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Nitric oxide (NO) is an ancestral key signalling molecule essential for life
and has enormous versatility in biological systems, including cardiovascular
homeostasis, neurotransmission and immunity. Although our knowledge
of nitric oxide synthases (Nos), the enzymes that synthesize NO in vivo, is
substantial, the origin of a large and diversified repertoire of nos gene ortho-
logues in fish with respect to tetrapods remains a puzzle. The recent
identification of nos3 in the ray-finned fish spotted gar, which was con-
sidered lost in this lineage, changed this perspective. This finding
prompted us to explore nos gene evolution, surveying vertebrate species
representing key evolutionary nodes. This study provides noteworthy find-
ings: first, nos2 experienced several lineage-specific gene duplications and
losses. Second, nos3 was found to be lost independently in two different tel-
eost lineages, Elopomorpha and Clupeocephala. Third, the expression of at
least one nos paralog in the gills of developing shark, bichir, sturgeon, and
gar, but not in lamprey, suggests that nos expression in this organ may
have arisen in the last common ancestor of gnathostomes. These results pro-
vide a framework for continuing research on nos genes’ roles, highlighting
subfunctionalization and reciprocal loss of function that occurred in different
lineages during vertebrate genome duplications.

1. Introduction
Historically classified as a pollutant, nitric oxide (NO) was recognized as ‘Mol-
ecule of the Year’ in 1992 [1] for its important function as a cellular signaling
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molecule. NO plays a role in a myriad of physiological pro-
cesses, including cardiovascular homeostasis [2],
neurotransmission [3], immune response [4], and in neurode-
generative diseases [5] and cancer [6].

Nitric oxide synthase (Nos), the enzyme catalysing the
biosynthesis of NO in vivo, is ubiquitous among organisms
[7]. Three nos gene paralogs have been described in ver-
tebrates: the constitutively expressed nos1 and nos3, and the
inducible nos2 [8].

Although the availability of current genomic data covers
all major ray-finned fish lineages, the evolutionary history
of their nos gene repertoire remains puzzling. Previous
studies reported a variable number of nos genes in teleost
fishes: nos1 is always present in a single copy and nos2 is
lost or in one or two copies, while nos3 has been reported
as missing in the genomes of ray-finned fish. This apparent
gene loss contrasts with literature describing a putative
Nos3-like protein localized by antibody stains in gills and
vascular endothelium of some teleost species [9,10]. The dis-
covery of a nos3 orthologue in the spotted gar Lepisosteus
oculatus, a holostean fish (the sister group of teleosts within
the ray-finned lineage) [11], and the variable number of tele-
ost nos2 genes prompted us to study in deep the evolution of
this important gene family and nos3 expression pattern in fish
representing key nodes in vertebrate evolution. In an attempt
to answer these questions, we have studied the Nos family
repertoire at unprecedented phylogenetic resolution, investi-
gated conserved syntenies in fish genomes, and studied the
expression pattern of all three nos genes during development
in multiple species.

2. Results
(a) Revised evolutionary history of Nos2 and Nos3
Gaps in our current knowledge of Nos family evolution
include the time of origin of the three distinct paralogous
nos genes and when some of them were secondarily lost in
specific lineages. We reconstructed the Nos phylogeny
using 116 protein sequences from 54 species (electronic sup-
plementary material, table S1) providing a broad
representation of aquatic vertebrates: cyclostomes (modern
jawless fish), chondrichthyans (cartilaginous fish), and
osteichthyes (bony fish), including ray- and lobe-finned
fishes. Lobe-finned fishes include coelacanths, lungfishes,
and tetrapods; Ray-finned fishes comprise the non-teleost
lineages of polypteriformes (e.g. bichir), acipenseriformes
(e.g. sterlet sturgeon), holosteans (lepisosteiformes, e.g.
spotted gar, and amiiformes, e.g. bowfin), and the teleosts,
subdivided into three major living lineages: elopomorphs
(e.g. eels and relatives), osteoglossomorphs (e.g. arowana,
mooneyes and the freshwater elephantfish), and clupeoce-
phalans (e.g. zebrafish and medaka) [12] (for clarification
see electronic supplementary material, figure S1).

All Nos proteins considered in the present study showed
conservation of canonical domains organization. Here we
confirmed the presence of single Nos1 in all jawed ver-
tebrates examined, except for two gene duplicates in
cyprinids (nos1a and nos1b) and salmonids (nos1α and
nos1β)Q1 (figure 1a blue shading, and electronic supplementary
material, figure S2-a). Most fish lineages retained Nos2,
including chondrichthyans (Callorhinchus milii, Rhincodon
typus, Chiloscyllium punctatum, Scyliorhinus torazame),

polypteriformes (Polypterus senegalus, Erpetoichthys calabari-
cus), acipenseriformes (Acipenser ruthenus), holosteans (Amia
calva, Lepisosteus oculatus), elopomorphs (Megalops cypri-
noides), osteoglossomorphs (Paramormyrops kingsleyae,
Scleropages formosus) and coelacanthiformes (Latimeria chalum-
nae) (figure 1a, yellow shading), although a nos2 gene loss
event occurred at the stem of Neoteleostei ( figure 1b), since
it has not been found in any available genomic or transcrip-
tomic data from this clade. On the other hand, our
phylogenetic analysis highlights the occurrence of extra
nos2 duplicates in several lineages, for which we adopted a
specific nomenclature based on the phylogenetic analysis
and synteny conservation: nos2a and nos2b in the zebrafish
Danio rerio; nos2a, nos2ba and nos2bb in the goldfish Carassius
auratus, the blind golden-line barbel Sinocyclocheilus anshuien-
sis and the common carp Cyprinus carpio; nos2α and nos2β in
salmonids (Salmo salar and Oncorhynchus mykiss); and lastly,
nos2.1 and nos2.2 in a characid (the Mexican tetra Astyanax
mexicanus), a gymnotid (the electric eel Electrophorus electri-
cus), an ictalurid (the channel catfish Ictalurus punctatus), an
esocid (the northern pike Esox lucius), and a clupeid (the
Atlantic herring Clupea harengus) (figure 1a, yellow shading).

Nos3 deserves special attention since it was previously
believed that a loss event predated the lineage of actinopter-
ygians or alternatively that it represents an innovation of
tetrapods [7]. Nevertheless, this hypothesis may have been
overinterpreted since few ray-finned genome sequences
were originally available. The only actinopterygian nos3
reported thus far was in the spotted gar [11]. Here we
report the identification of nos3 in genomes of the bichir
P. senegalus, the sterlet sturgeon A. ruthenus [13], the bowfin
A. calva [14], and the freshwater elephantfish P. kingsleyae
[15] (figure 1a, red shading). The absence of nos3 in clupeoce-
phalans indicates a gene loss event at the stem of this group
(figure 1c). Furthermore, we did not find nos3 in the tarpon
M. cyprinoides, the most complete genome available among
Elopomorpha, nor in transcriptomic data of the European
eel Anguilla anguilla. On the other hand, we did identify a
nos3 orthologue in the cloudy catshark S. torazame,
suggesting its presence in the ancestor of gnathostomes. Pre-
viously, two nos genes had been found in the lamprey, called
nosA and nosB [7], with unresolved orthology to gnathostome
nos1-nos2-nos3, and derived from a lineage-specific tandem
duplication in the lamprey lineage. Based on this finding,
we searched for the presence of nos genes in other cyclos-
tomes. We found orthologous genes to P. marinus nosA and
nosB paralogs in the arctic lamprey Lethenteron camtschaticum
[16], and a single nos gene in the inshore hagfish Eptatretus
burgeri. Our phylogenetic analysis shows that the hagfish
Nos remains outside lamprey NosA-NosB clade, therefore
with no clear orthology relationship to any specific gnathos-
tome Nos1, Nos2, Nos3, and suggesting that the duplication
giving rise to the lamprey nosA-nosB occurred at least before
the last common ancestor of Petromyzontidae.

In order to study the Nos evolution at the protein level
and verify if each gene clade is under differential selection
pressure, we conducted a Branch Model (BM) analysis (see
electronic supplementary material). The BM analysis
showed significant p-value and ω values less than 1 for all
Nos proteins: Nos1 (ω1 = 0.035), Nos2 (ω1 = 0.092) and Nos3
(ω1 = 0.082) (electronic supplementary material, table S2).
Therefore, they are under purifying (negative) selection, and
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Figure 1. Evolution of the Nos gene family. (a) Phylogenetic analysis of Nos proteins in chordates. The tree topology was inferred by Bayesian inference and
maximum-likelihood methods, with the exact topology obtained from the former shown here (see electronic supplementary material, figure S7 for the maxi-
mum-likelihood tree). Numbers at nodes represent posterior probability values (left) and maximum-likelihood bootstrap support for 1000 replicates (right). (b,
c), Evolutionary scenarios indicating the loss of Nos2 event in Neoteleostei (b) and Nos3 in Clupeocephala (c) as grey lines. Nos3 in Elopomorpha is absent, although
parsimony suggests it was present in stem elopomorphs, and it is indicated with a dashed line. TGD stands for Teleost-specific Genome Duplication. (Online version
in colour.)
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in particular, the Nos2 and Nos3 evolution resulted slightly
more relaxed with respect to Nos1.

To better understand the gene loss and expansion events
highlighted by our phylogenetic analysis, we next analysed
the microsynteny (genes linked in proximity) of nos genes
in different species. This revealed a complex evolutionary
scenario for nos2 compared to nos1 and nos3. Specific nos2
duplications in different lineages are explained by distinct
evolutionary events in teleosts. First, the lack of synteny con-
servation between nos2a and nos2b in cyprinids, and the lack
of nos2a in the expected location in non-cyprinid fishes (elec-
tronic supplementary material, figure S2-b) indicates that
these paralogs originated in a specific gene duplication
event in a common ancestor of the lineage, independently
from the TGD (the alternative explanation would require
numerous nos2a losses in several fish lineages), in which
while nos2b has remained in the ancestral genomic location,
nos2a has been translocated to a different position in the
genome (figure 2a and electronic supplementary material,
figure S2-b). Second, an additional genome duplication
event after the TGD specifically occurred independently in
several teleost lineages, causing the presence of extra nos2
paralogs. These include some cyprinids, in which the carp-
specific genome duplication event (Cs4R) likely occurred
before the divergence of C. auratus, S. anshuiensis and
C. carpio [17], and salmonids (salmonid-specific genome
duplication or Ss4R) [18,19], with S. salar and O. mykiss in
this study. These additional tetraploidization events can
explain the origin of the two independent sets of nos2
genes in cyprinid and salmonid species. In the case of cypri-
nids, both our phylogenetic and synteny analyses clearly
show their nos2b orthology, and we denote them as nos2ba
and nos2bb (figures 1a and 2a). In the case of salmonids, we
name them nos2α and nos2β to distinguish them from the
cyprinid nos2a and nos2b paralogs, which have a separate
origin (see above; figure 2a). Third, independent tandem
gene duplications explain the presence of two nos2 copies,
that we named nos2.1 and nos2.2, located next to each other
in the same chromosomal fragment in the genomes of the
Atlantic herring (C. harengus), the Mexican tetra (cavefish,
A. mexicanus), the electric eel (E. electricus), the channel catfish
(I. punctatus) and the northern pike (E. lucius) ( figure 2a).

Bichir, reedfish, sterlet, spotted gar, bowfin and fresh-
water elephantfish are the only ray-finned fishes that
retained a nos3 orthologue. Therefore, we investigated the
absence of nos3 in clupeocephalans. First, we looked for the
genomic region containing nos3 in fishes that represent out-
groups to the clupeocephalans. We found one long scaffold
of the P. kingsleyae genome (scaffold 217) [15] showing exten-
sive conserved synteny with the nos3-containing segment of
the linkage group 11 (LG) in the spotted gar genome
(figure 2b). While these appear to correspond to one of the
TGD ohnologons (figure 2b), there are two other P. kingsleyae
scaffold segments (from scaffolds 72 and 104) that together
seem to represent the second TGD ohnologon, but lacking
the expected nos3 TGD ohnolog (figure 2b). Zebrafish
chromosomes 16 and 19 and medaka chromosomes 11 and
16 contain orthologous regions to the two P. kingsleyae and
L. oculatus TGD ohnologons, but lack a nos3 gene at the
expected locations. The one-to-one relationship between
these P. kingsleyae scaffolds and zebrafish and medaka
chromosomes is challenging to determine (figure 2b). Regard-
less, the most parsimonious explanation for the nos3

repertoire in ray-finned fishes is that, one of the two nos3
TGD ohnologs was lost in the teleost common ancestor,
while the other was retained and later lost in secondary, inde-
pendent events in the common ancestor of Clupeocephala
and, probably, that of Elopomorpha (figures 1c and 2b).

(b) Expression of nos in vertebrate developing gills
Spotted gar is an important emerging experimental organism
representing an evolutionary bridge between teleosts and tet-
rapods that facilitates cross-species comparisons. The gar
genome is slowly evolving compared to that of teleosts and
has preserved a more ancient structural organization [20].
Therefore, we examined the expression patterns of nos
genes during gar development. As expected, nos1 was
expressed in several regions of the developing nervous
system (electronic supplementary material, figure S3, and
[21]). By contrast, nos2 expression was not detected during
the developmental stages covered in the present study, i.e.
from 4 to 14 days post fertilization (dpf). Unexpectedly,
the expression of nos3 was first detected in embryos in
the pharyngeal area at 4 dpf (figure 3a,b) and increased at
6 dpf (figure 3c,d ). At 7 dpf, embryos showed clear nos3
expression in developing arches III, IV, and V (figure 3e–g).
Later, at 11 dpf, the positive signal is localized in gill fila-
ments (figure 3i–k). Histological sections highlighted the
presence of nos3 in the epithelium of branchial lamellae
(figure 3l ), also confirmed by the signal in gill structures in
an advanced stage of maturation in 14 dpf juveniles
(figure 3m–p).

The detection of nos3 transcripts in gills of spotted gar
and the established involvement of NO gas in osmoregula-
tory control and vascular motility in gills of numerous
teleosts [22–25] prompted us to investigate whether a similar
nos expression patterns occurred in developing gills of other
fish species. We investigated nos expression in the sterlet stur-
geon and the bichir, members of early branching groups of
ray-finned fishes [12]. Moreover, we similarly searched nos
expression pattern in the chondrichthyan cloudy catshark to
infer the ancestral expression condition among gnathostomes.
Unlike gar, we discovered that nos3 was not expressed in gills
of other species analysed in this work (electronic supplemen-
tary material, figure S3), thus raising questions of whether
nos3 expression in gills represents an oddity of holosteans
or gars. Surprisingly, we found a different scenario in
which other nos genes were expressed in gills of sturgeon,
bichir, and shark. In particular, nos2 was expressed in the
branchial area of the sterlet sturgeon (figure 4a–c) and
bichir embryos (figure 4d–f ), while nos1 is expressed in gills
of catshark embryos (figure 4g–i).

Our results show that nos paralogs are expressed in phar-
yngeal arches and gills in both actinopterygians and
chondrichthyans. These findings lead us to question whether
nos expression in gills could be a conserved feature also in
sarcopterygians, and in particular in amphibians that use
gills for gas exchange. Therefore, to investigate the presence
of nos transcripts in amphibia, we chose the neotenic axolotl
Ambystoma mexicanum because it retains functional external
gills throughout life. Gene expression analysis by qPCR
revealed that nos1 and nos2 are almost not detectable in
adult axolotl gills, while nos3 is highly expressed in gill struc-
tures (electronic supplementary material, figure S4).
Therefore, we conclude that nos expression in gills is a
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conserved feature in neotenic amphibian assayed, previously
observed exclusively in fishes.

(c) Expression of nos genes in the lamprey
In cyclostomes ( jawless vertebrates, including lampreys
and hagfish), cartilaginous and bony gnathostomes ( jawed
vertebrates), gills are endoderm-derived structures, pointing
to a single origin of pharyngeal gills before the divergence
of these vertebrate lineages [26,27]. To assess whether
nosA and nosB are expressed in gills during embryogenesis,
we performed whole-mount in situ hybridization exper-
iments at different embryonic stages. We found that
lamprey nosA was expressed in several tissues, including
the brain, dorsal midline epidermis, tailbud, mouth and
cloaca, but not in gills (figure 5a,b). Conversely, the lamprey

nosB paralog showed restricted expression in the developing
mouth, specifically in the cheek process, including upper
and lower lip regions (figure 5c,d ). These results show that
in the arctic lamprey, neither of the two nos paralogs is
expressed in immature or mature gills, suggesting a funda-
mental difference in the role of nos genes in jawless and
jawed vertebrates.

3. Discussion
Actinopterygians experienced one of the largest radiations in
the animal kingdom and their history represents a valuable
resource for the formulation of hypotheses regarding the
evolution of vertebrate gene families. In this work, we
employed data from recent genome projects to clarify and

Figure 2. Conserved microsynteny of nos2 and nos3. (a) The nos2 paralogs derived from different duplication modalities: carp-specific genome duplication (Cs4R)
(nos2ba and nos2bb in the goldfish and blind barbel); salmonid-specific genome duplication (Ss4R) (nos2α and nos2β in the Atlantic salmon and rainbow trout);
tandem gene duplication occurred independently in five lineages (nos2.1 and nos2.2 in the northern pike, Atlantic herring, electric eel, Mexican tetra and channel
catfish). An additional nos2 duplicate (nos2a) is present in cyprinids (zebrafish, goldfish, and blind barbel) (see electronic supplementary material, figure S2). (b) A
conserved synteny map of genomic regions around the nos3 gene locus highlights the loss in Clupeocephala (including zebrafish and medaka), and in Osteoglos-
somorpha (arowana). Consecutive genes are represented as arrows and are colour coded according to their orthology and ohnology. The direction of arrows indicates
gene transcription orientation. // indicates long-distance on the chromosome (>600 kb), * indicates scaffold 72 of the freshwater elephantfish genome [15]. (Online
version in colour.)
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update the evolution of Nos family across vertebrates. Our
phylogenetic analysis confirmed that Nos1 is ubiquitously
present as single copy gene across the gnathostome lineage.
The only two events of duplication for nos1 were observed
in cyprinids and salmonids, as a consequence of their specific
Cs4R and Ss4R tetraploidizations, respectively. Furthermore,
our phylogenetic data, complemented with syntenic analyses,
highlighted for the first time a highly complex scenario of
Nos2 evolution, for which we suggest a dedicated nomencla-
ture that attempts to incorporate evolutionary origins into
gene names. Previous analyses showed the presence of two
nos2 genes (nos2a and nos2b) in zebrafish and goldfish
[28,29], likely originated from an event of gene duplication
that occurred specifically at the stem of the group, and not
related to the classic TGD [30,31]. This result is supported
by synteny analysis since the chromosomal position of
nos2a and nos2b genes is not conserved, as it would be
expected if they were retained after whole-genome dupli-
cation. Here we show the presence of a nos2a paralog also
in other two cyprinids, C. carpio and S. anshuiensis (figures 1a
and 2a). On the other hand, the cyprinid nos2b paralog inde-
pendently duplicated in carps after the Cs4R [17], as the
conserved synteny suggests (figure 2a). In salmonids, synteny
analysis also indicates that the two Nos2 paralogs originated

secondarily after the Ss4R (figure 2a) [18,19]. Here, we call
these genes nos2ba and nos2bb in carps to emphasize and clar-
ify their relationships to zebrafish genes, and nos2α and nos2β
in salmonids to indicate their distinct evolutionary origin.
Additionally, the present work shows that nos2 has under-
gone several independent lineage-specific tandem gene
duplication events (nos2.1 and nos2.2) (figure 2a). The
search of nos2 in available fish genomes, covering all main
groups, failed to find it in any Neoteleostei, and for this
reason, we hypothesized a nos2 gene loss event occurred at
the stem of Neoteleostei (figures 1 and 6). Importantly, NO
produced upon stimulation of the inducible nos2 is con-
sidered one of the most versatile players of the immune
system [4]. For this reason, it would be important in the
future to investigate the impact of Nos2 loss on the
immune response in Neoteleostei and if any compensatory
mechanisms occurred through the activation of other nos
paralogs, as well as to understand if nos2 duplicates under-
went neofunctionalization or subfunctionalization, thus
providing new functional features to the organism.

Concerning nos3, our understanding of its evolutionary
history had a twist with the finding of a nos3 orthologue in
the spotted gar genome [11], proving that the previously pos-
tulated actinopterygian-specific loss of nos3 was an incorrect

Figure 3. Spotted gar nos3 localization during development. Expression of nos3 is localized in the pharyngeal area in 4 dpf (a,b) and 6 dpf (c,d ) embryos, in
pharyngeal arches in 7 dpf larvae (e–g) schematized in (h), in developing gills in 11 dpf late larvae (i–l ), and in gill lamellae in 14 dpf juveniles (m–p). Coronal
(n) and transversal section (o) planes are indicated with a red dashed line in (m). ey, eye; gi, gill; dv, dorsal view; lv, lateral view. Scale bar is Q11 mm in a, c, e, i, m;
100 µm in b, d, l, n, o, p. (Online version in colour.)
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inference. Fostered by this discovery, we specifically searched
for the presence of nos3 orthologs in a wide range of fish
species to infer the ancestral condition. We identified a nos3
gene in bowfin, thus confirming the presence of nos3 in the
other reference genus of the holostean clade, in addition to
gar (figure 6). Furthermore, the presence of nos3 in genomes
of bichir and sterlet sturgeon, which diverged prior to the tel-
eostean and holostean split, confirmed the hypothesis that
nos3 was already present in the common ancestor of extant
osteichthyes, rather than an innovation of tetrapods [7] or
neopterygians (holosteans plus teleosts) [11] (figure 6). We
did not find nos3 gene in the tarpon M. cyprinoides genome
(figure 2b), and to date, the limited genomic and transcrip-
tomic data of eels, congers, and morays cannot endorse the
presence of a nos3 in Elopomorpha. Therefore, more
genome sequences are necessary to confirm its absence in
this key group. We also did not find nos3 in any Clupeoce-
phala (non-elopomorph and non-osteoglossomorph teleosts)
suggesting that a loss event took place in the common ances-
tor of clupeocephalans. Notably, we found a nos3 gene in the
osteoglossomorph elephantfish P. kingsleyae, and it allowed
us to confirm that the loss of nos3 did not occur in the last
common teleost ancestor, as previously thought [11]. These
findings suggest instead the following evolutionary scenario
for the nos3 gene: first, since we only find a maximum of
one nos3 gene in those cases where it is present, we assume
that one of the two TGD ohnologs was immediately lost
after the TGD, and the other one was retained. This nos3
gene was then lost in the ancestors of elopomorphs –although
further research is needed to confirm this– and clupeocepha-
lans independently in separate events (figure 6).

The discovery of nos3 in sharks (S. torazame in this study)
suggests that the origin of nos3 predates the divergence of
gnathostomes and that three distinct nos paralogs were
already present in the last common ancestor of gnathostomes
(figure 6), likely originating after the two rounds of whole-
genome duplication that took place during early vertebrate
evolution (VGD1 and VGD2, 2R hypothesis) [7,32,33]. The
origin of nos genes is, in fact, supported by the linkage to
the evolutionarily conserved Hox gene clusters and several
other syntenic genes (figure 6b and electronic supplementary
material, figure S5). Under this scenario, then a fourth nos
gene (putative nos4) should have existed but was apparently
lost early in the gnathostome evolution (figure 6a).

The apparent lack of nos3 in some vertebrate lineages,
such as in coelacanth L. chalumnae (an extant basally diver-
ging sarcopterygian), in arowana S. formosus (an
osteoglossomorph), and in elopomorph fishes, remains to
be clarified in the future.

The protein evolution analysis highlighted that the
three Nos clades show negative selection pressure at different
rates, being Nos1 under stronger negative selection, in
respect to Nos2 and Nos3 that resulted under more relaxed
negative selection based on significant ω values. These results
are in agreement with the high degree of conservation of
nucleotidic and amino acidic sequences during Nos family
evolutionary history in vertebrates.

The importance of NO in the ontogeny and function of
vertebrate gills has already been documented in the context
of physio-pharmacological studies, primarily using inhibitors
of Nos activity. In gills, NO acts as a paracrine and endocrine
vasoactive modulator and, therefore, plays a crucial role in
the distribution of oxygenated blood [34]. Moreover, NO

Figure 4. Expression of nos genes in developing gills of sturgeon, bichir, and shark embryos. The expression of nos2 in the gills of sterlet sturgeon Acipenser
ruthenus (14 mm stage, a–c) and bichir Polypterus senegalus (stage 31, d,e); nos1 in the shark Scyliorhinus torazame (stage 27, g–i). Higher magnification
views of the gill structure of a, d, g are shown in b, e, h, respectively. The arrowheads indicate sectioning plane (a,d,g): transversal sections (c,f, 50 µm) and
frontal section (I, 10 µm). gi, gill; yo, yolk; pf, pectoral fin. Scale bar in a, d, g is 0.5 mm. (Online version in colour.)
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has an osmoregulatory function controlling the movement of
ions across the gill epithelium [24,35–37], and represents an
important molecular component of the immune system
employed by macrophages to attack and destroy pathogens
[38]. Nevertheless, documentation of Nos enzymatic activity
in fish gills has relied exclusively upon techniques unable
to discriminate among individual Nos proteins, such as
NADPH-diaphorase activity and immunolocalization with
heterologous mammalian antibodies [34,36,37,39]. Therefore,
the detected enzymatic activity has for a long time been indi-
cated generically as ‘Nos-like’. Here, using a specific mRNA
transcript detection methodology, we showed, for the first
time, that indeed nos genes are expressed in gills during
development in various vertebrates. Surprisingly different
Nos paralogs are expressed in gills in different animals
tested: nos1 in shark, nos2 in bichir and sterlet sturgeon,
and nos3 in spotted gar. The most parsimonious hypothesis
to explain this result is that the ancestral nos gene had a
number of roles in gills, immune system, brain, and other
organs that was controlled by separate regulatory elements
and, due to subfunctionalization after the vertebrate 2R
(according to the Duplication-Degeneration-Complementa-
tion (DDC) model) [40], these physiological roles
partitioned to different nos ohnologs as lineages diverged
and reciprocal loss of the gill expression function occurred
in a lineage-specific way. Further support for this hypothesis
comes from the identification of nos1-positive cells in gill of
zebrafish at 5 dpf, in addition to brain, eye, periderm and
NaK ionocytes, according to the recently released develop-
mental single-cell transcriptome atlas [41] (electronic
supplementary material, figure S6).

Additionally, to corroborate the involvement of NO in
normal gill physiology, we searched for nos expression in
gills of a paedomorphic amphibian, the Mexican axolotl,
which maintains gill structures in adulthood. Taking into
account the different evolutionary and developmental
origin of internal and external gills [42], the conservation of
nos3 expression in gills indicated that the NO signalling

system could be fundamental for the physiology and devel-
opment of this structure in the axolotl, and perhaps
generally in pre-metamorphic amphibians. Therefore, our
data highlighted that the expression of at least one nos gene
has a functional role in gnathostome gills.

Recently, a single origin of pharyngeal gills predating the
divergence of cyclostomes and gnathostomes was suggested
[26]. Therefore, we investigated whether either of the two
arctic lamprey nos paralogs is expressed in developing gills,
but found them expressed mainly in the nervous system,
mouth and pharynx, similar to the expression pattern pre-
viously reported in the cephalochordate amphioxus [43,44].
This led us to speculate that either the expression of nos
genes in gills was acquired in gnathostomes after the diver-
gence from cyclostomes, or alternatively, gill expression was
a feature of their last common ancestor but lost in the lineage
of cyclostomes.

In conclusion, our findings pave the way for future
studies that aim to investigate the ontogenetic role of nitric
oxide in gill development of aquatic vertebrates. It would
be interesting to understand more about species-specific
regulatory mechanisms that drive different nos genes
expression patterns in gills in different species.

4. Methods
(a) Phylogenetic analysis
Nos sequences used for evolutionary analyses were retrieved
from NCBI, Ensembl, Skatebase and DDBJ databases (electronic
supplementary material, table S1). We used proteins from Homo
sapiens, Anolis carolinensis and Xenopus tropicalis as internal refer-
ences, and two non-vertebrate chordates as outgroups: the
cephalochordate Branchiostoma lanceolatum NosA, NosB and
NosC, and the tunicate Ciona robusta Nos.

For phylogenetic analysis, Nos amino acid sequences were
aligned using the MUSCLE algorithm [45] as implemented in
MEGAX (v. 10.2.4) [46]. The alignment was trimmed by trimAl
v. 1.2rev59 [47] and then formatted into a nexus file using

Figure 5. Expression patterns of nosA and nosB in larvae of the arctic lamprey. At stage 24–25 the nosA is expressed in the brain, mouth, upper and lower lip,
dorsal midline epidermis, and cloaca (a). At stage 28, nosA expression is restricted to the mouth (b). The nosB is exclusively expressed in the cheek process,
consisting of upper and lower lips (c,d ), and faint expression in the dorsal midline epidermis (c). br, brain; cl, cloaca; dme, dorsal midline epidermis; gp, gill
pouches; mo, mouth; ll, lower lip; ul, upper lip; lv, lateral view; vv, ventral view. Scale bar in (a) is 0.5 mm. (Online version in colour.)
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readAl (bundled with the trimAl package) (electronic sup-
plementary material, File S1). The Bayesian inference tree was
constructed using MrBayes v. 3.2.6 [48], under the assumption
of an LG + I + G evolutionary model. Two independent MrBayes
runs of 2 000 000 generations were performed, with four chains
each and a temperature parameter value of 0.05. The tree was
considered to have reached convergence when the standard devi-
ation stabilized under a value of less than 0.01. A burn-in of 25%
of the trees was performed to generate the consensus tree (1 500
000 post-burnt-in trees). The maximum-likelihood (ML) phyloge-
netic tree was inferred on the same multi-sequence alignment
(electronic supplementary material, file S1) using IQ-TREE
v. 2.1.3 [49] with 1000 replicates, using automatic selection of
best-fit model with ModelFinder [50] and branch support
assessed with the ultrafast bootstrap approximation [51] (elec-
tronic supplementary material, figure S7).

(b) Synteny
With the aim of finding synteny blocks flanking the nos2 and
nos3 orthologues, we employed the Synteny Database [52,53].
Additional information was retrieved in NCBI, Ensemble
(v. 102) and Genomicus (v. 100.01) [52].

(c) Gene expression analysis by in situ hybridization
Whole-mount in situ hybridization experiments were performed
for all nos paralogues following species-specific protocols pre-
viously described: spotted gar [54], bichir and sturgeon [55],
lamprey [56] and shark [57]. Embryos and tissues collection
and protocol modifications to the in situ hybridization are
reported in electronic supplementary material (see Extended
methods).

Data accessibility. Accession numbers of protein sequences used in the
phylogenetic analysis are available in electronic supplementary
material, table S1. Primer sequences used for the synthesis of in

situ hybridization riboprobes and in quantitative real-time PCR
experiments are given in electronic supplementary material, table S3.
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