
Appendix A

Review of Matrices

A.0 INTRODUCTION
There are several excellent references on matrices, e.g., MacDuffee [1946], Gant- 
macher [1959], Bellman [1960], Franklin [1968], Halmos [1974], Horn and Johnson 
[1985], and Golub and Van Loan [1989], to name a few. Our aim here is to review 
those results from matrix theory which have direct relevance to this text. Most 
proofs can be found, or deduced from, the above texts. The material here is some­
what dense, as it is primarily meant to be a reference. Most of the deeper results 
mentioned here are required only in Chap. 13 and 14.

A.1 DEFINITIONS AND EXAMPLES
A p × r matrix A is a collection of pr elements (real or complex numbers) arranged 
in p rows and r columns. Thus

(A.1.1)

One often writes A = [Aij] (or with a comma, as in [Ai,j]), and Aij = [A]ij. So i 
is the row index and j the column index, both starting at zero. A p x 1 matrix is 
said to be a p-vector or column vector (or just a vector). A 1 × r matrix is called a 
row vector. Thus,

(A.1.2)

To save space, one often writes a column vector as the 'transpose' of a row vector. 
Thus [1 2j]T stands for the column vector

(A.1.3)
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(See below for definition of transpose). The elements of a vector v are commonly 
denoted as vi or v(i). Whether v is a row or a column is usually clear from the 
context.

A square matrix is a matrix with p = r. Thus the first matrix in (A.1.2) is 
square. If a matrix is not square, it is said to be rectangular. A 1 × 1 matrix (i.e., 
just a single element) is said to be a scalar. A p × r null matrix, denoted 0, has all 
elements equal to zero. If A = 0, A is said to be zero or null.

If two matrices have the same number of rows p and same number of columns 
r, they have the same size.

Diagonal matrices. The elements Aii of a matrix A are called its diagonal 
elements. A matrix for which all elements are zero except possibly the diagonal 
elements is called a diagonal matrix. Examples are

(A.1.4)

The set of diagonal elements is sometimes called the main diagonal. Note that a 
diagonal matrix need not be square. A square diagonal matrix with all diagonal 
elements equal to unity is said to be the identity matrix, denoted as I. Examples
are

(A.1.5)

which are 3 × 3 and 2 × 2 respectively. If the size of I is not clear from the context, 
a subscript will be used. The above examples represent, respectively, I3 and I2.

The notation

stands for a N × N diagonal matrix A with diagonal elements Aii = di.
Triangular matrices. A lower triangular matrix is one for which the elements 

above the main diagonal are equal to zero. An upper triangular matrix is one for 
which the elements below the main diagonal are equal to zero. Examples are:

(A.1.6)

A.2 BASIC OPERATIONS
A number of operations, including arithmetic, can be performed with matrices.

Transpose and transpose-conjugate. Given A = [Aij], we denote its trans­
pose as AT. It is defined by [AT]ij = Aji. In other words, the (i, j) entry of the 
transpose is same as the (j, i) entry of A. The transpose-conjugate of A, denoted
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A† , is obtained by conjugating every element of AT. For example with A equal to 
the 2 × 2 matrix in (A. 1.2), we have

(A.2.1)

Note that if A is p × r then AT as well as A† are r × p. Thus the transpose of a 
column vector is a row vector, and vice versa.

For a square matrix A, the notation A-1 stands for its inverse (defined and 
discussed in Sec. A.4). The notation A-T stands for (A-1)T. Similarly, A-† stands 
for (A-1)†.

Submatrices. A submatrix of A is any matrix formed by deleting an arbitrary 
set of rows and an arbitrary set of columns.
Arithmetic Operations

Addition and scalar multiplication. Two matrices with the same size 
can be added or subtracted by adding or subtracting corresponding elements. The 
notation cA stands for a matrix which is obtained from A by multiplying each 
element Aij with c. This operation is called scalar multiplication. Thus, cA = 
[cAij]. Given two matrices A and B of the same size, the matrix P = cA + dB 
has elements Pij = cAij + dBij. Matrix addition is evidently commutative, that is, 
A + B = B + A. Note also that [A + B]T = AT + BT.

Matrix multiplication. Given two matrices A and B with sizes p × m and 
m x r the product C = AB is defined by defining the elements of C as

(A.2.2)

Schematically,
(A.2.3)

Note that the number of columns of A has to be the same as the number of rows 
of B (this is called compatibility requirement), and that C is p × r. For example,

Whenever we write AB, the sizes of A and B are understood to be appro­
priate to make the product valid. The product PQR of three matrices is defined 
as (PQ)R provided that the sizes of the matrices are compatible. Note that ma­
trix multiplications is associative, that is, (PQ)R = P(QR). However, it is not 
commutative, i.e., in general AB ≠ BA. For example if A is 2 × 3 and B is 
3 × 4, then AB is well-defined but BA is not defined at all. It can be shown that 
(AB)T = BTAT and (AB)† = B†A†. The notation An stands for the product 
AAA . . . A (n times).
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The reversal matrix. Matrices of the form

are said to be reversal matrices. The general notation for an M × M reversal matrix 
is JM with subscript omitted when obvious. The matrix JA is obtained from A by 
renumbering the rows in reverse order. Similarly AJ is obtained by renumbering the 
columns in reverse order. Given a diagonal matrix Λ, the product JΛJ represents 
a new diagonal matrix with diagonal elements in reverse order. For example

Trace of a matrix. The trace of a square matrix A, denoted Tr(A) is defined 
to be the sum of the diagonal elements, i.e., ∑i Aii. It can be shown that Tr(AB) = 
Tr(BA) as long as both products are meaningful.

Norms, Inner Products and Outer Products
Given two N-vectors u and v, consider α = u†v. This is a scalar quantity 

and is called the inner product of u with v. The vectors are said to be (mutually) 
orthogonal if u†v = 0.

The inner product of u with u, that is, u†u is called the energy of u. Denoting 
the elements of u as ui, we see that u†u = ΣN-1i=0 ∣ui∣2 ≥ 0. For example

The quantity u†u is nonzero (hence positive) unless u = 0.
The norm ∣∣u∣∣ of u is defined as the positive square root of its energy, i.e.,

(A.2.4)

Sometimes this is also called the ℒ2 norm, and denoted as ||u∣∣2.
Given a p-vector u and an r-vector v, the quantity A = uv† is a p × r matrix 

and is called the outer product of u with v. This quantity is also called a diadic 
matrix. Example:

(A.2.5)

Cauchy-Schwartz inequality. Given two column vectors u and v, it can be 
shown that
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with equality if and only if v = cu for some scalar c. For example,

and (A.2.6) holds with strict inequality.

A.3  DETERMINANTS
There are several equivalent definitions of the determinant of a p × p matrix A. We 
will conveniently define it recursively as follows:

(A.3.1)

where m is a fixed integer in 0 ≤ m ≤ p - 1. Here Mkm is the determinant of the 
(p — 1) × (p - 1) submatrix obtained by deleting the kth row and mth column of A.

Minors and cofactors. The quantity Mkm is said to be the minor of the 
element akm. The quantity (-1)k+mMkm is said to be the cofactor of akm. In 
(A.3.1), the fixed column-index m is arbitrary.

In the above formula, the determinant has been computed by working with the 
mth column. Similarly, one can work with the mth row and obtain the determinant 
as

Here are some examples:

Determinants of block-diagonal matrices. Let A be a square matrix of 
the form

Then we can show that [det A] = [det P][det Q].
Principal and leading-principal minors. In general, the determinant of 

any square submatrix of A is said to be a minor of A. Let A be square. A principal

786 App. A. Review of matrices

(A.3.2)

Whenever we write [det A], it is implicit that A is square. The determinant of A 
is denoted either as [det A] or as ∣A∣.

For 2 × 2 matrices the above formula is simplified to



minor is any minor whose diagonal elements are also the diagonal elements of A. 
Thus for a 3 x 3 matrix A the principal minors are

A.4 LINEAR INDEPENDENCE, RANK, AND RELATED ISSUES
Let vk, 0 ≤ k ≤ m — 1 be a set of m column vectors. A linear combination of 
these vectors is an expression of the form Σm-1k=0 αkvk, and is clearly a vector of 
the same size. (Here αk are, in general, complex numbers.) The set S of all linear 
combinations of these vectors is said to be the space or vector space spanned by 
these vectors.

Another way to define a vector space in our context is this: a vector space is 
a collection of vectors of a given size such that every possible linear combination 
from this collection also belongs to this collection. In particular, the null vector 
(the vector with all components equal to zero) is a member of the vector space.

Linear independence. We say that the vectors vk, 0 ≤ k ≤ m - 1 are 
linearly dependent if there exists a set of m scalars αk, not all zero, such that 
Σm-1k=0 αkvk = 0. The set of vectors is linearly independent if they are not linearly 
dependent. For row vectors, we have an identical definition.

Basis vectors. The set of all vectors of the form Σm-1k=0 αkvk is said to be 
the space spanned by the m column-vectors vk. If S is the space spanned by a set 
of linearly independent vectors, then these vectors are said to form a basis for this 
space. The minimum number of basis vectors required to span the space under 
question is called the dimension of the space. The basis set is not unique. For
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Next, a leading principal minor of A is a principal minor such that if akk is an 
element, then so is aii for all i < k. Thus, the leading principal minors for a 3 × 3 
matrix are:

(A.3.3)

Properties of Determinants
a) Let C = AB. Then [det C] = [det A][det B].
b) If B is obtained from A by interchanging two rows (or two columns), then 

[det Bl = —[det A].
c) [det AT] = [det A].
d) For a p x p matrix A, [det cA] = cp[det A], for any scalar c.
e) The determinant of a diagonal matrix is the product of its diagonal elements.

The same is true for lower or upper triangular square matrices.
f) If any row is a scalar multiple of another row, the determinant is zero. If any 

row is zero, the determinant is zero. These statements also hold if 'row' is 
replaced with 'column' everywhere.
Singular and nonsingular matrices. A square matrix is said to be singular 

if [det A] = 0, and nonsingular if [det A] ≠ 0. The product AB of two square 
matrices is nonsingular if and only if each of A and B is nonsingular (since the 
determinant of AB is the product of individual determinants).



(A.4.1)

Rank of a Matrix
There are several equivalent ways to define rank (even though the equivalence 

is not obvious). We define the rank of a p × r matrix A to be an integer ρ(A) 
(denoted just p when there is no confusion) such that there exists a ρ×ρ nonsingular 
submatrix of A but there does not exist a larger nonsingular submatrix. If ρ1 
denotes the largest number of columns of A that form a linearly independent set, 
we say that ρ1 is the column rank of A. Evidently ρ1 ≤ r, and if ρ1 = r = number 
of columns, we say that A has full column rank. Similarly we can define row rank 
ρ2, and full row-rank matrices. It turns out that, for any matrix, ρ = ρ1 = ρ2. It is 
also clear from the definition that a p x p matrix is nonsingular if and only if it has 
full rank p.

♠Fact A.4.1. Important properties of rank. We now list the key features 
of rank.

a) ρ = ρ1 = ρ2, as stated above.
b) A p x p matrix is nonsingular if and only if the rank p = p.
c) ρ(AB) ≤ min(ρ(A),ρ(B)).
d) If ρ(A) = 0 then A = 0.
e) Suppose A is N × N with rank ρ < N. This means that there are ρ linearly 

independent columns, from which all columns can be generated by linear com­
bination. As a result, A can be written as

(A.4.3)
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example, either of the following two sets of vectors spans the entire space of two- 
component vectors:

(A.4.2)

Any N × N matrix A with rank ρ can be factorized like this.
f) Sylvester’s inequality. Let P and Q be M × N and N x K matrices with ranks 

ρp and ρq. Let ρpq be the rank of PQ. Then,
ρp + ρq - N ≤ ρpq ≤ min(ρp, ρq).

g) Given two square matrices A and B, the products AB and BA may not have
the same rank. However the matrices I — AB and I — BA do have the same 
rank. See Problem A.13. ◊

Diadic matrices. If p(A) = 1, then every column of A is a scalar multiple 
of every other column. The same is true of the rows. In this case we can write 
A = uv† where u and v are column vectors (so that v† is a row vector). In 
other words, any rank-one matrix is an outer product of two column vectors, and 
is sometimes called a diadic matrix. Here is an example:



so that

(A.4.4)

in this example.
Range space and null space. Given a p × r matrix A, the space spanned by 

its columns is said to be the range space (or column space) of A. This space is the 
set of all vectors of the form Ax where x is any r-component column vector. The 
dimension of the range space is equal to the rank of A. Note that the elements of 
the range space are p-vectors. The null space of A is the set of all r-vectors y such 
that Ay = 0. It can be shown that the set of all linear combinations from the range 
space of A and the null space of A† is equal to the complete space of all vectors of 
size p.

Orthogonal complements. Let t0, t1 . . . tρ-1 be a set of linearly independent 
N-vectors and let V be the vector space spanned by them. (Clearly, ρ ≤ N). 
Now consider the set V⊥ of all N-vectors orthogonal to all the vectors in V (i.e., 
orthogonal to all the above ti). The set V⊥ is itself a vector space, and is called 
the orthogonal complement of V. It has dimension N — ρ. Any N-vector x can be 
expressed as a linear combination of one vector in V and one in V⊥. That is,

Moreover, for a given x, the components x0 and x1 are unique. Letting tρ . . . tN-1 
denote a basis for V⊥, the matrix

is N x N nonsingular. Its columns span the space of all N-vectors.
The annihilating vector. Given a matrix A, any vector y such that Ay = 0 

is called an annihilating vector for A. Evidently, the set of all annihilating vectors 
is equal to the null space of A defined above. A nonzero annihilating vector exists 
whenever the column rank of A is less than full, so that a linear combination of the 
columns can be made zero. For square matrices, this is equivalent to the condition 
that the determinant be zero.
Inverse of a Square Matrix

Given a p × r matrix A, we say that the r × p matrix L is a left inverse if 
LA = Ir. We say that the r × p matrix R is a right inverse if AR = Ip. Inverses 
may or may not exist, and in general are not unique. For the case of square matrices, 
however the following are true: (a) An inverse exists if and only if A has full rank, 
i.e., A is nonsingular, and (b) when they exist, the left and right inverses are the 
same, and unique.

There is a closed form expression for the inverse of a nonsingular square matrix, 
given by

(A.4.5)

where [Adj A] is the adjugate of A (referred to as adjoint in some texts), defined as
(A.4.6)
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In other words, the (i, j) element of the adjugate is equal to the cofactor of the (j, i) 
element of A.

The matrix-inversion lemma. The following inversion formula, which holds 
whenever P and R are nonsingular, is very useful in system theoretic work. (Q and 
S need not be square).

Linear Equations
Consider an equation of the form Ax = b, where A is N × N, and b and x are 

N-vectors. Given the quantities A and b, we wish to find x satisfying this equation. 
Basically we have a set of N linear equations in N unknowns (the elements of x). 
Given A and b, there are several possibilities:

1. If A is nonsingular, there exists a unique solution given by x = A-1b.
2. If A is singular, then there are two possibilities: either there does not exist 

a solution, or there is an infinite number of solutions. (Since A is singular, 
Av = 0 for some v ≠ 0 which shows that if x is a solution, then x + cv is also 
a solution for any scalar c.)

More generally, consider the equation

A.5 EIGENVALUES AND EIGENVECTORS
Given a N × N square matrix A, consider D(s) = det [sI — A]. This is a polynomial 
in s with order N, called the characteristic polynomial. The N roots of D(s) are 
said to be the N eigenvalues of A. If a particular root λ0 has multiplicity K, that is, 
if D(s) has the factor (s — A0)K, then the eigenvalue λ0 is said to have multiplicity 
K. From the above definition, one can verify that λ is an eigenvalue of A if and 
only if there exists a nonzero vector v such that

(A.5.1)
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(A.4.7)

(A.4.8)

where A is N × M. The following are true.
1. If A has rank N (which implies N ≤ M), then there exists x such that (A.4.8) 

holds.
2. If the rank of A is less than N, then depending on b there may or may not 

exist x satisfying (A.4.8).
3. In any case, if a solution exists, it is unique if and only if the rank of the matrix 

A equals the number of columns M.

The vector v is said to be an eigenvector of A corresponding to the eigenvalue λ.
For example, let A = [ 3 1 13 ]. Then



so that the eigenvalues are λ0 = 4 and λ1 = 2. Furthermore

so that the corresponding eigenvectors are

Properties of Eigenvalues and Eigenvectors
a) If v is an eigenvector of A, then so is cv for any scalar c ≠ 0.
b) If v1 and v2 are eigenvectors corresponding to distinct eigenvalues λ1 and λ2, 

then v1 and v2 are "distinct". More accurately, we cannot write v1 = αv2 for 
any scalar α.

c) Let A be N x N with N distinct eigenvalues λk, 0 ≤ k ≤ N-1. In other words, 
none of the eigenvalues is a multiple root of D(s). Then the corresponding 
eigenvectors vk, 0≤ k ≤ N—1 are linearly independent. Also, each eigenvector 
vk is unique (except, of course, for a scale factor). Notice, in general, that if 
A has less than N distinct eigenvalues, then there may or may not exist a set 
of N linearly independent eigenvectors.

d) Suppose λ is a complex eigenvalue of a real matrix A. Then its conjugate λ* is 
also an eigenvalue. Also if an eigenvalue of a real matrix is complex then the 
corresponding eigenvector is necessarily complex.

e) A has an eigenvalue equal to zero if and only if it is singular.
f) The eigenvalues of A are same as those of AT.
g) For a square (lower or upper) triangular matrix, the eigenvalues are equal to the 

diagonal elements. (The same is true of a diagonal matrix, which is a special 
case.) This follows by noting that, in these cases, [det (sI — A)] = ∏(s — aii).

h) Let A be N x N with eigenvalues λi. Then the determinant and trace can be 
expressed as

i) For nonsingular A, the eigenvalues of A-1 are reciprocals of those of A.
j) If λk are the eigenvalues of A, the eigenvalues of A + σI are equal to λk + σ. 

Proof. Let Av = λv, then (A + σI)v = Av + σv = (λ + σ)v.
It is possible for all eigenvalues to be equal to zero, even if A ≠ 0. An example 

is a triangular matrix with all diagonal elements equal to zero.
This appears to be a good place to summarize the various ways in which sin­

gularity of a matrix can manifest:
♠Fact A.5.1. On singularity. Let A be N × N. Then the following state­

ments are equivalent:
a) A is singular.
b) [det A] = 0.
c) There exists an eigenvalue of A equal to zero.
d) There exists a nonzero vector v such that Av = 0.
e) The rank of A is less than N.
f) The N columns (and rows) of A are not linearly independent.
g) A has no inverse.

Sec. A.5 Eigenvalues and eigenvectors 791



h) The equation Αx = b has no unique solution x (i.e., it has either no solutions, 
or an infinite number of them). ◊

Eigenspaces. Suppose the N eigenvalues of A are not distinct. It is then 
conceivable that an eigenvalue, say λ0, has more than one eigenvector. Suppose, 
for example, that {v0, v1, v2} is a set of three linearly independent eigenvectors 
corresponding to λ0, i.e., Avk = λ0vk for k = 0, 1, 2. Then any linear combination 
of v0, v1 and v2 (i.e., any vector in the space spanned by v0, v1 and v2) is an 
eigenvector for λ0. This vector space spanned by v0, v1, and v2 is the eigenspace 
corresponding to λ0.

Similarity transformations. Given a square matrix A, suppose we define 
A1 = T-1AT where T is some nonsingular matrix. It turns out that A1 and A 
have the same set of eigenvalues. (Proof: Av = λv ⇒ T-1AT(T-1v) = λ(T-1v). 
This transformation of A to A1 is said to be a similarity transformation.
Diagonalization

Suppose A is N × N, and assume that it has N linearly independent eigenvec­
tors tk. (This does not necessarily mean that there are N distinct eigenvalues.) We 
can write Atk = λktk, 0 ≤ k ≤ N — 1. We can compactly write these as one matrix 
equation:

(A.5.3)

This shows that if there exist N linearly independent eigenvectors, then we can 
diagonalize A by applying a similarity transformation. Conversely, whenever we 
can find T such that T-1 AT is diagonal, the columns of T are eigenvectors of A 
with corresponding eigenvalues appearing on the diagonals of T-1AT. For example,

. We have already computed the eigenvalues and eigenvectors above.
From these we obtain
let A =

An N x N matrix A is said to be diagonalizable if it can be written as in (A.5.3) 
for some diagonal Λ and nonsingular T. The following points are worth noting.

1. Not every N × N matrix is diagonalizable. For example suppose A is a nonzero 
matrix such that the only possible eigenvalue is λ = 0. (An example is A =

If A is diagonalizable, then A = TΛT-1 with Λ = 0 so that A = 0, 
which is a contradiction.

2. Every matrix with N distinct eigenvalues is diagonalizable because there are 
N linearly independent eigenvectors.
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(A.5.2)

where Λ is an N × N diagonal matrix with kth diagonal element equal to λk. We 
can rearrange this as



3. There is a class of matrices called normal matrices (defined below), which are 
diagonalizable even if the eigenvalues are not distinct.

Cayley-Hamilton Theorem
Recall that the characteristic polynomial D(s) is defined as [det (sI — A)] and 

has the form D(s) = sN + dN-1sN-1 + . . . + d0. The equation D(s) = 0 is called 
the characteristic equation (its solutions being the eigenvalues). It turns out that 
the N × N matrix A satisfies this equation, that is,
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(A.5.4)
This result is called the Cayley-Hamilton theorem. This says that the matrix AN 
can be expressed as a linear combination of the lower powers.

A.6 SPECIAL TYPES OF MATRICES
We now discuss a number of special types of matrices which arise in our discussions 
throughout the text.

Hermitian matrix. H is said to be Hermitian if H† = H. This implies 
Hij = H*ji. Note that a Hermitian matrix, by definition, is square. A real Hermitian 
matrix is symmetric (i.e., HT = H). Variations of this class are the skew-Hermitian 
matrix (H† = —H), and antisymmetric matrix (HT = —H).

Any matrix A can be written as

where Ah is Hermitian and As is skew-Hermitian. For this, just define

Unitary matrix. U is said to be unitary if U†U = cI for some c > 0. This 
means that every pair of columns is mutually orthogonal, and that all columns 
have the same norm √c. If the unitary matrix is square, then UT as well as U† 
are unitary. Thus, for a square unitary matrix UU† = U†U = cI. If c = 1, U 
is normalized unitary. A real unitary matrix is usually said to be an orthogonal 
matrix (orthonormal if UTU = I). In Chap. 14 one can find more details about 
unitary matrices, planar rotations, Householder forms, and factorizations.

Let y = Ux. If U is unitary, it is clear that y†y = cx†x, for any choice of 
X. So a unitary matrix changes the norms of all vectors by the same factor √c. 
Conversely, suppose a matrix U is such that y†y = cx†x for all vectors x. Then U 
is unitary (Problem A.17).

Circulant matrices. A square matrix is right circulant if each row is obtained 
by a right circular shift of the previous row. Example:

(A.6.1)



The left-circulant property is similarly defined. Unless mentioned otherwise, 'circu­
lant' denotes right circulants.

Normal matrix. A is said to be normal if AA† = A†A. By definition, A 
has to be a square matrix. It can be verified that the following matrices are normal: 
(a) Hermitian and skew-Hermitian matrices, (b) square unitary matrices and (c) 
circulants.
The DFT and IDFT Matrices

A matrix of special interest in digital signal processing is the Discrete Fourier 
Transform (DFT) matrix. This is a N × N matrix defined as WN = [WNkm] where 
WN = e-j2π/N. In other words, the entry at the kth row and mth column is equal 
to e-j2πkm/N. Evidently this is a symmetric (but complex) matrix. Examples are:

The subscripts N on W and W are usually omitted if they are clear from the 
context. The matrix W satisfies the property W†W = NI so that it is unitary. 
Given a finite length sequence x(n), 0 ≤ n ≤ N -1, suppose we define the vector 
x = [x(0) x(1)... x(N — 1)]T, and compute the vector X = Wx. Then the
components of X, viz., X(k),0 ≤ k ≤ N — 1 are said to form the DFT coefficients 
of the sequence x(n). The sequence x(n) is the inverse DFT (abbreviated IDFT) of 
the sequence X(k). The matrix W-1 (which is equal to W†∕N) is called the IDFT 
matrix. Notice that W is symmetric, that is, WT = W so that W† = W*.

The DFT and IDFT relations are more commonly written as

(A.6.2)

Toeplitz matrices. An N × N matrix A is said to be Toeplitz if the elements 
Aij are determined completely by the difference i — j. For example,

(A.6.3)

is Toeplitz. Pictorially, if we draw a line parallel to the main diagonal, then all 
elements on this line are equal. Thus, a Toeplitz matrix is completely determined 
by the 0th row and 0th column, that is, by 2N — 1 elements. Notice that circulants 
are Toeplitz.

If we replace each of the 2N — 1 elements in a Toeplitz matrix by a (possibly 
rectangular) matrix, we obtain a block-Toeplitz matriz. An example is

(A.6.4)
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where ai are themselves 2 × 2 matrices.
Vandermonde matrices. An N × N matrix, each of whose rows has the form

The transponse of a Vandermonde matrix, for example,

(A.6.5)

is a Vandermonde matrix. Example:

(A.6.6)

(A.6.7)

is also said to be a Vandermonde matrix. Note that the DFT matrix is Vander­
monde. The determinant of a Vandermonde matrix is given by

(A.6.8)

For example, if A is as in (A.6.6),

(A.6.9)

It follows that a Vandermonde matrix is nonsingular if and only if the ai's are 
distinct.
Eigenstructures of Special Matrices

Some of the above mentioned special matrices satisfy special properties related 
to eigenvalues and eigenvectors.

♠ Fact A.6.1. Normal matrices. The N × N matrix A is normal if and 
only if we can find N × N unitary U such that U-1AU is diagonal, that is, if and 
only if we can write

(A.6.10)
for diagonal Λ and unitary U. This means that normal matrices are precisely 
those for which there exists a complete set of mutually orthogonal eigenvectors (i.e., 
unitary diagonalization is possible). Without loss of generality we can assume the 
columns of U to have unit norm. Then (A.6.10) is the same as

(A.6.11)
This is identical to (A.5.3) with T = U. ◊

Notice, as a corollary, that if all the eigenvalues of a normal matrix are identical, 
then it has the form A = λI (where λ is this common eigenvalue). The same is not 
true for arbitary matrices, for example, A =
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♠ Fact A.6.2. Special normal matrices. Since Hermitian, unitary and 
circulant square matrices are normal, they can be written as in (A.6.11). In addition, 
the following are true.

a) If A is Hermitian, all eigenvalues are real. Moreover, v†Av is real for all 
vectors v.

b) If A is unitary (A†A = cI, c > 0), then all the eigenvalues have magnitude √c.
c) If A is M × M circulant, then we can write (A.6.10) with U = W∕√M, where

W is the DFT matrix. The eigenvalues of A are the DFT coefficients of the 
0th row of A. The eigenvectors are the columns of W∕√M.

Quadratic Forms and Positive Definite Matrices
For any N × N matrix P, the scalar v†Pv is said to be a quadratic form. In 

particular when P is Hermitian we know that v†Pv is real. If this is positive for all 
nonzero v, we say that P is positive definite. Notice that this property is defined 
only for Hermitian matrices.

Based on the properties of v†Pv we can in fact identify a number of definitions 
as follows:

(positive definite)
(positive semidefinite or nonnegative definite)
(negative definite)
(negative semidefinite).

(A.6.12)

Here are some examples:

.) In other words, it is

possible that v†Pv has different signs for different v. In that case, P is said to be 
indefinite..

Matrix inequalities. If P is positive definite, we indicate it as P > 0 (P ≥ 0 
for semidefinite). Given two Hermitian matrices P and Q of the same size, we write 
P > Q if P — Q is positive definite (P ≥ Q if P — Q is positive semidefinite). 
Notice however that, in general, the difference matrix P — Q can be indefinite, even 
though P and Q are definite.
Properties of Positive Definite Matrices

For convenience of reference we now list a number of properties of positive 
(semi)definite matrices. We encourage the reader to verify these for the examples 
shown above.

a) All diagonal elements of a positive definite (semidefinite) matrix are positive 
(nonnegative).
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(See test for positive (semi)definiteness below). By definition, a positive definite 
matrix is also positive semidefinite. Notice that P is positive definite (semidefinite) 
if and only if — P is negative definite (semidefinite). It is possible that P does not 
belong to any of these categories. (Example: P =



b) The Hermitian matrix P is positive definite (semidefinite) if and only if all the 
eigenvalues are positive (nonnegative).

c) Test for positive definiteness. The Hermitian matrix P is positive definite if and 
only if ail leading principal minors of P are positive, and positive semidefinite 
if and only if all principal minors are nonnegative.

d) If P ≥ 0 and Q ≥ 0, then P + Q ≥ 0. If in addition Q > 0 (or P > 0), then
P + Q > 0.

e) Square roots. Given a positive number a, we know that we can find a real 
square root. The beauty of positive definite matrices is that we can define 
square roots in a similar way. Given a Hermitian matrix P, if we can factorize 
it as P = Q†Q for some Q (possibly rectangular), we say that Q is a square 
root. For example, consider A =
already calculated its eigenvalues to be 4 and 2, so that it is positive definite. 
By using the diagonalization result for this, we obtain

. This is Hermitian, and we have

Square roots are not unique. For example, suppose Q is a square root, then UQ 
is also a square root for any normalized unitary U. It is clear that if there exists 
a square root for P, then P is nonnegative definite because v†Pv = v†Q†Qv = 
w†w ≥ 0. Conversely, it can be shown that any N × N nonnegative definite P 
with rank ρ can be factorized as q†q where Q is ρ × N. One technique to find 
such a factor Q is called Cholesky decomposition [Golub and Van Loan, 1989], 
which produces a lower triangular square root.

f) Suppose Q is p × r, with p ≥ r. Evidently the rank of Q ≤ r. Define the r × r 
positive semidefinite matrix P = Q†Q. This is nonsingular (hence positive 
definite) if and only if Q has full rank r.

g) Determinant and diagonal elements. Let P be N × N Hermitian positive defi- 
nite, and let Pii denote its diagonal elements. Then

with equality if and only if P is diagonal. See Problem A.19 for a proof. 
♠ Fact A.6.3. Positive definite matrices. Let P be N × N Hermitian.

Then the following statements are equivalent.
a) P is positive definite (i.e., v†Pv > 0 for all vectors v ≠ 0.)
b) All eigenvalues of P are positive.
c) There exists an N × N nonsingular square root Q.
d) There exists an N x N nonsingular lower triangular square root Δℓ.
e) There exists an N × N nonsingular upper triangular square root Δu.

Sec. A.6 Special types of matrices 797



f) All leading principal minors of P are positive. ◊

A.7 UNITARY TRIANGULARIZATION
It should be noticed that an arbitrary square matrix may not be diagonalizable [i.e., 
expressible in the form (A.5.3)]. The class of matrices which can be diagonalized 
by unitary matrices [i.e., which can be expressed as in (A.6.11)] is even smaller 
(namely normal matrices). However, every square matrix can be triangularized by 
a unitary transformation, as stated next.

♠ Fact A.7.1. Let A be an arbitrary N × N matrix. Then, we can always 
write it in the form

Since triangular matrices play an important role in many applications, it is useful 
to summarize some of their properties.

♠ Fact. A.7.2. Properties of triangular matrices. Let A and B be N×N 
lower triangular. Then,

a) The product AB is lower triangular.
b) [det A] is equal to the product of diagonal elements Aii.
c) The eigenvalues of A are equal to the diagonal elements Aii.
d) If all diagonal elements are such that ∣Aii∣ < 1, then An → 0 as n → ∞.
e) If all diagonal elements are equal to zero then AN = 0. ◊

Property (d) above finds application in stability analysis (Chap. 13). Property 
(e) is useful in the study of FIR systems. The above results hold if “lower triangular” 
is replaced with “upper triangular” everywhere.

A.8 MAXIMIZATION AND MINIMIZATION
Suppose A is Hermitian. Consider the quadratic form v†Av. If we constrain v to be 
a unit norm vector, then this quadratic form cannot take arbitrarily large or small 
values. The extreme values are determined by the eigenvalues of A as summarized 
in the following result.

♠ Fact A.8.1. Rayleigh’s principle. Let A be N × N Hermitian. We 
know that the eigenvalues are real. Let λmin and λmax be the smallest and largest 
eigenvalues. Then the maximum value of v†Av, as we vary v over all unit norm
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(A.7.1)

where U is N × N normalized unitary (i.e., U†U = I), and Δ is lower triangular. 
(A.7.1) can be regarded as a similarity transformation of A into Δ. So the eigen- 
values of A are the same as those of Δ, which in turn are the diagonal elements of 
Δ. Note that the columns of U are not necessarily the eigenvectors of A, unlike in 
diagonalization. ◊

This result, due to Schur, is of great importance. As an example,



vectors, is equal to λmax and occurs if and only if v is an eigenvector corresponding 
to λmax. Similarly the minimum value of v†Av over unit norm v is equal to λmin 
and occurs if, and only if, v is an eigenvector corresponding to λmin. ◊

Note that λmax may have multiplicity > 1, in which case the eigenvector which 
maximizes the quadratic form is any vector from the corresponding eigenspace.
The "power method" for computing λmax and its eigenvector

Let A be Hermitian positive semidefinite. So λmin ≥ 0 and λmax ≥ 0. Suppose 
we perform the following iteration
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with the initial vector v0 chosen arbitrarily. Unless v0 is orthogonal to every vector 
in the eigenspace of λmax, this iteration eventually converges to an eigenvector cor­
responding to λmax. This technique is called the power method. Once an eigenvector 
v is so computed, we compute λmax from Av = λmaxv.

If we are interested in computing λmin and a corresponding eigenvector, there 
are several tricks we can use. If A is nonsingular, we can invert it (so that 1∕λmin 
is its largest eigenvalue. If we wish to avoid inversion (which is time consuming) 
we can first compute λmax and define B = λmaxI - A. This is positive semidefinite 
with largest eigenvalue λmax — λmin which can be computed by the power method. 
So λmin can be found.

A.9 PROPERTIES PRESERVED IN MATRIX PRODUCTS
Let A and B be N x N matrices satisfying a given property. It is often important 
to know whether the product C = AB satisfies the same property. For example, 
the product of two unitary matrices is unitary, but the product of two Hermitian 
matrices is not necessarily Hermitian.

Properties preserved under matrix multiplication. (a) Unitariness, (b) circulant 
property, (c) nonsingularity, (d) lower (hence upper) triangular property.

Properties not necessarily preserved. (a) Hermitian property, (b) positive def­
initeness, (c) Toeplitz property, (d) Vandermonde property, (e) normal property, 
and (f) stability (i.e., all eigenvalues inside the unit circle). See Problem A.16.



PROBLEMS

A.1. We know that matrix products do not commute, that is, in general AB ≠ BA.
a) Demonstrate this with an example when A and B are (i) 2 × 2 and (ii) 

3 × 3.
b) Find examples of 2 × 2 matrices A and B such that AB = BA. (To avoid 

trivial answers, make sure the matrices are non diagonal.)
A.2. Which of the following matrices is diagonalizable?

A.3. Consider the Toeplitz matrix

a) Compute the quantity A2 and verify that it is not Toeplitz. This shows 
that the product of Toeplitz matrices may not be Toeplitz.

b) Compute the determinant and verify that this is nonsingular. Find the 
inverse.

A.4. Verify Cayley-Hamilton theorem (A.5.4), for A =

A.5. Let A and B be N × N lower triangular matrices. Thus, Aij = 0 for j > i and 
Bjk = 0 for k > j. Using these prove that AB is lower triangular.

A.6. Check whether each of the following matrices has any of these properties: (a) 
Hermitian, (b) positive definiteness, (c) unitariness, and (d) normal property.

A.7. Find the eigenvalues and eigenvectors of the matrix 
positive definite?

. Is the matrix

A.8. Evaluate all the leading principal minors of the matrices

Which of these matrices are positive definite?

A.9. Let A = vv† where v is an N × 1 matrix, i.e., a column vector. 
a) Show that v†v is an eigenvalue of A, with corresponding eigenvector v.
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b) Show that the remaining N — 1 eigenvalues are equal to zero. Find a set 
of N independent eigenvectors for A.

A.10. Let H be Hermitian and S skew-Hermitian. Show that v†H v is real and v†Sv 
imaginary for any choice of v.

A.11.

is such an example.
a) It is possible for a nonzero matrix A to be such that vTAv = 0 for all v. 

Show that A =

b) Next show that if v†Av = 0 for all vectors v, then A = 0. (Hint: Write 
A = Ah + As where Ah is Hermitian and As is skew Hermitian.)

A.12. Show that a lower triangular matrix cannot be unitary unless it is diagonal.

a) Compute AB and BA and verify that they do not have the same rank.
b) Compute I — AB and I — BA and verify that these have the same rank.
c) (This is tricky.) More generally, let A and B be arbitrary square matrices 

of the same size. Show that I — AB and I — BA have the same rank.
A.14. Find examples of Hermitian positive definite matrices P and Q such that P —Q 

is indefinite. (Avoid trivial answers by finding non diagonal examples!)
A.15. The product of two right-circulant matrices is right-circulant. Prove this for 

the 3 × 3 case.
A.16. Let A and B be square matrices with a certain property in common (e.g., 

unitary, circulant, and so on.) If the product AB also has this property, we 
say that the property is preserved under multiplication. Prove by examples that 
the following properties are not necessarily preserved under multiplication: (i) 
Hermitian, (ii) Vandermonde, (iii) normal property, and (iv) stability (i.e., all 
eigenvalues of A have magnitude less than unity).

A.17. Let U be a square matrix, and let y = Ux. Let U be such that y†y = x†x for 
all vectors x. Show that U†U = I.

A.18. Prove the following matrix identity

where (A, B, C, D) are matrices of appropriate dimensions, A and D are square 
(hence R is square), and D is nonsingular. Hence prove that

A.19. Let P be N × N Hermitian positive definite. Partition it as

(PA.19a)
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A.13. Let A = , B =



Here P00 is scalar, whereas P11 is (N - 1) × (N - 1). Evidently p10 is a column 
vector.

a) Using the definition of positive definiteness, show that P00 is real and 
positive. Also show that P11 is Hermitian positive definite.

b) Using the previous problem, show that
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(PA.19b)

c) Using some or all of the results proved above, show that

(PA.19c)

with equality if and only if p10 = 0.
d) Let Pii denote the diagonal elements of P. By repeated application of the 

above result, prove that

(PA.19d)

with equality if and only if P is diagonal.
A.20. Let P be as in Problem A.19. We now provide a second proof of the inequality 

in (PA.19d).
a) Prove that P can be written as P = DQD† where D is a diagonal matrix 

of positive elements, and Qii = 1 for all i.
b) Hence show that [det P] = [det Q] × [Πi=0N-1 Pii].
c) Now show that det Q ≤ 1, with equality if and only if Q = I. This 

establishes the desired result (PA.19d). [Hint. The determinant is the 
product of eigenvalues and the trace is the sum of eigenvalues. Use this 
along with the arithmetic/geometric mean inequality, which can be found 
in Appendix C; see discussion around Eq. (C.2.3).]


