in the large-q limit, to the
problem of obtaining the scaling of the “gap”7 �

(K)
M̂

(L) of the

Markov circuit M̂ (within the subspace K) with L. Henceforth,
we will restrict our attention to a single (exponentially large)
subspace K of M̂ and suppress the sub/superscript K for ease
of notation.

To determine the gap �M̂ , we will now establish a relation
between M̂ (within a subspace K) and a quantum Hamilto-
nian. We proceed by first observing that M̂ corresponds to
the classical stochastic time evolution of a probability density
�p(t ), defined over all product states in the usual Z basis for the
spin Hilbert space:

pα (t + 1) =
∑

β

M̂αβ pβ (t ), (13)

where M̂αβ represents the matrix elements of M̂ and the
bistochasticity of M̂ ensures that the total probability is con-
served under time evolution. In particular, under the action of
each local gate m̂[ j, j+�−1] [see Eq. (9)], the probability density
�p evolves (with equal probability) to all product states that
can be reached via the allowed local moves, i.e., moves that
are allowed by the constraints imposed on the spin DOFs.
Now consider starting with a probability density where all the
weight is concentrated on a single product state within some
subspace K. Under the stochastic evolution, the probability
density will eventually reach a unique equilibrium state, spec-
ified by the uniform distribution over all product states in K
i.e., by the eigenvector of M̂ corresponding to the eigenvalue
�1 = 1. Thus obtaining �M̂ is related to obtaining the inverse
of the mixing time for this process, which is in general not
analytically tractable.

To derive the gap �M̂ , we are interested in the stochastic
evolution under M̂ at timescales of O(1/�M̂ ). If �M̂ → 0
in the thermodynamic limit (i.e., if M̂ is gapless), we expect
that the dynamics under M̂ at late times is well approximated
by a continuous-time process.8 In particular, since M̂ corre-
sponds to a stochastic process with local moves occurring
independently with equal probability, its late-time behavior
should be well approximated by that of a continuous time
process composed of the same local moves occurring at equal
rates, with the additional requirement of detailed balance. In
other words, the evolution of the probability density �p should

7The gap of a bistochastic matrix is traditionally defined to be 1 −
exp (−�

(K)
M̂

), which we have approximated as �
(K)
M̂

here.
8Note that this approximation does not hold for gapped systems

as they relax to their equilibrium distribution on timescales of O(1)
that are much smaller than the timescale at which the continuous time
description is valid.
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be governed by a Master equation of the form

d pα (t )

dt
=

∑
β �=α

(Tαβ pβ (t ) − Tβα pα (t )), (14)

where pα (t ) is the probability of a classical system occupying
state α and Tαβ is the transition rate from state β to state α,
which we specify below. Defining Tαα ≡ − ∑

β �=α Tβα , we can
rewrite Eq. (14) as a matrix equation in terms of the transition
matrix T ,

d �p(t )

dt
= T �p(t ), (15)

which ensures that local moves that occur with equal prob-
ability in the discrete-time process Eq. (13) occur at equal
rates in the continuous-time process Eq. (16). The late time
behavior of the stochastic process governed by M̂ is then given
by Eq. (15) with

T = −	H ⇒ �̇p(t ) = −	H �p(t ), (16)

where 	 is an overall positive constant9 that sets the rate at
which local moves occur and H is defined as

H =
∑

j


[ j, j+�−1], 
[ j, j+�−1] ≡ 1 − m̂[ j, j+�−1]. (17)

The matrix 
[ j, j+�−1] has the form


[ j, j+�−1] =
D⊕

α=1

π (dα ),

π (dα ) = 1

dα

⎡⎣(dα − 1) −1 . . .

−1 (dα − 1) . . .
...

...
. . .

⎤⎦
dα×dα

, (18)

thereby ensuring that the transitions taking place in the
continuous-time process are identical to those specified by the
gates m̂[ j, j+�−1].

In fact, H can be interpreted as a quantum Hamiltonian in
the product state basis (in the Z basis) for the spin Hilbert
space and has the same symmetries and Krylov subspaces as
the stochastic circuit M̂. More importantly, H belongs to the
class of so-called RK Hamiltonians, where an RK Hamilto-
nian is defined as a quantum Hamiltonian that is proportional
to the transition matrix T of a discrete classical stochastic pro-
cess which satisfies detailed balance [72]. Consequently, the
ground state wave function of an RK Hamiltonian can be in-
terpreted as a classical equilibrium distribution, its low-lying
excited states correspond to classical relaxation modes, and its
gap coincides with the relaxation time of the corresponding
transition matrix. Such Hamiltonians were first studied in the
context of quantum dimer models [70] and have subsequently
been explored extensively in various settings [71,72,75].

To emphasize the relation between M̂ and an emergent RK
Hamiltonian, we henceforth adopt the notation H → HRK. In

9As we show in Sec. IV, 	 is a nonuniversal constant determined
by the detailed microscopic properties of the underlying FRQC, e.g.,
it depends on the number of layers �. However, obtaining its precise
value is not important for our purposes.

the picture developed above, Eq. (16) then has the clear inter-
pretation of an imaginary-time Schrödinger evolution under
HRK Eq. (17). In effect, the correspondence between M̂ and
HRK amounts to a relation between TrK[M̂t ] and the partition
function of HRK restricted to K at an inverse temperature
β = 	t , namely: TrK[M̂t ] ≈ TrK[e−	HRKt ]. We can therefore
approximate the SFF Eq. (10) at late times as

K∞(t ;K)
t�1≈ |t |TrK[e−	HRKt ], (19)

such that the gap of M̂ is related to �RK(L), the gap of the
Hamiltonian HRK (restricted to the subspace K):

�M̂ (L) ≈ 	�RK(L). (20)

Indeed, as we discuss in Sec. IV, we find numerical evidence
that supports Eq. (20) in multipole conserving circuits. Fur-
ther evidence for the correspondence between HRK and M̂
is obtained by studying the system-size dependence of the
overlap between the “first-excited eigenstates” of |ψRK〉 and
|ψM̂〉 of HRK and M̂, respectively. As shown in the inset of
Fig. 4(a), we find that this overlap approaches 1, suggest-
ing that |ψRK〉 is an asymptotically exact eigenstate of M̂ in
the thermodynamic limit. We also numerically observe that
the overlap does not approach 1 in the cases when M̂ is
gapped, further suggesting that correspondence between M̂
and HRK is only valid when M̂ is gapless.

The preceding discussion shows that obtaining the gap of
HRK is sufficient for obtaining the scaling of the Thouless time
tTh. Taken together, Eqs. (12) and (20) constitute one of the
central results of this paper, whereby a dynamical property of
the FRQC is determined by the low-energy, equilibrium be-
havior of an emergent quantum Hamiltonian. Since we made
no reference to the microscopic structure of the underlying
circuit, this relationship between tTh and �RK holds generally
for the class of circuits specified in Sec. II.

We now briefly discuss some properties of the Hamiltoni-
ans HRK. Denoting the basis set of π (dα ) in Eq. (18) by Bα ,
we obtain

π (dα ) = 1

2dα

∑
C,C′∈Bα

(|C〉 − |C ′〉)(〈C| − 〈C ′|), (21)

where C and C ′ represent �-site configurations chosen from
the basis set Bα . We can then re-express HRK as

HRK =
∑
〈C,C′〉

wC,C′Q̂C,C′,

Q̂C,C′ ≡ (|C〉 − |C ′〉)(〈C| − 〈C ′|), (22)

where 〈C, C ′〉 denotes product states C and C ′ that are con-
nected under the action of HRK and the weights wC,C′ � 0 are
defined in accordance with Eq. (21). From this expression, it
is clear that HRK is a positive semidefinite Hamiltonian and
the zero-energy ground state wave function within a subspace
K is given by ∣∣G(K)

RK

〉 = 1√
Z

∑
C∈K

|C〉, (23)

where C runs over all the product states in the subspace K
and Z is a normalization factor. We remark that, up to an
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FIG. 4. Scaling of the gaps �M̂ (L) and �RK(L) of M̂ and HRK respectively for a system of spin-s and �-sized gates with conserved charges
{Qj}, j � m. (a) Gaps of HRK and M̂ for two systems: one with charge conservation and one with dipole conservation. Note that for large
system sizes, the gaps are related by a constant factor [see Eq. (20)]. The inset shows the overlap of normalized “first-excited eigenstates” of
HRK (|ψRK 〉) and M̂ (|ψM̂〉). Note that the overlap approaches 1 with increasing system size, suggesting that the |ψRK 〉 is an asymptotically exact
first-excited state of M̂. (b) Scaling of the gaps of HRK with system size for systems with charge (green, blue) and dipole moment (orange, red)
conservation. Note that the gaps scale diffusively (∼L−β , β ≈ 2) in the presence of only charge conservation whereas they scale subdiffusively
(∼L−β with β > 2) in the presence of dipole moment conservation. All data presented corresponds to the largest symmetry sector/Krylov
subspace containing the state |0 0 · · · 0 0〉 for OBC.

overall normalization factor, |GRK〉 can be interpreted as the
equilibrium probability distribution of the stochastic process
described by Eqs. (13) or (16).

Before proceeding to focus on multipole conserving cir-
cuits, we briefly discuss some important aspects of the RK
Hamiltonian HRK which illustrate the potential benefits of the
mapping developed in this section. First, HRK is a frustration-
free Hamiltonian, i.e., the ground state |GRK〉 is the ground
state of each of the terms 
[ j, j+�−1] as can be seen using
Eqs. (22) and (23), since Q̂C,C′ |G(K)

RK 〉 = 0 for any C and C ′.
This fact enables the use of well-known methods for bound-
ing the spectral gap of frustration-free Hamiltonians [76–78],
which in turn allow us to place a constraint on the scaling
exponent of tTh in FRQC with constraints defined in Eq. (2) in
the large q limit:

tTh ∼ Lα,

{
α = 0 or α � 2, PBC
α = 0 or α � 3/2, OBC . (24)

We note that for circuits without any conserved quantities, tTh

has been shown to scale as ln L for certain Floquet models
[32,47]. However, as evidenced by Eq. (24), for circuits of
the form Eq. (2) (including the circuit discussed in Ref. [46]),
such scaling of tTh is suppressed in the q → ∞ limit and we
instead find that tTh can scale as an O(1) number in FRQCs in
this limit.

Secondly, by virtue of the connection to classical Master
equations, shown in Eq. (16), HRK is an example of a sto-
quastic Hamiltonian, which can be efficiently studied using
Quantum Monte Carlo techniques [72,79]. We thus expect that
the same techniques can be exploited to efficiently study the
late-time features of the SFF in a variety of settings at large-q.
Moreover, in the context of spectral graph theory, any Hamil-

tonian of the form Eq. (22) restricted to a subspace K exactly
corresponds to the Laplacian [80] of an undirected graph G,
formed by the set of vertices {C} within K and by edges with
weights wC,C′ between the vertices C and C ′. The gap �RK

then corresponds to the gap of the Laplacian of the graph G,
which is closely related to the connectivity of G. In particular,
the existence of bottlenecks in G, as detected by the Cheeger
constant, results in a smaller gap of the Laplacian (and hence,
in a larger tTh). This establishes a clear connection between
the nature of transport in the presence of constraints and the
connectivity of the Hilbert space under those constraints.

Finally, we note that earlier work has also discussed a
relation between the Thouless time tTh of a charge-conserving
FRQC and and the spectral gap of a U(1) invariant classical
bistochastic circuit: Ref. [48] constitutes a particular case of
the results obtained in this paper, being derived in the large-q
limit, while Ref. [81] invokes the random phase approxi-
mation in a long-range interacting model at finite-q. While
both of these works were restricted to specific realizations
of U(1) invariant systems, the relations between K∞, M̂, and
HRK obtained in this section apply far more generally to the
large class of circuits with arbitrary symmetries or constraints
discussed in Sec. II.

IV. EXAMPLES FROM MULTIPOLE CONSERVING
CIRCUITS

In this section, we move our attention to FRQCs with
conserved higher moments and provide explicit examples of
the mapping established in Sec. III. Specifically, we consider
circuits which conserve all moments of charge up to the mth
highest moment, where the mth multipole moment is defined
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as

Q̂m =
{∑L

x=1 xmSz
x, OBC

exp
(
2π i

∑L
x=1 (x/L)mSz

x

)
, PBC

, (25)

where m = 0 (1) corresponds to the charge (dipole) conserv-
ing case. Where necessary, we will use the labels {Qm} to
denote the mth multipole moment quantum number.

We start by reviewing the charge conserving FRQC (see
Sec. II), which was previously discussed in Ref. [48]. Follow-
ing the general discussion in Secs. II and III, the stochastic
circuit M̂ for a spin-1/2 U(1) charge conserving circuit with
gate size � = 2 (for PBC) is given by

M̂ =
⊗
j odd

m̂[ j, j+1]

⊗
j even

m̂[ j, j+1],

m̂[ j, j+1] =

⎡⎢⎣1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

⎤⎥⎦, (26)

where the local two-site gate m̂[ j, j+1] is written in the (or-
dered) basis {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}. Using Eqs. (18) and
(26), we find that 
[ j, j+1] maps onto a ferromagnetic spin-1/2
Heisenberg term


[ j, j+1] =

⎡⎢⎣0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

⎤⎥⎦
= 1

2 (|↑↓〉 − |↓↑〉)(〈↑↓| − 〈↓↑|) j, j+1

= 1
4 (1 − �σ j · �σ j+1), (27)

where 
[ j, j+1] is written in the (ordered) basis
{| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} and �σ = (σ x, σ y, σ z ), with σ i the
usual Pauli matrices. For the charge conserving FRQC (with
� = 2), we hence find that HRK is the Bethe-Ansatz integrable
ferromagnetic Heisenberg model, whose integrability was
exploited in Ref. [48] to study the late-time behavior of the
SFF for this circuit.

According to Eq. (23), the unique ground state within any
charge sector Q0 is the equal amplitude superposition of all
product states within that symmetry sector. Indeed, such a
state belongs to the SU(2) multiplet of the spin-polarized
ferromagnetic state with total spin Q0 = L. Moreover, the
low-energy excitations above the ferromagnetic state in the
Heisenberg model of Eq. (27) are exactly known to be spin
waves with dispersion ε(k) = 2 sin2 (k/2). As a consequence
of the SU(2) symmetry of the Heisenberg model, the lowest
energy excited state within each symmetry sector belongs to
the multiplet of spin-wave states with total spin Q0 = L − 1;
the gap of HRK in any Q0 �= L sector is then given by

�RK(L) = ε

(
k = 2π

L

)
≈ π2

2L2
, (28)

which is the energy corresponding to the lowest nonzero mo-
mentum spin-wave. Using Eqs. (12) and (20), we find that
the Thouless time in any quantum number sector in an FRQC
with U(1) charge conservation scales diffusively with system
size, i.e., tTh ∼ L2. For charge conserving systems with higher

spins or larger gate sizes �, HRK is no longer integrable in
general, but, as shown in Fig. 4(b), we numerically observe the
same diffusive scaling �M̂ (L) ∼ �RK ∼ L−2 for the systems
we studied. In fact, we find that the gaps are identical for
spin-1/2 and spin-1 systems with gate size � = 2 even though
the rest of the spectrum is different, strongly suggesting a
universal origin of the scaling.

As evidenced through the above example, the correspon-
dence between the FRQC and the RK Hamiltonian unveils a
curious feature of the large-q limit. While the original FRQC
only has U(1) symmetry, after Haar averaging and taking q →
∞, K∞(t ;K)—related to HRK through Eq. (19)—exhibits
an enlarged SU(2) invariance in the spin DOFs. Indeed, we
expect this enlarged symmetry to be a generic feature in
the large-q limit, since RK-points typically exhibit enhanced
symmetries, although not necessarily SU(2) [82–84]. On the
other hand, to our knowledge, the emergent integrability in the
above example is not generic and is specific to the spin-1/2
system with 2-site gates.

We now turn our attention to systems which conserve the
dipole moment Q̂1 in addition to the charge Q̂0, for which
the nature of low-energy excitations above the ground state
of the corresponding RK Hamiltonian HRK is not immedi-
ately apparent. An additional feature in such systems is the
fragmentation of the Hilbert space of the FRQC [13,14],
which leads to the formation of exponentially many Krylov
subspaces [see Eq. (5)]. Hilbert space fragmentation is typ-
ically classified into two types: strong or weak, where the
size of the largest Krylov subspace is respectively a zero or
nonzero fraction of the total Hilbert space dimension within
a given quantum number sector in the thermodynamic limit.
Refs. [13,14] numerically observed that spin-1 and spin-1/2
dipole conserving systems with the minimal gate sizes � =
�min = 3 and � = �min = 4 respectively show strong fragmen-
tation whereas the inclusion of moves requiring larger gate
sizes leads to weak fragmentation. Furthermore, Ref. [63]
found that the nature of fragmentation can vary even for a
given gate size depending on the quantum number sector.
Generically, however, experimentally relevant multipole con-
serving systems are expected to show weak fragmentation.

In strongly fragmented systems, the ratio between the di-
mension of the largest Krylov subspace within a symmetry
sector and the size of that symmetry sector exponentially
decays to zero in the thermodynamic limit. As a consequence,
typical initial states do not thermalize [13,14], although cer-
tain initial states do thermalize with respect to smaller Krylov
subspaces [16,62]. In contrast, for weakly fragmented systems
there always exists a dominant Krylov subspace K within a
given quantum number sector, such that its size asymptotically
approaches that of the symmetry sector in the thermody-
namic limit. Due to this, typical eigenstates within a quantum
number sector carry nonzero weight in the dominant Krylov
subspace of that symmetry sector and look thermal. As a
consequence, frozen configurations, despite being exponential
in number, are expected to have a negligible effect on tTh in
a weakly fragmented system. Since our interest in this work
is the behavior of generic multipole conserving systems, we
focus only on thermalizing weakly fragmented systems here.
Hence, we will study the SFF, the scaling of the Thouless
time tTh and the gaps �M̂ (L) and �RK(L) all restricted to
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the dominant Krylov subspace K within a specified quantum
number sector.

In Fig. 4, we show the scaling of the gaps �M̂ (L) and
�RK(L) for spin-1/2 and spin-1 dipole conserving systems
for several gate sizes � > �min. Figure 4(a) shows that the
numerics are in good agreement with Eq. (20) i.e., they sup-
port the correspondence between the stochastic circuit M̂ and
the emergent RK Hamiltonian HRK developed in Sec. III. In
principle, we can also extract the microscopic constant 	 for
a specific circuit by comparing the gaps for the corresponding
M̂ and HRK. Furthermore, as evident from the numerics shown
in Fig. 4(b), we find that �RK(L) scales as ∼L−β with β > 2;
thus, the Thouless time scales subdiffusively tTh ∼ Lβ (β > 2)
for system sizes accessible to exact diagonalization. Impor-
tantly, this subdiffusive scaling appears to be a generic feature
of weakly fragmented, dipole conserving systems and does
not show a strong dependence on the microscopic details (� or
s) of the circuit. This mirrors the behavior of systems with
only charge conservation [Fig. 4(a)], which show diffusive
scaling of tTh independent of microscopic details.

Due to the longer gate sizes required for systems con-
serving even higher multipole moments Qm�2 (e.g., �min =
8 for spin-1/2 quadrupole conserving systems, with longer
gates likely needed for weak fragmentation), we are unable
to eliminate finite-size effects in such cases. Nevertheless,
the numerics suggest a universality in the scaling of the gaps
of charge and dipole conserving RK Hamiltonians HRK, i.e.,
�RK(L) ∼ L−2 for charge conserving systems and �RK(L) ∼
L−4 for dipole conserving systems, regardless of the ultravio-
let details of the respective Hamiltonians. The appearance of
this universality suggests the existence of a universal field the-
oretic description which effectively captures the low-energy
behavior of generic multipole conserving RK Hamiltonians,
such as the scaling of their gap. The derivation of these uni-
versal effective field theories will be the subject of the next
section.

V. CONTINUUM LIMIT FOR MULTIPOLE
CONSERVING SYSTEMS

As discussed in the previous section, the ground state
of an RK Hamiltonian is well-known as being the equal-
weight superposition of all states in the corresponding Hilbert
space. However, understanding the scaling of the gap �RK

requires knowledge of low-lying states above the GS, which
are generically not known exactly. Nevertheless, motivated by
our numerical observation of a universal scaling of �RK with
L for generic charge and (weakly fragmented) dipole con-
serving RK Hamiltonians, we derive continuum field theories
for multipole conserving systems through a coarse-graining
procedure, detailed in Appendix D. We find that the resultant
continuum field theories accurately capture the ground state
and low-energy excitations of the corresponding RK Hamilto-
nians, therefore providing an analytic route to understanding
the scaling of tTh in the underlying FRQC.

Throughout this section, we will only consider OBC. We
denote the number of spins as N and the system size as L =
N�x, where �x is the lattice spacing. The continuum limit
then corresponds to taking the limits N → ∞ and �x → 0
simultaneously, while keeping L fixed. For systems which

conserve all moments of charge up to the mth moment (or, mth
moment conserving systems), we focus our attention on the
quantum number sector S = {Q0 = 0, Q1 = 0, · · · , Qm =
0}. As discussed in Sec. IV, for weakly fragmented systems
there exists a dominant Krylov subspace within each symme-
try sector, such that the size of that subspace asymptotically
approaches the size of the full symmetry sector as the gate-
size � increases. Since taking the continuum limit involves
coarse-graining and thus effectively taking the gate-size � →
∞, we can neglect the effect of fragmentation in systems with
dipole and higher moment conservation, and expect that our
analysis holds as long as the sectors we study do not exhibit
strong fragmentation. Of course, whether or not a given sym-
metry sector of a specific microscopic Hamiltonian exhibits
weak or strong fragmentation needs to be determined sepa-
rately, either numerically or analytically; our analysis holds
only when the symmetry sector under consideration is at most
weakly fragmented.

A. Generalized height fields

In order to take the continuum limit, we first need to in-
troduce “generalized” height fields, in analogy with familiar
height fields in the quantum dimer context [84]. When taking
the continuum limit of the ground state wave function and
HRK, a crucial issue is the restriction to the symmetry sector S;
this restriction imposes a global constraint on the spin DOFs
{sn}, thereby resulting in a nonlocal action for system. It is
to circumvent precisely this issue, while preserving locality,
that we work in terms of generalized height variables {φ(m)}
for systems with mth moment conservation. In terms of these
variables, the conservation of higher moments {Qm} are ex-
pressed as local boundary constraints on the height fields and
their derivatives, as opposed to a global constraint on the spin
DOFs.

We first illustrate this construction in terms of height vari-
ables for systems with charge conservation. The height DOFs
{φ(0)

n+ 1
2

} are defined on the links of the one-dimensional chain
as

φ
(0)
n+ 1

2

− φ
(0)
n− 1

2

= sn or φ
(0)
n+ 1

2

= φ
(0)
1
2

+
n∑

j=1

sn, (29)

which immediately suggests that the total charge Q0 [see
Eq. (25)] is given by the flux of the height variable through
the system:

Q0 = φ
(0)
N+ 1

2

− φ
(0)
1
2

. (30)

Since Eqs. (29) and (30) are invariant under an overall con-
stant shift of the height variables (φn+1/2 → φn+1/2 + c), we
can choose φ

(0)
1
2

= 0 without loss of generality. Thus, re-

stricting to a given charge sector corresponds to imposing
constraints on the boundary height variables once we forgo
the spin language for the height representation. Furthermore,
as a consequence of Eq. (29), any charge conserving process
involving � spins {sn, · · · , sn+�−1} involves (� − 1) height
variables {φ(0)

n+ 1
2

, · · · φ
(0)
n+�− 3

2

}. So, the mapping from the spin

DOFs to the height variables preserves the locality of the
Hamiltonian.
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FIG. 5. The generalized height variables of an example spin state
with Q0 = 0 and Q1 = 0 for L = 30. Note that the end points φ

(2)
0 and

φ
(2)
N+1 are fixed to be zero.

We now generalize the height representation to systems
with mth moment conservation. For a system with all mo-
ments up to the mth moment conserved, we recursively define
the mth “generalized” height variable φ(m), that lives on links
(sites) if m is even (odd), as

φ
(m)
n+ 1

2

− φ
(m)
n− 1

2

= φ(m−1)
n if m ∈ 2Z

φ
(m)
n+1 − φ(m)

n = φ
(m−1)
n+ 1

2

if m ∈ 2Z + 1
, (31)

with {φ(0)
n+ 1

2

} defined in Eq. (29). An example of a charge con-

figuration in a dipole conserving (m = 1) system, expressed in
terms of height variables, is depicted in Fig. 5. As mentioned
earlier, the key advantage of forgoing the spin language is that
the total mth multipole moments can be expressed in terms of
boundary height variables and their “derivatives”, an observa-
tion that will prove essential when taking the continuum limit.
For instance, the total dipole moment can be expressed as

Q1 =
N∑

j=1

js j = NQ0 −
N−1∑
j=1

j∑
k=1

sk

=N
(
φ

(1)
N+1 − φ

(1)
N

) − (
φ

(1)
N − φ

(1)
0

)
, (32)

where we have used Eqs. (30) and (31). Similarly to the
charge conserving case, locality is also preserved when going
to the generalized height representation. This can be seen from
Eq. (31), since any mth multipole conserving process involv-
ing � spins {sn, · · · , sn+�−1} involves (� − m + 1) generalized
height variables {φ(m)

n+ 1
2

}.
We now take the continuum limit by defining generalized

height fields through an appropriate rescaling of the height
variables by the lattice spacing �x, i.e.,

ρ(x) = sn

�x
, φ(m)(x) = φ(m)

n (�x)m, (33)

where x = n�x. Here, ρ(x) can be interpreted as the charge
density and, as we will see, the height fields φ(m)(x) are
related to the multipolar densities. In terms of the height fields,
Eq. (29) in the continuum becomes

∂xφ
(0)(x) = ρ(x). (34)

Note that Eq. (34) closely resembles a Gauss’ Law. Similarly
to Eq. (30), the total charge Q0 in the continuum is expressed
in terms of the height fields as

Q0 =
∫ L

0
dx ρ(x) = φ(0)(L) − φ(0)(0). (35)

The preceding discussion illustrates how the global charge
constraint on ρ(x) is re-expressed as a local boundary con-
straint on φ(0)(x), clarifying why the latter is physically more
appropriate as the field variable for charge conserving sys-
tems. Similarly, using Eq. (33), we can express Eq. (31) in
terms of the generalized height fields as

∂xφ
(m)(x) = φ(m−1)(x) or ∂m+1

x φ(m)(x) = ρ(x). (36)

In the continuum, the conservation of the mth and all lower
moments then amounts to fixing the left and right boundary
constraints on φ(m)(x) and its derivatives ∂n

x φ(m)(x) for all
n � m. For instance, the total dipole moment and charge can
be expressed in terms of boundary constraints on φ(1)(x) and
∂xφ

(1)(x) as

Q0 = ∂xφ
(1)(L) − ∂xφ

(1)(0),

Q1 =
∫ L

0
dx x ρ(x)

= x φ(0)(x)
∣∣L

0 −
∫ L

0
dx φ(0)(x)

= L ∂xφ
(1)(L) − (φ(1)(L) − φ(1)(0)), (37)

where we have invoked Eqs. (34) and (36). In fact, it is
straightforward to show that the nth multipole moment can
be expressed in terms of the mth height field as (m � n)

Qn =
∫ L

0
dx xn ρ(x)

=
∫ L

0
dx xn ∂m+1

x φ(m)(x)

= n!
n∑

j=0

(−1) j

j!

(
L j∂m−n+ j

x φ(m)(L) − δ j,0∂
m−n
x φ(m)(0)

)
.

(38)

The multipole moments Qn in Eq. (38) are invariant under
a polynomial shift of the height fields φ(m), under which
Eq. (36) is still satisfied:

φ(m)(x) → φ(m)(x) + P(m)(x), (39)

where P(m)(x) is an arbitrary polynomial of degree �m;
Eq. (39) can thus be used to set ∂n

x φ(m)(0) = 0 for all n � m
without loss of generality, so that

Qn = n!
n∑

j=0

(−1) jL j

j!
∂m−n+ j

x φ(m)(L). (40)

In the sector of primary interest, Qn = 0 for all n � m, these
boundary constraints further simplify to

∂n
x φ(m)(L) = 0 ∀ n � m. (41)

For OBC, we need to further supplement these boundary
constraints, which fix the symmetry sectors, with physical
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boundary conditions, which ensure that no multipole currents
flow through the boundaries. As discussed in Ref. [68], the
fundamental hydrodynamic quantities for multipole conserv-
ing systems are the charge density ρ(x) and the multipole
current J (m), from which one can infer the conventional charge
current; however, it is the multipole current that is fundamen-
tal and is related to the charge density as

J (m)(x) ∼ ∂m+1
x ρ(x), (42)

for systems which conserve all moments up to the mth highest
moment, which is the generalization of Fick’s law to multipole
conserving systems [64]. The physical requirement that no
multipole current flows through the boundaries, phrased in
terms of the height fields, can be stated as

∂2(m+1)
x φ(m)(0) = ∂2(m+1)

x φ(m)(L) = 0. (43)

B. Ground state

Before we obtain the continuum limit of the Hamiltonian
HRK, we express the ground state wave function of an mth
moment conserving system, discussed in Sec. IV, in terms
of the height field φ(m)(x). Recall that the GS Eq. (23) is
the equal-weight superposition of all allowed basis states,
i.e., all possible height variable configurations that satisfy the
boundary constraints, which fix the quantum number sectors.

Treating the spin-s DOFs as “random variables” that
assume integer or half-integer values in [−s, s], under coarse-
graining the distribution of the spins flows to a Gaussian as
a direct consequence of the central limit theorem [85]. The
variance of the resulting coarse-grained DOFs then scales as
σ 2 = �x/κ where �x is the lattice spacing and κ is a param-
eter chosen such that microscopic correlation functions are
accurately reproduced at long distances; effectively, one can
think of κ as the coarse-graining length scale. After coarse-
graining, the wave functional �

(m)
0 [ρ(x)] corresponding to a

charge density profile ρ(x) is thus simply given by a Gaussian,
albeit subject to global constraints specified by the conserved
quantities (see Appendix B for details):

�
(m)
0 [ρ(x)] = 1√

Z
e− κ

2

∫ L
0 dx (ρ(x))2 × G[ρ(x)], (44)

where Z is a normalization constant and G[ρ(x)] enforces
the global symmetry constraints; namely, it fixes the quantum
number sector of interest. For instance, for a dipole conserving
system in the {Q0, Q1} sector,

G[ρ(x)] = δ

(∫
ρ(x) − Q0

)
δ

(∫
xρ(x) − Q1

)
. (45)

To circumvent the global constraint in Eq. (44), it is con-
venient to work in terms of the mth height fields for mth
multipole conserving systems—as discussed in Sec. V A,
in this language, the quantum number sectors are instead
expressed as local boundary constraints. More explicitly,
Eq. (36) allows us to express the wave functional Eq. (44) in
terms of the height field φ(m)(x) as

�
(m)
0 [φ(m)(x)] = 1√

Z
e− κ

2

∫ L
0 dx (∂m+1

x φ(m) (x))2 B[φ(m)(x)], (46)

where the global constraints encoded in G[ρ(x)] are replaced
with local boundary constraints B[φ(m)(x)]. These constraints

are imposed by δ functions that fix the boundary constraints on
the height fields, corresponding to the quantum number sector
of interest [see Eq. (38)]. For the sector with Qn = 0 ∀ n � m,

B[φ(m)(x)] =
m∏

n=0

δ
(
∂n

x φ(m)(L)
)
, (47)

which follows from Eq. (41). Note that we also need to impose
the physical boundary conditions Eq. (43) on the generalized
height fields.

Recall that in the discrete setting, the GS is an equal weight
superposition of allowed configurations, while taking the con-
tinuum limit introduces Gaussian weights into the GS due to
coarse-graining. Concurrently, the corresponding continuum
Hamiltonian will no longer be of the form Eq. (22) but instead
belongs to the class of “SMF decomposable” Hamiltonians,10

that are related to classical master equations and include the
RK Hamiltonians Eq. (22) as a subclass [72]. This correspon-
dence will prove useful in deriving the continuum expression
for the RK Hamiltonian, which we discuss in Sec. V C (see
also Appendix C).

To close this discussion, we note that expressions of the
form Eq. (46) have previously been derived for the contin-
uum limit of ground states of RK Hamiltonians using various
methods, albeit never in the context of multipole conserv-
ing systems. For instance, the exponent in Eq. (46) can be
interpreted as the free energy functional corresponding to a
configuration of the height field φ(m)(x), as is typically done
in the context of RK points in dimer models [71,84]. Alter-
nately, the expression Eq. (46) can also be derived using the
path-integral formulation of Brownian motion: here, one inter-
prets x as a time coordinate, ρ(x) in Eq. (36) as white noise,
and φ(m)(x) as a trajectory under the “Langevin dynamics”
described by Eq. (36) [71,85,86].

C. Hamiltonian and dispersion relation

Having obtained the continuum expression for the ground
state wave functional, we now identify the corresponding
expression for the coarse-grained RK Hamiltonian HRK. As
discussed in the previous section, the coarse-grained wave
functional Eq. (46) is the ground state of a multipole con-
serving RK Hamiltonian, which belongs to the generalized
class of frustration-free positive-definite RK-like Hamiltoni-
ans discussed in Ref. [72]. In Appendix D, we discuss two
distinct approaches for deriving the continuum limit of HRK:
the first approach involves an appropriate choice of regulators,
which allows us to explicitly obtain the continuum parent
Hamiltonian corresponding to Eq. (46). The second, more
commonly employed approach [71,83,84,86,87] exploits the
relationship between HRK and classical master equations dis-
cussed in Sec. III [see Eq. (16)]. In summary, this approach
proceeds by identifying the classical process corresponding to
HRK which equilibrates to a Gaussian distribution of height

10Real, symmetric, and irreducible matrices which admit a stochas-
tic matrix form (SMF) decomposition were found to be in one-to-one
correspondence with classical stochastic systems described by a mas-
ter equation in Ref. [72]
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fields, as given by Eq. (46). As we show in Appendix D 2,
this classical process describes the Langevin dynamics of
the generalized height fields under damping. The continuum
expression for HRK can then be derived via the Fokker-Planck
equation for the probability functionals of the generalized
height fields.

Both approaches lead to the same continuum expression
for HRK, which is the parent Hamiltonian for the GS wave
functional Eq. (46) and is given by

H (m) = γ

∫ L

0
dx Q†

m(x)Qm(x), (48)

where γ is an overall dimensionful constant. The creation and
annihilation operators Q†

m(x) and Qm(x) are defined as

Q†
m(x) = 1√

2

(
− δ

δφ(m)
+ (−1)m+1κ ∂2(m+1)

x φ(m)

)
,

Qm(x) = 1√
2

(
δ

δφ(m)
+ (−1)m+1κ ∂2(m+1)

x φ(m)

)
, (49)

and satisfy the commutation relations

[Qm(x),Q†
m(y)] = (−1)m+1κ ∂2(m+1)

x δ(x − y). (50)

We can directly verify that the wave functional �
(m)
0 [φ(m)]

Eq. (46) is a “frustration-free” ground state of the Hamiltonian
H (m) Eq. (48) by noting that [see Eqs. (D1) and (D11)]

δ

δφ(m)
�

(m)
0 [φ(m)] = −(−1)m+1κ

(
∂2(m+1)

x φ(m)
)
�

(m)
0 [φ(m)],

(51)
resulting in

Qm(x)�(m)
0 [φ(m)] = 0 ∀x. (52)

Up to a constant (infinite) energy shift, the continuum Hamil-
tonian (48) can be brought to more standard form [83,86]

H (m) = γ

∫ L

0
dx

[
1

2
(
(m) )2 + κ2

2

(
∂2(m+1)

x φ(m)
)2

]
, (53)

where 
(m)(x) = iδ/δφ(m)(x) is the canonical momentum
which satisfies [φ(m)(x),
(m)(y)] = iδ(x − y).

We observe that the Hamiltonian Eq. (53) is invariant under
a polynomial shift of the form

φ(m)(x) → φ(m)(x) + P(2m+1)(x), (54)

where P(2m+1)(x) is a polynomial in x of degree �(2m + 1).
That is, it has additional symmetries beyond just the mth mul-
tipole moment, as is typical of continuum RK Hamiltonians
[82]. However, using Eq. (38), it is straightforward to see
that the transformation Eq. (54) changes the quantum number
sector of the system. This shows that the continuum Hamil-
tonian (53) is the same across all quantum number sectors,
further implying that the ground state sector is extensively
degenerate.

Now that we have established the form of the continuum
Hamiltonian, we can study its lowest energy excited states to
derive the dispersion relation and the gap. Using Eqs. (48) and
(50), the excited states �k[φ(m)] can be written as

�k[φ(m)(x)] =
∫ L

0
dx f (m)(kx)Q†

m(x)�0[φ(m)(x)], (55)

where the mode function f (m)(kx) is determined by the bound-
ary constraints on the height field φ(m)(x), where k is the
momentum of the mode. For large system sizes, we expect
that deep within the bulk f (m)(kx) ∼ eikx [87] from which we
obtain the dispersion relation

H (m)�k[φ(m)] = γ κk2(m+1)�k[φ(m)]. (56)

For a finite system of size L, we thus expect the gap �(m) of
H (m) to scale as

�(m) ∼ 1

L2(m+1)
. (57)

For charge-conserving systems (m = 0), we see that the
continuum height field approach correctly reproduces the
scaling of the spin-wave dispersion relation of the Heisenberg
model discussed in Sec. IV. More generally, we can further
lower-bound the scaling of the Thouless time t (m)

Th for a system
of size L conserving the mth multipole moment as follows:

t (m)
Th � L2(m+1). (58)

Due to the polynomial shift symmetry [Eq. (54)] of the contin-
uum Hamiltonian, we expect that this scaling of the Thouless
time is independent of the quantum number sector. Eq. (58) is
one of the main results of this paper as it encodes the subd-
iffusive scaling of the Thouless time in systems with higher
moment conservation laws. These results, obtained analyti-
cally through the generalized height representation developed
herein, are validated by the numerical analysis performed on
dipole conserving FRQCs (see Sec. IV).

The applicability of our continuum analysis of HRK ex-
tends beyond the context of random quantum circuits and is
directly pertinent to the study of classical cellular automata
with conserved higher moments. Such automata were studied
in Refs. [63,64] and are equivalent to the circuit M̂. To further
test the validity of the continuum Hamiltonian obtained in
Eq. (53), we can compute the two-point spin correlations
using Eq. (36):

〈ρ(x, t )ρ(0, 0)〉H ∝ 1

(κt )1/2(m+1) F
(

x2(m+1)

κt

)
, (59)

where ρ(x, t ) = e−iH (m)tρ(x)eiH (m)t , 〈·〉H =∫
Dφ(m)(·) exp(−i

∫
dx dt H (m)[φ(m)]), and F is a

hypergeometric scaling function. Eq. (59) is in agreement
with scalings obtained from numerical calculations and
hydrodynamic considerations in Ref. [64].

VI. HIGHER DIMENSIONAL CIRCUITS

We now briefly discuss extensions of our results to con-
strained FRQCs in dimensions d > 1, and in particular,
systems on a hypercubic lattice that conserve all components
of the mth multipole moment. First, we note that the discus-
sions in Secs. II and III generalize directly mutatis mutandis
to higher dimensions.

We start with a d-dimensional spatially random FRQC Ŵ
acting on a set of sites carrying color and spin DOFs, with the
local Hilbert space given by Hloc = Cq ⊗ C2s+1. The circuit
Ŵ takes the form of Eq. (2), comprising several layers {Ŵa}
composed of local unitary gates Û[·]. The layers of {Ŵa} are
arranged in a “Trotterized” form: (i) For a given {Ŵa}, Û[·]
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commute with each other, and all sites are being acted upon
by exactly one gate; and (ii) each group of neighboring sites
will be acted by a Û[·] in some {Ŵa} in Ŵ once and only
once. An example of a two-dimensional system with charge
conservation will be provided below in Eq. (62).

As before, we impose symmetries or local constraints
on the spin DOFs and take the large-q limit in the color
DOFs; thus, the local gates Û[·] have the block-diagonal forms
shown in Eq. (3). Using techniques directly generalized from
Appendix A, we find that in the q → ∞ limit, the SFF is
expressed as Eq. (10), where M̂ is a bistochastic matrix that
retains the geometry of the original circuit Ŵ but with its
unitary gates Û[·] replaced by bistochastic matrices m̂[·] of the
form of Eq. (9), with the same transitions between local spin
configurations as the original circuit. Following the arguments
in Sec. III, the Thouless time of the FRQC is related to the
second largest eigenvalue of M̂ exp (−�

(K)
M̂

) within a given
quantum number sector or Krylov subspace K according to
Eq. (12). Further, as discussed in Sec. III, we can approximate
the second largest eigenvalue of M̂ by the gap of an emergent
RK Hamiltonian [see Eq. (20)] that is a sum of local terms

[·] obtained from m̂[·], following Eq. (17). This gap can then
be used to deduce the scaling of the Thouless time tTh with the
system size.

In what follows, we will be interested in d-dimensional
systems that conserve all components of the mth multipole
moment. We also restrict ourselves to hypercubic lattices
with OBC in all directions, with coordinates labeled by a
d-dimensional vector �x = (x1, · · · , xd ). The mth multipole
moment operators are given by rank-(m + 1) symmetric ten-
sors Q̂i1···im

m , defined as

Q̂i1···im
m =

∑
�x

xi1 · · · xim Sz
�x, (60)

where Sz
�x is the Pauli-Z matrix acting on site �x, the indices of

the tensor {i j} (1 � i j � d) represent the d lattice directions,
and the summation runs over all sites of the hypercubic lattice.
Note that when d = 1, we recover Eq. (25). Quantum numbers
associated with the operators {Q̂i1···im

m } will be denoted by
{Qi1···im

m }. For example, the expressions for charge (m = 0) and
dipole moment (m = 1) are

Q̂0 =
∑

�x
Sz

�x, Q̂i
1 =

∑
�x

xiS
z
�x. (61)

We now illustrate the above with an example and calculate
tTh for an FRQC composed of charge-conserving gates acting
on spin-1/2 DOFs living on neighboring sites of a square
lattice (with OBC). The circuit Ŵ in this case can be imple-
mented in four layers:

Ŵ = ⊗
x odd, y

Û[(x,y),(x+1,y)]
⊗

x even, y
Û[(x,y),(x+1,y)]

⊗
y odd, x

Û[(x,y),(x,y+1)]
⊗

y even, x
Û[(x,y),(x,y+1)], (62)

where Û[(x,y),(x+α,y+β )] denotes the local charge-conserving
gate acting on the rectangular region bounded on the bottom
left and top right by the vertices (x, y) and (x + α, y + β )

respectively. Similarly, the matrix M̂ has the structure

M̂ = ⊗
x odd, y

m̂[(x,y),(x+1,y)]
⊗

x even, y
m̂[(x,y),(x+1,y)]

⊗
y odd, x

m̂[(x,y),(x,y+1)]
⊗

y odd, x
m̂[(x,y),(x,y+1)], (63)

where each of the m̂[(x,y),(x+α,y+β )] is a 4 × 4 matrix that has
the form shown in Eq. (26). Following Eqs. (17) and (27), the
corresponding RK Hamiltonian is the spin-1/2 ferromagnetic
Heisenberg Hamiltonian in two dimensions:

HRK = 1

4

∑
〈i, j〉

(1 − �σi · �σ j ), (64)

where 〈i, j〉 represents nearest-neighboring sites on the square
lattice. Similar to the one-dimensional case, the Hamiltonian
(64) has a ferromagnetic ground state and its lowest energy
excitations can be solved exactly; these are known to be spin-
waves with a dispersion relation ε(kx, ky) = 2 sin2 (kx/2) +
2 sin2 (ky/2), where kx and ky represent the momenta of the
spin wave in the x and y directions respectively. Furthermore,
the Hamiltonian Eq. (64) is SU (2) symmetric so that the
low-energy spectrum is the same within any of the Q0 sectors.
The gap within any Sz sector thus scales as (if Lx > Ly)

�RK(Lx, Ly) = ε

(
kx = 2π

Lx
, ky = 0

)
∼ 1

L2
x

. (65)

Following Eq. (20), the Thouless time for a charge conserving
system hence scales with the square of the longest linear size
of the system, consistent with expected results from diffu-
sion. This discussion generalizes directly to charge conserving
FRQCs acting on d-dimensional hypercubic lattices, where
the emergent RK Hamiltonian is the ferromagnetic Heisen-
berg Hamiltonian in d dimensions with spin-wave excitations
and the Thouless time scales as the square of the linear size of
the system.

For dipole and higher multipole moment conserving sys-
tems, in general, or for charge-conserving FRQCs with higher
spins or longer-range gates, the emergent RK Hamiltonian
is generically nonintegrable. Similar to the one-dimensional
case, we hence consider systems with weak fragmentation
[14], take the continuum limit and resort to field theoretic
arguments to obtain the gap scaling of the resulting Hamil-
tonians.

Recall that the ground state of an RK Hamiltonian is an
equal superposition of all configurations within a given quan-
tum number sector, similar to the one-dimensional case (see
Sec. V B and Appendix B); in the continuum limit, the ground
state wave functional in d dimensions is then

�
(m)
0 [ρ(�x)] = 1√

Z
e− κ

2

∫
dd �x (ρ(�x))2 × G[ρ(�x)] (66)

where ρ(�x) is the charge density, Z is a normalization factor,
and G[ρ(�x)] enforces the global symmetry constraints i.e.,
it fixes the quantum numbers of the sector of interest. For
example, for a dipole conserving system in d dimensions with
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quantum numbers {Q0, {Q j
1}}, we have

G[ρ(�x)] = δ

(∫
ρ(�x) − Q0

) d∏
j=1

δ

(∫
x jρ(�x) − Q j

1

)
. (67)

We now need to derive a continuum parent RK Hamilto-
nian for the wave functional (66). To circumvent the global
constraints in Eq. (66), we need some analog of the general-
ized height fields that we had introduced for one-dimensional
systems in Sec. V A. As emphasized in that section, the
key role of the generalized height fields is to translate the
global constraints in the wave functional into boundary con-
straints. As shown in Eq. (38), for mth multipole conserving
1D systems in the continuum, this was accomplished by de-
manding that the generalized height fields φ(m)(x) satisfy the
generalized Gauss law (36). The natural analog of the mth
generalized height fields φ(m)(x) in higher dimensions are
given by symmetric rank-(m + 1) tensor fields {E j0··· jm (�x)},
versions of which have previously been studied in the context
of fracton models [67,88–90].

To recast the global symmetry constraints enforcing the
conservation of the nth multipole moments (n < m) in terms
of boundary constraints on the tensor fields, we impose the
following generalized Gauss law on the rank-(m + 1) tensor
fields:

∂ j0 · · · ∂ jm E j0··· jm (�x) = ρ(�x), (68)

where we sum over repeated indices. We can then express the
conserved quantities {Qi1···im

m } in terms of boundary constraints
on the tensor fields. For example, in charge conserving sys-
tems (m = 0), Eq. (68) reduces to the usual Gauss law for
electric fields ∂ j0 E j0 (�x) = ρ(�x), and the total charge Q0 can
be expressed as

Q0 =
∫

dd �x ∂ j0 E j0 =
∮

dn j0 E j0 , (69)

where dnj0 represents the “area” element on the boundary
of the system, and we have used integration by parts along
with Stokes’ theorem. Similarly, in dipole conserving sys-
tems, Eq. (68) reduces to the generalized Gauss law for rank-2
symmetric tensor fields ∂ j0∂ j1 E j0 j1 (�x) = ρ(�x) and the total
charge Q0 and dipole moments {Qi

1} can be expressed as [67]

Q0 =
∫

dd �x ∂ j0∂ j1 E j0 j1 =
∮

dn j0 ∂ j1 E j0 j1 ,

Qi
1 =

∫
dd �x xi∂ j0∂ j1 E j0 j1 =

∮
dn j0

(
xi∂ j1 E j0 j1 − Ei j0

)
.

(70)

It is straightforward to show that a general expression for
the nth multipole moment can also be derived in terms of
boundary integrals of rank-(m + 1) symmetric tensor fields
{E j0··· jm (�x)} for any m � n, although the general expressions
are rather tedious to show here and are not particularly il-
luminating. Thus, for a system with mth multipole moment
conservation in all directions, we work in terms of rank-
(m + 1) symmetric tensor fields, with the ground state wave

FIG. 6. (a) Charge conserving case: independent components Ex

and Ey live on links of the square lattice. (b) Dipole conserving case:
diagonal components Exx, Eyy of the generalized electric field tensor
live on each site while the off-diagonal component Exy = Eyx lives
on each plaquette.

functional Eq. (66) re-expressed as

�
(m)
0 [{Ei0···im (�x)}] = 1√

Z
e− κ

2

∫
dd �x (∂ j0 ···∂ jm E j0 ··· jm )2

×B[{E j0··· jm (�x)}], (71)

where B[{Ei0···im (�x)}] represents a boundary constraint on the
fields {Ei0···im (�x)} that fixes the quantum number sectors cor-
responding to all the nth multipole moments for n � m.

We now proceed to derive the expression for the par-
ent RK Hamiltonian corresponding to the wave functional
Eq. (71). The derivation closely follows the one-dimensional
case discussed in Sec. V C. The crucial idea is that in the
long-wavelength limit, the Markov process corresponding to
the RK Hamiltonian of an mth multipole conserving system
is simply the independent Langevin dynamics of each com-
ponent of the rank-(m + 1) tensor field at each point. We
can intuitively understand this on a two-dimensional square
lattice, where we label the two directions by x̂ and ŷ. The
generalized Gauss law of Eq. (68) is then discretized appro-
priately, and acts locally around each site of the lattice. In
charge conserving systems, the rank-1 electric field Ei has two
components Ex and Ey, which can be thought of as DOFs on
the links of the lattice along the x̂ and ŷ directions, respectively
[see Fig. 6(a)]. As a consequence of the discrete Gauss law,
any nearest-neighbor charge conserving process along a link
in the x̂ (respectively, ŷ) direction only modifies the fields Ex

(respectively, Ey) on that link, whereas the electric fields far
away remain unchanged. In the continuum, such processes are
modeled by the independent Langevin dynamics of Ex and Ey

on each link. Similarly, in dipole conserving systems on a lat-
tice, the rank-2 symmetric tensor field has three independent
components: Exx, Eyy, Exy = Eyx. The components Exx and
Eyy are DOFs on the vertices of the square lattice, whereas
Exy = Eyx are DOFs living on plaquettes of the square lattice
(see Fig. 6). As a consequence of the discrete generalized
Gauss law, various local dipole conserving processes that oc-
cur independently result in independent fluctuations of these
tensor fields. Furthermore, after coarse graining, we expect
that the fluctuations in each component of the local fields will
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be Gaussian and that the fluctuations of different components
of the tensors E j0··· jm will be uncorrelated.

Using the expression (71), (in Appendix E), we derive the
following expression for the continuum Hamiltonian:

H (m) = γ

∫
dd �x (Q†

m(�x))l0···lm (Qm(�x))l0···lm , (72)

where repeated indices are summed over, and (Q†(�x))l0···lm and
(Q(�x))l0···lm are respectively creation and annihilation opera-
tors for the fluctuations of the component El0···lm ; their explicit
expressions are given by Eq. (E12). Note that we obtain sepa-
rate creation and annihilation operators for each component of
the rank-(m + 1) tensor since their fluctuations are indepen-
dent. Further, using the properties of these operators shown
in Eq. (E12), the lowest excited state �

(m)
�k (E j0··· jm (�x)) with

momentum �k is given by [see Eq. (E14)]

�
(m)
�k =

∫
dd �x ei�k·�x(

kl0 · · · klm

)
(Q†

m(�x))l0···lm�
(m)
0 , (73)

where repeated indices are summed over, and we have sup-
pressed the arguments in �

(m)
�k and �

(m)
0 . �

(m)
�k can also be

shown to satisfy

H (m)�
(m)
�k = γ κ

(
d∑

l=1

k2
l

)m+1

�
(m)
�k . (74)

For a system with linear size Lj in the jth direction, we thus
expect the gap to scale as (assuming L = max j (Lj ))

�(m) ∼ 1

L2(m+1)
, (75)

thereby showing that the Thouless time follows the scaling
of Eq. (58), i.e., the Thouless time for multipole conserving
circuits in higher dimensions follows the same subdiffusive
scaling with the linear extent of the system as that of one-
dimensional multipole conserving circuits.

While we have primarily focused on systems that conserve
all components of the mth multipole moment, this formalism
directly generalizes to systems where only a few components
of mth multipole moments are conserved. Such a setting is
directly relevant to many physical systems, for instance, in
recent experiments that impose dipole moment conservation
only along a single direction by subjecting the system to a
strong electric field in that particular direction. Continuum
wave functions of the form Eq. (71) for such systems can also
be expressed in terms of tensor fields that obey anisotropic
versions of the Gauss law Eq. (68) [90]. For example, in a
two-dimensional system with charge conservation in the x
direction and dipole moment conservation in the y direction,
we obtain

∂xEx + ∂y(∂xEyx + ∂yEyy) = ρ(�x). (76)

Following similar ideas as in the isotropic case, it is then
straightforward to derive expressions for the continuum
Hamiltonian similarly to Eq. (72), which corresponds to
Langevin dynamics of each of the tensor components in-
volved, and to then derive the scaling of the Thouless time.

We find that the Thouless time for the entire system is domi-
nated by the highest multipole moment conserved, i.e., tTh ∼
L2(m+1) if some component of the mth multipole moment
(but none higher) is conserved, consistent with intuition and
experimental observations [65].

VII. CONCLUDING REMARKS

In this paper, we have studied the spectral statistics, as
encoded in the SFF K (t ), for spatially extended constrained
many-body quantum chaotic systems, focusing on FRQCs
with conserved higher moments, such as the dipole moment.
As one of the key results of this paper, we have established
a series of relations between K (t ) in the q → ∞ limit, a
classical stochastic circuit M̂, and an emergent RK Hamilto-
nian, such that the inverse gap of this RK Hamiltonian lower
bounds the Thouless time tTh of the underlying FRQC. As we
have shown here, the relation between tTh and �RK proves
particularly efficacious, since it relates a dynamical property
of the FRQC to the low-energy physics of a sign-problem-free
quantum Hamiltonian.

We emphasize that these relations are valid for generic
local FRQCs with on-site Abelian symmetries or dynamical
constraints, not only those with conserved higher moments of
charge. For example, we can consider circuit implementations
of other fragmented models [91] or study an FRQC inspired
by the Rydberg blockade [56,92], also known as the PXP
model [8]. The latter is implemented by taking, e.g., � = 3
site local gates with the only nontrivial dynamics contained
within a 2 × 2 block connecting the | ↓↓↓〉 and | ↓↑↓〉 states.
The resulting Floquet operator Ŵ has no conserved quantities
besides the (quasi)energy, but fragments into dynamically dis-
connected subspaces; the largest of these corresponds to the
constrained Hilbert space most often discussed in the context
of quantum many-body scar dynamics [8].

We have verified these general results on circuits with
higher conserved moments, which generically exhibit Hilbert
space fragmentation. Working in the q → ∞ limit, we de-
rived the corresponding stochastic circuit M̂ and emergent RK
Hamiltonian HRK for both charge and (weakly fragmented)
dipole conserving systems. Our numerical study of these sys-
tems suggests a universality in the scaling of tTh with system
size, specifically, we predict diffusive scaling tTh ∼ L2 for
charge conserving systems and subdiffusive behavior ∼L4

for dipole conserving systems, regardless of the microscopic
details of the underlying circuit. Further evidence for this scal-
ing is given by continuum field theoretic descriptions of the
emergent RK Hamiltonians for multipole conserving FRQCs
in terms of generalized height fields. By analytically comput-
ing the dispersion relation for the resultant field theories, we
find that tTh ∼ L2(m+1) in circuits that conserve the mth mul-
tipole moment, consistent with numerical results for charge
and dipole conserving systems. We further generalize our
formalism to higher dimensions, where we derive continuum
field theories for emergent RK Hamiltonians for systems that
conserve dipole and higher multipole moments. We obtain the
same scaling of the Thouless time with the largest linear size
of the system, i.e., tTh ∼ L2(m+1) for circuits that conserve any
component of the mth multipole moment (but none higher) in
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any number of dimensions, consistent with expectations from
the one-dimensional result.

Our work opens many exciting avenues for future research:
here, we have only focused on the class of multipole con-
serving circuits which exhibit weak fragmentation. Dynamics
in strongly fragmented systems, where typical initial states
are ETH violating, is highly constrained; nevertheless, such
systems exhibit large Krylov subspaces which eventually ther-
malize [16]. The scaling of tTh within such subspaces remains
to be understood and may lead to distinct continuum field
theories than those we have introduced for weakly fragmented
systems. Another interesting avenue to explore is extending
our formalism to incorporate non-Abelian symmetries, for
which the nature of transport and thermalization is currently
being debated [93–95].

We note that the large-q diagrammatics, and therefore the
mapping to a classical bistochastic circuit and RK Hamilto-
nian, have so far only been developed for the two-point SFF
K (t ). Other observables, such as the second Renyi entropy and
out-of-time-order correlator, can also be mapped to stochas-
tic classical dynamics upon ensemble averaging, and will be
discussed in forthcoming work. Pushing these ideas further
presents an important but technically demanding theoretical
challenge. More straightforward is extending our results to
circuit geometries besides the brick-wall structure considered
here as well as to other RMT symmetry classes.

More pressing, however, is building a systematic under-
standing of FRQCs at finite-q, to delineate those features
which are an artefact of the q → ∞ limit from those which are
more generic properties of constrained random circuits. Nu-
merically investigating finite-q circuits remains prohibitive,
particularly in the context of higher moment conserving
circuits which already require large (� � 4) local gates. An-
alytically, one could attempt to keep track of diagrams at next
to leading order in the large-q expansion to better quantify
deviations of the SFF from the strict q → ∞ limit. We leave
the development of such analytical techniques to future work.
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APPENDIX A: MAPPING K(t ) TO A CLASSICAL
MARKOV CIRCUIT

In this Appendix, we generalize the calculation of SFF
K (t ;K) performed in Ref. [48] for an FRQC with con-

served U(1) charge to FRQCs with arbitrary symmetries
or local constraints, such as dipole moment conservation.
Specifically, we show that in the q → ∞ limit, K (t ;K)
is mapped to the trace of the t th power of a bistochastic
matrix.

The ensemble average in K (t ;K), defined in Eq. (6) and
illustrated in Fig. 7(a), can be evaluated as a sum of diagrams,
each of which corresponds to a possible pairing between uni-
taries and their complex conjugates. In the limit of large-q,
diagrams with the same “cyclical” pairing at all sites dominate
the sum ( see illustration in Fig. 7(c) and Ref. [46] for details).
There are t such diagrams, which we call “Gaussian”
since they can be evaluated using the Wick contractions
between unitaries and their conjugates. For �-site uni-
taries U and their conjugates U ∗, shown in Fig. 7(d), we
have

〈
U

�j,�β
�i,�α U ∗�j′,�β ′

�i′,�α′
〉 = 1

d�αq�
δ�i,�i′δ�j,�j′δ�α,�α′δ�β,�β ′ , δ�i,�i′ =

�∏
a=1

δia,i′a ,

(A1)

where �i = (i1, i2, . . . , i�) and �α = (α1, α2, . . . , α�) are �-
component vectors denoting respectively the color and spin
degrees of freedom on their support. Here, d�α denotes the
number of “out-going” �-site spin configurations dynamically
accessible to the “in-coming” �-site spin configuration �α. That
is, d�αq� is the size of the random matrix block in Ŵ to which
the basis state (�i, �α) belongs.

As an example, let us consider the simplest charge-
conserving circuit [48]. We have two-site gates (� = 2) and
�α = (α1, α2), with αi =↑,↓. The dynamically connected two-
site configurations can be labeled by a conserved charge Q0 =∑�

x=1 Sz
x. The configurations (↑,↑) and (↓,↓) have Q0(�α) =

+1 and Q0(�α) = −1 respectively and are not dynamically
connected to any other two-site configurations. Thus, these
correspond to d�α = 1. However, the configurations (↑,↓) and
(↓,↑) both have Q0(α) = 0, and are dynamically connected
to each other. Thus we have d�α = 2.

Next, we can translate each of the t diagrams into algebraic
terms by using Eq. (A1) and summing over the color degrees
of freedom. Consider the diagram where the pairing between
unitaries and their conjugates takes the form of the leftmost
diagram in Fig. 7(c) at every site. The sum over the colors
precisely cancels out all factors of q in Eq. (A1) [46]. It then
remains to sum over the spin degrees of freedom. Observe that
the choice of spin DOFs in Ŵ uniquely fixes those in Ŵ † due
to the Wick contractions (A1). Consequently, the sum over
spins can be computed by finding all possible ways of assign-
ing spins in the diagrammatic representation of TrK[Ŵ (t )],
Fig. 7(b), such that all charges {Qa} are preserved after the
action of every �-site gate. This sum over spins can be repro-
duced by TrK[M̂t ] in Eq. (10), where M̂ has the geometry of
Ŵ in Eq. (2) and contains nonrandom block-diagonal �-gates
m̂, defined in Eq. (9). Note that m̂ contains d�α × d�α matrix
blocks m̂(d�α ) with entries 1/d�α to account for the factor d�α in
Eq. (A1).

The overall factor of |t | in Eq. (7) arises from the following
argument: any two of the t contracted diagrams in Fig. 7(c)
are related by a rotation of the arrowed loop on the right side
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FIG. 7. (a) A schematic illustration of the diagrammatic representation of K (t ;K) (adapted from Ref. [46]) for a FRQC with � = 4 (which
is appropriate for the minimal spin-1 dipole-conserving FRQC with weak fragmentation). The white and grey sheets represent TrK[Ŵ (t )] and
TrK[Ŵ †(t )], respectively. Space runs horizontally and time runs vertically. Curly lines on the top and the bottom of the sheet represents traces
over the dof at each site. Gates with different support are denoted with different colors. (b) The diagrammatic representation of TrK[M̂t ],
where, unlike Ŵ , M̂ is a nonrandom circuit that acts only on the spin degrees of freedom of the FRQC Ŵ . Each �-gate in M̂ is a block-diagonal
bistochastic matrix defined in Eq. (9). All charges are preserved after the action of every �-site gates in M̂. (c) The three leading diagrams in the
diagrammatic expansion of K (t ;S ) at t = 3 in the limit of large-q [46]. Note that for each diagram, every site i takes the same configuration.
The grey ribbons correspond to a ladder of � number of contractions between unitaries and their conjugates, represented by colored dots.

(d) The diagrammatic representation of U
�j,�β

�i,�α , where the Roman (Greek) indices correspond to color (spin) degrees of freedom.

of one of the diagrams, i.e., the diagrams are topologically
equivalent. As a result, the corresponding algebraic terms

for all t leading diagrams are identical. This concludes the
derivation of Eq. (7).

APPENDIX B: CONTINUUM LIMIT OF THE RK GROUND STATE WAVE FUNCTION

In this Appendix, we derive the continuum limit for the ground state wave function of multipole conserving RK Hamiltonians
HRK, thereby allowing us to analyze these systems using field-theoretic techniques. In the discrete setting, the ground state wave
function (23) has the form

|ψ〉 =
∑

{sn}∈�

|{sn}〉, (B1)

where � denotes the set of allowed spin configurations that are allowed within the quantum number sector or Krylov subspace
of interest.

As discussed in Sec. V A, the spins {sn} assume integer or half-integer values in [−s, s]. In the continuum limit, i.e., when the
lattice spacing �x → 0, under coarse-graining the distributions of sn’s flows to Gaussian random variables with zero mean and
variance σ 2 ∼ �x as a consequence of the central limit theorem [85]. That is, the probability density P of a single spin sn is

P(sn) ∼ exp

(
− s2

n

2σ 2

)
⇒ 〈sn〉 = 0, 〈snsn′ 〉 = σ 2δn,n′ , σ 2 = �x

κ
. (B2)

Here, κ effectively serves as the coarse-graining length scale and is determined by requiring that the continuum theory correctly
reproduces long-distance correlation functions in the microscopic model, which can in principle be computed numerically. Next,
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by expressing the sn’s in terms of the mth height fields and by using Eqs. (29) and (31), we obtain

sn = φ
(0)
n+ 1

2

− φ
(0)
n− 1

2

= φ
(1)
n+1 − 2φ(1)

n + φ
(1)
n−1 = · · · =

m+1
2∑

j=− m+1
2

(−1) j+ m+1
2

(
m + 1

j + m+1
2

)
φ

(m)
n+ j, (B3)

while the joint probabilities satisfy

P({sn}) ∼ exp

(
− 1

2σ 2

∑
n

s2
n

)
× G[{sn}]

⇒ P
({

φ(m)
n

}) ∼ exp

⎛⎜⎝− 1

2σ 2

∑
n

⎛⎝ m+1
2∑

j=− m+1
2

(−1) j+ m+1
2

(
m + 1

j + m+1
2

)
φ

(m)
n+ j

⎞⎠2
⎞⎟⎠ × B

[{
φ(m)

n

}]
, (B4)

where σ 2 = �x/κ . G[{sn}] and B[{φ(m)
n }] are shorthand for global and boundary constraints written in terms of spin and height

variables, respectively; these constraints are required to fix the quantum number sector, as discussed in Sec. V A. Note that the
Jacobian of the transformation from {sn} → {φ(m)

n } is 1. In order to obtain a continuum limit in the case of mth height variables,
we need to define height fields that scale with the lattice spacing as shown in Eq. (33). The probability density for a configuration
of the mth height field in the continuum limit then reads

P(φ(m)(x)) ∼ lim
�x→0

exp

⎛⎜⎝−κ

2

∑
n

�x

⎛⎜⎝
∑ m+1

2

j=− m+1
2

(−1) j+ m+1
2

( m+1
j+ m+1

2

)
φ

(m)
n+ j (�x)m

(�x)m+1

⎞⎟⎠
2⎞⎟⎠ × B

[{
φ(m)

n

}]

= exp

(
−κ

2

∫ L

0
dx

(
∂m+1

x φ(m)(x)
)2

)
× B[{φ(m)(x)}], (B5)

from which we obtain Eq. (46) as the continuum limit of the ground state wave functional. The full continuum wave function
can be written as ∣∣�(m)

0

〉 = 1√
Z

∫
B[φ(m) (x)]

Dφ(m) exp

(
−κ

2

∫ L

0
dx

(
∂m+1

x φ(m)(x)
)2

)
|φ(m)(x)〉. (B6)

APPENDIX C: BRIEF INTERLUDE ON SMF DECOMPOSABLE HAMILTONIANS

In this Appendix, we discuss a generalization of the RK wave functions in Eq. (23) to states of the form

|ψSMF〉 = 1√
Z

∑
C∈�

pC|C〉, (C1)

where the Hilbert space is spanned by basis states composed of an abstract set of configurations � = {C}, pC is the “probability”
associated with the configuration C, and

√
Z is the normalization constant for the wave function. We recover the standard RK

wave functions of the form Eq. (23) by setting pC = 1 for all configurations C.
As discussed in Refs. [72,75], wave functions of the form Eq. (C1) are closely related to steady states of Markov processes

satisfying detailed balance. Moreover, these generalized RK wave functions correspond to ground states of Hamiltonians which
admit a “stochastic matrix form” decomposition and are of the following form:

HSMF =
∑
〈C,C′〉

wC,C′Q̂C,C′,

Q̂C,C′ =
[

1

p2
C
|C〉〈C| + 1

p2
C′

|C ′〉〈C ′| − 1

pC pC′
(|C〉〈C ′| + |C ′〉〈C|)

]
=

(
1

pC
|C〉 − 1

pC′
|C ′〉

)(
1

pC
〈C| − 1

pC′
〈C ′|

)
, (C2)

where 〈C, C ′〉 represents a pair of configurations from the set � that are connected under the action of the Hamiltonian. In
Eq. (C2), wC,C′’s are positive real numbers to ensure that HSMF � 0. It is straightforward to verify by direct computation that
|ψSMF〉 is a frustration-free ground state of HSMF since

Q̂C,C′ (pC|C〉 + pC′ |C ′〉) = 0 ⇒ HSMF|ψSMF〉 = 0. (C3)

Typically, pC and Z are represented as [72]

pC = e− βEC
2 , Z =

∑
C∈�

e−βEC , (C4)
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where EC is the “energy” associated with the configurations, β is the “inverse-temperature” and hence the Z resembles the
partition function. We note that while the standard RK Hamiltonian HRK (22) is proportional to the transition matrix of a Markov
process, HSMF is related to a transition matrix T of the Markov process through a similarity transformation, under which the
ground state wave function remains of the form Eq. (C1).

APPENDIX D: CONTINUUM LIMIT OF THE RK HAMILTONIAN

In this Appendix, we discuss the derivation of the continuum limit of the RK Hamiltonian for multipole conserving systems.
We outline two distinct approaches, both of which lead to the same Hamiltonian.

1. Regulator approach

Let us begin by observing that the continuum wave function (B6) has the form (C1), i.e., it belongs to the class of ground states
of SMF decomposable Hamiltonians. We thus anticipate that the continuum limit of the RK Hamiltonian is SMF decomposable
and can be brought to the form (C2).

To make this correspondence precise, we identify the set of configurations � with the set of height field configurations
{φ(m)(x)}, while the inverse temperature β, energy {E (φ(m)(x))}, and partition function Z are respectively given by [see Eq. (C4)]

β = κ, E (φ(m)(x)) =
∫ L

0
dx

(
∂m+1

x φ(m)(x)
)2

, Z =
∫
B[φ(m) (x)]

Dφ(m) exp
(−βE

(
φ

(m)
k

))
. (D1)

B[φ(m)(x)] is shorthand for the boundary constraints Eq. (38) that fix the quantum number sector. Note that in the case of
systems involving �-site gates, two configurations of spins (height variables) C = {sn} (C = {φ(m)

n }) and C ′ = {s′
n} (C ′ = {φ(m)

n
′})

are connected under the action of the Hamiltonian only if the � local spins (� − 1 height variables) satisfy the constraints imposed
by the higher moment symmetries. For example, in the case of a Hamiltonian with charge conservation,

s j + s j+1 = s′
j + s′

j+1 for some j and sn = s′
n∀n, n �= j, j+1

⇐⇒ φ
(0)
j+ 1

2

= φ
(0)
j+ 1

2

′+s j − s′
j for some j and φ

(0)
n+ 1

2

= φ
(0)
n+ 1

2

′ ∀n, n �= j. (D2)

We see that the Hamiltonian remains local when switching to the height representation, since the action of the Hamiltonian
changes the height variable only at a single point. While this is strictly true only for multipole conserving processes of the
minimal gate size, after coarse-graining, we expect that the long-wavelength physics is captured by a Hamiltonian that only
permits local fluctuations in the height field configurations.

Consequently, after coarse-graining we can express the RK Hamiltonian Eq. (22) for an mth multipole moment conserving
system in the SMF-form Eq. (C2):

H (m) =
∑

{φ(m)
n },{φ(m)

n
′}

∑
j

(∏
n �= j

δ
φ

(m)
n ,φ

(m)
n

′Q̂{φ(m)
n },{φ(m)

n
′}w{φ(m)

n },{φ(m)
n

′}

)
. (D3)

Since in taking the continuum limit, we replace discrete spin variables by continuous Gaussian random variables with variance
σ 2 ∼ �x, we replace sums in Eq. (D3) by integrals as follows:

∑
{φ(m)

n },{φ(m)
n

′}
→

∫ ∏
n

dφ(m)
n dφ(m)

n
′
P

({
φ(m)

n

})
P

({
φ(m)

n
′})

, (D4)

where P denotes the Gaussian probability density (B4). Discrete delta functions are replaced by continuous ones. We then obtain
the following expression for the continuum Hamiltonian H (m):

H (m) =
∑

j

∫ ∏
n �= j

dφ(m)
n dφ(m)

n
′
δ
(
φ(m)

n − φ(m)
n

′)∫
dφ

(m)
j dφ

(m)
j

′
P

({
φ(m)

n

})
P

({
φ(m)

n
′})

w{φ(m)
n },{φ(m)

n
′}Q̂{φ(m)

n },{φ(m)
n

′}. (D5)

It is clear that with an appropriate choice of the regulator w{φ(m)
n },{φ(m)

n
′}, we can write Eq. (D5) in the form

H (m) =
∫ ∏

n

dφ(m)
n P

({
φ(m)

n

})2∑
j

∫
dλ j exp

(
− λ2

j

σ 2

)
Q̂{φ(m)

n },{φ(m)
n

′}, λ j ≡ φ′
j − φ j, (D6)

which corresponds to the fluctuations of the height fields being Gaussian with variance σ 2. Note that since {φ(m)
n }

and {φ(m)
n

′} only differ in φ
(m)
j

′
and φ

(m)
j (φ(m)

n = φ(m)
n

′ otherwise), we can Taylor expand Q̂{φ(m)
n },{φ(m)

n
′} in λ j as
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follows:

Q̂{φ(m)
n },{φ(m)

n
′} =

(
1

P
({

φ
(m)
n

}) ∣∣{φ(m)
n

}〉 − 1

P
({

φ
(m)
n

′}) ∣∣{φ(m)
n

′}〉)(
1

P
({

φ
(m)
n

}) 〈{
φ(m)

n

}∣∣ − 1

P
({

φ
(m)
n

′}) 〈{
φ(m)

n
′}∣∣)

= λ2
j

δ

δφ
(m)
j

(
1

P
({

φ
(m)
n

}) ∣∣{φ(m)
n

}〉)(
1

P
({

φ
(m)
n

}) 〈{
φ(m)

n

}∣∣)(
δ

δφ
(m)
j

)†

+ O
(
λ3

j

)
. (D7)

Using Eqs. (D6) and (D7), we obtain

H (m) = σ 2
∑

j

∫ ∏
n

dφ(m)
n P

({
φ(m)

n

})2 δ

δφ
(m)
j

(
1

P
({

φ
(m)
n

}) ∣∣{φ(m)
n

}〉)(
1

P
({

φ
(m)
n

}) 〈{
φ(m)

n

}∣∣)(
δ

δφ
(m)
j

)†

+ O(σ 3) (D8)

Using the fact that σ 2 ∼ �x, up to an overall dimensionful factor, the continuum Hamiltonian is

H (m) = γ

2

∫
dx

∫
Dφ(m) P(φ(m)(x))2 δ

δφ(m)(x)

(
1

P(φ(m)(x))
|φ(m)(x)〉

)(
1

P(φ(m)(x))
〈φ(m)(x)|

)(
δ

δφ(m)(x)

)†

. (D9)

Next, from Eqs. (C4) and (B5) we compute

P(φ(m)(x))
δ

δφ(m)(x)

(
1

P(φ(m)(x))
|φ(m)(x)〉

)
=

(
δ

δφ(m)(x)
+ β

2

δE
(
φ

(m)
k

)
δφ(m)(x)

)
|φ(m)(x)〉 (D10)

and

δE
(
φ

(m)
k

)
δφ(m)(x)

= − δ

δφ(m)(x)

∫ L

0
dy

(
∂m+1

y φ(m)(y)
)2 = −2

∫ L

0
dy ∂m+1

y φ(m)(y)∂m+1
y δ(y − x)

= −2 × (−1)m+1∂2(m+1)
x φ(m)(x), (D11)

where we have integrated by parts. Finally, using Eq. (D10), we obtain the functional form of the Hamiltonian H (m)

H (m) = γ

2

∫
dx

(
− δ

δφ(m)(x)
+ (−1)m+1κ ∂2(m+1)

x φ(m)(x)

)(
δ

δφ(m)(x)
+ (−1)m+1κ ∂2(m+1)

x φ(m)(x)

)

= γ

(∫
dx

(

(m)2

2
+ κ2

2

(
∂2(m+1)

x φ(m)(x)
)2

)
+ (−1)m+1 κ

2

∫
dx ∂2(m+1)

x δ(x)

)
, (D12)

matching the expressions in Eqs. (48), (49), and (53) in the main text, up to an overall constant energy shift.

2. Fokker-Planck approach

An alternate, more standard approach for deriving the continuum Hamiltonian proceeds by invoking an analogy with Langevin
dynamics [71]. We begin with the observation that that the ground state wave functional of the continuum RK Hamiltonian—
when interpreted as the equilibrium probability distribution of the Markov process in the continuum—given by the absolute
square of the amplitudes in Eqs. (B6) and (D1), resembles a Boltzmann distribution

W0(φ(m)(x)) = 1

Z exp[−κE (φ(m)(x))], (D13)

where κ is the “inverse temperature” and E (φ(m)(x)) is the energy of the system given by

E (φ(m)(x)) =
∫ L

0
dx

(
∂m+1

x φ(m)(x)
)2

. (D14)

Given that the underlying Markov process relaxes to the Gibbs distribution, we expect the long-wavelength behavior at late times
to be captured by Langevin dynamics of the generalized height fields φ(m)(x, t ) [71,96]

dφ(m)(x, t )

dt
= −γ κ

2

δE (φ(m)(x, t ))

δφ(m)(x)
+ ζ (x, t ). (D15)

Here, γ is a constant that sets the overall rate of relaxation and ζ (x, t ) is δ-correlated “white noise,” i.e., it satisfies a Gaussian
distribution with

〈ζ (x, t )〉 = 0, 〈ζ (x, t )ζ (x′, t ′)〉 = γ δ(x − x′)δ(t − t ′). (D16)
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To see that the distribution Eq. (D13) is indeed the equilibrium distribution of Eq. (D15), we derive the time-evolution
equation for the joint probability densities, also known as the Fokker-Planck equation. We follow methods elucidated in
Refs. [71,75,96,97]. Note that although we consider OBC in the main text, we will use PBC in the following for convenience.
We first define Fourier transforms of the height fields {φ(m)

k } as follows:

φ(m)(x) = 1√
L

∑
k �=0

eikxφ
(m)
k , φ

(m)
k = 1√

L

∫ L

0
dx e−ikxφ(m)(x), E

(
φ

(m)
k

) ≡
∑
k �=0

k2(m+1)φ
(m)
k φ

(m)
−k , (D17)

where k is a discrete momentum variable, and we have suppressed the dependence on t and without loss of generality set
φ

(m)
k=0 = 0. Taking the Fourier transform of Eq. (D15), we then obtain

1√
L

∑
k �=0

eikx dφ
(m)
k

dt
= −γ κ

2

∑
k �=0

dE
(
φ

(m)
k

)
dφ

(m)
−k

δφ
(m)
−k

δφ(m)(x)
+ 1√

L

∑
k �=0

eikxζk (t ) ⇒ dφ
(m)
k

dt
= −γ κ

2

dE
(
φ

(m)
k

)
dφ

(m)
−k

+ ζk (t ).

Further, using Eqs. (D16) and (D18), we obtain

〈ζk (t )〉 = 0, 〈ζk (t )ζk′ (t ′)〉 = γ δk′,−kδ(t − t ′). (D18)

Following standard methods in Langevin theory [96,97], we write the expression for the probability distribution at time t + �t
as

W
(
φ

(m)
k , t + �t

) =
∫

Dφ(m)′P
(
φ

(m)
k , t + �t |φ(m)

k

′
, t

)
W

(
φ

(m)
k

′
, t

)
, Dφ(m)′ ≡

∏
k �=0

dφ
(m)
k

′
, (D19)

where W (φ(m)
k , t ) represents the joint probability distribution of the height variables {φ(m)

k } at time t , and P(φ(m)
k , t + �t |φ(m)

k

′
, t )

denotes the probability of transition of the height variables from {φ(m)
k

′} to {φ(m)
k } in time �t . Defining

�φ
(m)
k ≡ φ

(m)
k − φ

(m)
k

′
, (D20)

we rewrite Eq. (D19) as

W
(
φ

(m)
k , t + �t

) =
∫

D(�φ(m) )P
(
φ

(m)
k , t + �t

∣∣φ(m)
k − �φ

(m)
k , t

)
W

(
φ

(m)
k − �φ

(m)
k , t

)
, D(�φ(m) ) ≡

∏
k �=0

d
(
�φ

(m)
k

)
. (D21)

We then Taylor-expand the integrand in Eq. (D21) as

P
(
φ

(m)
k − �φ

(m)
k + �φ

(m)
k , t + �t |φ(m)

k − �φ
(m)
k , t

)
W

(
φ

(m)
k − �φ

(m)
k , t

)
=

(
1 −

∑
k �=0

�φ
(m)
k

d

dφ
(m)
k

+ 1

2

∑
k,k′ �=0

�φ
(m)
k �φ

(m)
k′

d2

dφ
(m)
k dφ

(m)
k′

+ · · ·
)

P
(
φ

(m)
k + �φ

(m)
k , t + �t |φ(m)

k , t
)

W
(
φ

(m)
k , t

)
. (D22)

Defining the quantities 〈
�φ

(m)
k

〉 ≡
∫

D(�φ(m) )�φ
(m)
k P

(
φ

(m)
k + �φ

(m)
k , t + �t |φ(m)

k , t
)
,

〈
�φ

(m)
k �φ

(m)
k′

〉 ≡
∫

D(�φ(m) )�φ
(m)
k �φ

(m)
k′ P

(
φ

(m)
k + �φ

(m)
k , t + �t |φ(m)

k , t
)
, (D23)

we can write the Kramers-Moyal expansion [97] of Eq. (D21) as

W
(
φ

(m)
k , t + �t

) =
(

1 −
∑
k �=0

d

dφ
(m)
k

〈
�φ

(m)
k

〉 + 1

2

∑
k,k′ �=0

d2

dφ
(m)
k dφ

(m)
k′

〈
�φ

(m)
k �φ

(m)
k′

〉 + · · ·
)

W
(
φ

(m)
k , t

)
, (D24)

where the derivatives also act on W . Using Eqs. (D18) and (D23), we find that〈
�φ

(m)
k

〉 = −γ κ

2

dE
(
φ

(m)
k

)
dφ

(m)
−k

�t +
∫ t+�t

t
dt ′ 〈ζk (t ′)〉 = −γ κk2(m+1)φ

(m)
k �t,

〈
�φ

(m)
k �φ

(m)
k′

〉 = γ�t δk′,−k + O((�t )2), (D25)

where we have used Eq. (D18). Using Eqs. (D24) and (D25), we obtain

dW
(
φ

(m)
k , t

)
dt

= γ

2

∑
k �=0

d

dφ
(m)
k

(
d

dφ
(m)
−k

+ 2κk2(m+1)φ
(m)
k

)
W

(
φ

(m)
k , t

)
. (D26)
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Note that Eq. (D26) is a master equation of the form of Eq. (15). We can then directly verify that the equilibrium probability
distribution is given by

W0
(
φ

(m)
k

) = 1

Z exp

(
−κ

∑
k �=0

k2(m+1)φ
(m)
k φ

(m)
−k

)
, (D27)

which is the Fourier transform of the Boltzmann distribution (D13).
To obtain an symmetric (SMF decomposable) quantum Hamiltonian corresponding to the master equation Eq. (D26) with

the wave function of Eq. (B6) as the ground state, we perform a similarity transformation on the transition matrix in Eq. (D26);
equivalently, we write Eq. (D26) in the form [71,72,75]

d�(m)
(
φ

(m)
k , t

)
dt

= −H (m)�(m)(φ(m)
k , t

)
, �(m)(φ(m)

k , t
) = W

(
φ

(m)
k , t

)√
W0

(
φ

(m)
k

) , (D28)

which, using Eqs. (D26) and the form of Eq. (D27), can be shown to be [71]

d�(m)
(
φ

(m)
k , t

)
dt

= −γ

2

∑
k �=0

(
− d

dφ
(m)
k

+ κk2(m+1)φ
(m)
−k

)(
d

dφ
(m)
−k

+ κk2(m+1)φ
(m)
k

)
�(m)(φ(m)

k , t
)
. (D29)

Thus we find that the continuum Hamiltonian H (m) is given by

H (m) = γ
∑
k �=0

Q†
m(k)Qm(k), (D30)

where the creation and annihilation operators are defined as

Q†
m(k) = 1√

2

(
− d

dφ
(m)
k

+ κk2(m+1)φ
(m)
−k

)
, Qm(k) = 1√

2

(
d

dφ
(m)
−k

+ κk2(m+1)φ
(m)
k

)
(D31)

and satisfy the algebra

[Qm(k),Qm(k′)] = 0, [Q†
m(k),Q†

m(k′)] = 0, [Qm(k),Q†
m(k′)] = κ k2(m+1)δk,k′ . (D32)

As a direct consequence of the construction, we can verify that the ground state wave function �
(m)
0 (φ(m)

k ) of H (m) is annihilated
by all Q(k) and is given by

�
(m)
0

(
φ

(m)
k

) = 1√
Z

exp

(
−κ

2

∑
k �=0

k2(m+1)φ
(m)
k φ

(m)
−k

)
, H (m)�

(m)
0 (φ(m) ) = 0. (D33)

Similarly, the excited state wave function �
(m)
k (φ(m)

k ) of momentum k can be constructed by acting the creation operator Q†
m(k)

on the ground state

�
(m)
k

(
φ

(m)
k

) = Q†
m(k)�(m)

0

(
φ

(m)
k

)
, H (m)�

(m)
k

(
φ

(m)
k

) = γ κ k2(m+1)�
(m)
k

(
φ

(m)
k

)
. (D34)

We can also express the Hamiltonian of Eq. (D32) in terms of real-space creation and annihilation operators Q†
m(x) and Qm(x)

respectively as

H (m) = γ

∫ L

0
dx Q†

m(x)Qm(x),

Q†
m(x) = 1√

L

∑
k �=0

dx e−ikxQ†
m(k) = 1√

2

(
− δ

δφ(m)(x)
+ (−1)m+1κ ∂2(m+1)

x φ(m)(x)

)
,

Qm(x) = 1√
L

∑
k �=0

dx eikxQm(k) = 1√
2

(
δ

δφ(m)(x)
+ (−1)m+1κ ∂2(m+1)

x φ(m)(x)

)
, (D35)

which obey the commutation relations

[Qm(x),Qm(y)] = 0, [Q†
m(x),Q†

m(y)] = 0, [Qm(x),Q†
m(y)] = (−1)m+1κ ∂2(m+1)

x δ(x − y). (D36)

Consequently, the ground state wave function is annihilated by Qm(x) and is given by

�
(m)
0 (φ(m)(x)) = 1√

Z
exp

(
−κ

2

∫ L

0
dx

(
∂m+1

x φ(m)(x)
)2

)
. (D37)
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Furthermore, following Eq. (D34), the excited wave function �
(m)
k (φ(m)(x)) reads

�
(m)
k (φ(m)(x)) =

∫ L

0
dx eikxQ†

m(x)�(m)
0 (φ(m)(x)). (D38)

APPENDIX E: CONTINUUM HAMILTONIAN IN HIGHER DIMENSIONS

In this Appendix, we briefly sketch the derivation of the continuum Hamiltonian for mth multipole conserving systems in d
dimensions, following the Fokker-Planck approach illustrated in Appendix D 2. As discussed in Sec. VI, the ground state wave
functional of the continuum RK Hamiltonian, when interpreted as the equilibrium probability distribution of the Markov process
in the continuum, is given by the absolute square of the amplitudes in Eq. (66):

W0(E j0··· jm (�x)) = 1

Z exp[−κE (E j0··· jm (�x))], (E1)

where κ is the “inverse-temperature” and E (E j0··· jm (�x)) is the “energy” of the system, given by

E (E j0··· jm (�x)) =
∫

dd �x
(
∂ j0 · · · ∂ jm E j0··· jm (�x)

)2
, (E2)

where repeated indices are summed over. Similar to Eq. (D15) in the one dimensional case, we expect the long-wavelength
behavior at late times to be captured by Langevin dynamics of the generalized tensor fields E j0··· jm (�x, t ):

dEl0···lm (�x, t )

dt
= −γ κ

2

δE (E j0··· jm (�x, t ))

δEl0···lm (�x)
+ ζ l0···lm (�x, t ), (E3)

where ζ l0···lm (�x, t ) is δ-correlated “white noise” governing the dynamics of the component El0···lm (�x, t ) of the tensor field, i.e., it
satisfies a Gaussian distribution with

〈ζ l0···lm (�x, t )〉 = 0, 〈ζ l0···lm (�x, t )ζ p0···pm (�x′, t ′)〉 = γ δ(�x − �x′)δ(t − t ′)δ{l0···lm},{p0···pm}, (E4)

where δ{l0···lm},{p0···pm} is 0 unless the sets {l0, · · · , lm} and {p0, · · · , pm} are equal—this ensures that the fluctuations of different
components of the tensor field {E j0··· jm} are not correlated, as discussed in Sec. VI.

Considering a system in d dimensions with linear size L in each direction, we define Fourier transforms of the generalized
tensor fields {E j0··· jm

�k } as follows:

E j0··· jm (�x) = L− d
2

∑
�k �=0

ei�k·�xE j0··· jm
�k , E j0··· jm

�k = L− d
2

∫
dd �x e−i�k·�xφ(m)(x),

E
(
E j0··· jm

�k
) ≡

∑
�k �=0

(
ki0 · · · kim E i0···im

�k
)(

k j0 · · · k jm E j0··· jm
−�k

)
, (E5)

where repeated indices are summed over, �k is a discrete momentum variable, and we set E j0··· jm
�k=0

= 0 without loss of generality.
Equations (E3) and (E4) can then be written as

dEl0···lm
�k
dt

= −γ κ

2

dE
(
E j0··· jm

�k
)

El0···lm
−�k

+ ζ
l0···lm
�k (t ),

〈
ζ

l0···lm
�k (t )

〉 = 0,
〈
ζ

l0···lm
�k (t )ζ p0···pm

�k′ (t ′)
〉 = γ δ�k′,−�kδ(t − t ′)δ{l0,··· ,lm},{p0,··· ,pm}. (E6)

We further obtain a Fokker-Planck master equation for the probability distribution of generalized tensor fields W (E j0··· jm
�k , t )

starting from Eq. (E6) (following steps similar to Eqs. (D19)–(D26) in the one-dimensional case) and subsequently perform
a similarity transformation to obtain the expression for the SMF decomposable Hamiltonian H (m) [following steps similar to
Eqs. (D28)–(D29)]. Ultimately, H (m) can be shown to be of the form

H (m) = γ
∑
�k �=0

(Q†
m(�k))l0···lm (Qm(�k))l0···lm ,

(Q†
m(�k))l0···lm = 1√

2

(
− d

dEl0···lm
�k

+ κ kl0 · · · klm
(
k j0 · · · k jm E j0··· jm

−�k
))

,

(Qm(�k))l0···lm = 1√
2

(
d

dEl0···lm
−�k

+ κ kl0 · · · klm

(
k j0 · · · k jm E j0··· jm

�k
))

, (E7)
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where repeated indices are summed over, and we do not distinguish between upper and lower indices (i.e., kl = kl ). The creation
and annilation operators satisfy the algebra[

(Qm(�k))l0···lm , (Qm(�k′))p0···pm

] = 0, [(Q†
m(�k))l0···lm , (Q†

m(�k′))p0···pm ] = 0,[
(Qm(�k))l0···lm , (Q†

m(�k′))p0···pm
] = κ

(
kl0 · · · klm

)
(kp0 · · · kpm ) δ�k,�k′ ∀l j, p j, 0 � j � m, (E8)

where we do not sum over repeated indices in the second line. Consequently, the ground state wave function �
(m)
0 (E j0··· jm

�k ) of

H (m) is annihilated by all (Qm(�k))l0···lm and is given by

�
(m)
0

(
E j0··· jm

�k
) = 1√

Z
exp

(
−κ

2

∑
k �=0

(
k j0 · · · k jm E j0··· jm

�k
)(

kl0 · · · klm E l0···lm
−�k

))
, H (m)�

(m)
0

(
E j0··· jm

�k
) = 0. (E9)

Similarly, the excited state wave function �
(m)
�k (E j0··· jm

�k ) of momentum �k can be constructed by acting a superposition of the

creation operators {(Q†
m(�k))l0···lm} on the ground state

�
(m)
�k

(
E j0··· jm

�k
) = (

kl0 · · · klm (Q†
m(�k))l0···lm )

�
(m)
0

(
E j0··· jm

�k
)
, H (m)�

(m)
�k

(
E j0··· jm

�k
) = γ κ (klk

l )m+1�
(m)
�k

(
E j0··· jm

�k
)
, (E10)

where repeated indices are summed over.
We can also express the Hamiltonian (E8) in terms of real-space creation and annihilation operators {(Q†

m(�x))l0···lm} and
{(Qm(�x))l0···lm} respectively as

H (m) = γ

∫
dd �x (Q†

m(�x))l0···lm (Qm(�x))l0···lm

(Q†
m(�x))l0···lm = L− d

2

∑
�k �=0

dd �x e−i�k·�x(Q†
m(�k))l0···lm = 1√

2

(
− δ

δEl0···lm (�x)
+ (−1)m+1κ ∂ l0 · · · ∂ lm

(
∂ j0 · · · ∂ jm E j0··· jm (�x)

))
,

(Qm(x))l0···lm = L− d
2

∑
�k �=0

dd �x ei�k·�x(Qm(�k))l0···lm = 1√
2

(
δ

δEl0···lm (�x)
+ (−1)m+1κ ∂l0 · · · ∂lm

(
∂ j0 · · · ∂ jm E j0··· jm (�x)

))
, (E11)

where we do not distinguish between upper and lower indices in the derivative operator (i.e. ∂l = ∂ l ). Following Eq. (E8), the
creation and annihilation operators obey the commutation relations[

(Qm(�x))l0···lm , (Qm(�y))p0···pm

] = 0, [(Q†
m(�x))l0···lm , (Q†

m(�y))p0···pm ] = 0,[
(Qm(�x))l0···lm , (Q†

m(�y))p0···pm
] = (−1)m+1κ ∂l0 · · · ∂lm∂ p0 · · · ∂ pmδ(�x − �y). (E12)

Consequently, the ground state wave function is annihilated by (Qm(�x))l0···lm and is given by

�
(m)
0 (E j0··· jm (�x)) = 1√

Z
exp

(
−κ

2

∫
dd �x

(
∂ j0 · · · ∂ jm E j0··· jm (�x)

)2
)

. (E13)

Furthermore, following Eq. (E10), the excited wave function �
(m)
�k (E j0··· jm (�x)) reads

�
(m)
�k (E j0··· jm (�x)) =

∫
dd �x ei�k·�x(

kl0 · · · klm

)
(Q†

m(�x))l0···lm�
(m)
0 (E j0··· jm (�x)). (E14)
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