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1 Effective Hamiltonian

We consider two two-level systems, each coupled to a common bosonic mode described by annihila-

tion operator a, which we assume here without loss of generality to be a mechanical resonator. In

the case of equal coupling, the Hamiltonian reads

H/h̄ =
ω

(1)
s

2
σ(1)
z +

ω
(2)
s

2
σ(2)
z + ωra

†a+ λSz(a+ a†), (1)

where Sz = σ
(1)
z + σ

(2)
z , and σ

(i)
z is the Pauli z matrix for qubit i. We assume λ � ωr � ωs,

and neglect terms that are ∼ σ
(i)
x,y ⊗ (a + a†) in a secular approximation. Now consider adding

a resonant, strong microwave drive on the spins such that the Rabi frequency Ω � λ. If we

exert a sequence of π pulses such that the time 2τ between the π pulses is π/ωr, then each spin

σ
(i)
z (t) → σ

(i)
z (0)sgn(sin(ωrt + φ)) (in the so-called ‘toggling frame’), where φ is set by the time

between t = 0 and the first π pulse and sgn(x) is the sign of x. Approximating the σ
(i)
z time

dependence as a square wave, considering only the fundamental frequency (the other frequencies

are at harmonics of ωr and are therefore strongly detuned from the resonator), and in the frame

rotating at the resonant spin drives the Hamiltonian is

H/h̄ =
4

π
sin (ωrt+ φ)λSz ⊗ (a+ a†) + ωra

†a. (2)

Going to the frame U = eiωra
†at, and setting φ = π/2 corresponding to standard XY8-k timing,

we arrive at an effective Hamiltonian in the interaction picture of:

H/h̄ =
2

π
λ
(
σ(1)
z + σ(2)

z

)
⊗ (a† + a), (3)

where here the pre-factor of 2
π comes from the Fourier transform of a square wave. Additionally,

we neglect counter propagating terms rotating at frequency 2ωr. Equation (3) gives the effective

Hamiltonian during the total interaction time tI , i.e. the length of the entire pulse sequence.

2 Semi-classical equations of motion

As the entanglement protocol can tolerate a highly excited thermal state of the mechanical os-

cillator, it is instructive to develop semi-classical equations of motion, where the bosonic mode

is treated classically. Using a classical description of position and momentum x ≡ zp〈a + a†〉 and

p ≡ (zp/mωr)i〈a†−a〉 (zp: ground state fluctuations, m: effective mass of the oscillator), the system

undergoes the following equations of motion (without any measurements):

dx(t)

dt
= p(t)/m (4)

dp(t)

dt
= −mω2

rx(t)− κp(t)− 4Sz
π

h̄λ

zp
sin (ωrt+ φ)Θ(t)Θ(t− tI) + ξ(t) (5)

Here we have assumed that the timing 2τ between the π pulses is equal to π/ωr, λ is the spin-

mechanical coupling strength, and we assume that the spins are in an eigenstate, such that Sz is

either 0 or ±1. We have additionally only retained the fundamental frequency of the square wave
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for the spin drive, since it will be the only term that provides a significant effect. Lastly, ξ(t) is a

Gaussian random variable that has the statistical properties

〈ξ(t)〉 = 0 (6)

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (7)

where D = κkBTm is the thermal diffusion constant (kB: Boltzmann constant, T : temperature

� h̄ωr/kB). In a viscous damping approximation and in the rotating frame (using a tilde to denote

rotating frame) we find

dx̃

dt
= −κ

2
x̃− 2 cos (φ)zp

2λSz
π

Θ(t)Θ(tint − t) +
z2
p f̄x(t)

h̄
dp̃

dt
= −κ

2
p̃− sin (φ)

2h̄λSz
zpπ

Θ(t)Θ(tint − t) +
f̄p(t)

2
,

(8)

where we use the noise terms

f̄x ≡ ξ̄(t) + ξ̄†(t)

f̄p ≡ −i(ξ̄(t)− ξ̄†(t)),
(9)

defined by the coarse-grained average ξ̄(t) of ξ(t) over a short time 1/ωr � δt � 1/κ. Formally

integrating, the solution to equations (8) (for φ = π/2) is:

p̃(t) = p̃(0)e−κt/2 − 4h̄λSz
κπzp

(1− e−κt/2) +

∫ t

0

f̄p(t
′)

2
e−κ(t−t′)/2dt′

x̃(t) = x̃(0)e−κt/2 +
z2
p

h̄

∫ t

0

f̄x(t′)

2
e−κ(t−t′)/2dt′.

(10)

The second term in the momentum equation includes the spin-dependent force responsible for our

entanglement mechanism.

Intuitively, the trajectories for different Sz values must separate faster than the random walk

from the diffusion to allow for a mechanical measurement of the spin state. For short times t� 1/κ,√
∆p̃(t)2 increases as ∝

√
t, as opposed to the expectation value 〈p̃〉 ∝ t which is displaced linearly

in phase space with time t as shown above, such that the mechanical spin readout improves with

increasing integration times, as expected.

3 Quantum mechanical picture: effects from the environment

In order to consider the finite thermal occupation of the resonator and the phonon induced spin

decoherence associated with it, in this section we confirm that there is no phonon induced spin

decoherence in the decoherence free subspace (DFS) by integrating the master equation to first

order in time. For reference on the notation, see Appendix L of [1].

In a realistic system, the resonator will be coupled to a thermal bath and the qubits will be

subject to decoherence. We neglect spin flip errors (see below), and assume that the total system

can be described by a master equation

ρ̇(t) = −i[H, ρ] + κ(nth + 1)D(a)ρ+ κnthD(a†)ρ+
Γ

2

∑
i=1,2

D(σzi )ρ. (11)

The Hamiltonian H is given in equation (3) and the superoperator D of a generic operator O is

D(O) = OρO† − 1
2

(
O†Oρ+ ρO†O

)
, describing the rethermalization to a bath with temperature T

at rate κ = ωr/Q, such that the thermal occupation is nth = (eωr/kBT − 1)−1 � 1. The quality
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factor Q of the resonator is assumed to be much greater than 1, which is well satisfied in various

systems, reaching 109 in some systems [2, 3]. We neglect depolarization of the spins and only include

dephasing at rate Γ = 1/T ∗2 where T ∗2 is the spin coherence time: for NV centers, the depolarization

timescale T1 is much longer than the dynamics we consider in this proposal. Although the optimal

time and fidelity may be adjusted for non-Markovian spin reservoirs such as a 13C nuclear bath [4],

for simplicity, we continue with a Markovian reservoir model such that the spin coherence decays

exponentially. This approximation is conservative with respect to the achievable entanglement

fidelities, and enables us to treat the system analytically.

3.1 Master equation including resonator rethermalization only

To determine on the effect of the rethermalization of the resonator, we begin with the master

equation

ρ̇ = −i[H, ρ] + κ(nth + 1)D(a)ρ+ κnthD(a†)ρ, (12)

where κ = ωr/Q is the energy decay rate of the resonator. The solution to the master equation can

be retrieved via formal integration

ρ̃(t) = ρ̃(0) +
∑
j

γj

∫ t

0
dτD

(
L̃j(τ)

)
ρ̃(τ), (13)

where here the sum is over all jump operators L̃j =
{
ã, ã†

}
, and the tilde denotes operator or

density matrix in the frame U = eiHt.

It is instructive to examine the master equation in a rotating and displaced frame. Next, we

determine how the jump operators a and a† evolve in the interaction picture, during the pulse

sequence. There are two time dependent unitary transformations: To arrive at the effective Hamil-

tonian (3), we first translated into the frame given by unitary U1 = e−iωrta
†a. This rotation sends

the jump operators to

a→ ã = ae−iωrt; a† → ã† = a†eiωrt. (14)

Then the spin is modulated with π pulses, and a rotating wave approximation is made. We are left

with the effective Hamiltonian (3), which now must also be eliminated using the secondary unitary

transformation U2 = e−iHefft. Since this unitary is a displacement operator, the jump operators

now evolve as

a→ ã ≡
(
a− i 2

π
λtSz

)
e−iωrt. (15)

This is a momentum displacement of ∼
√

2 2
πλtSz, in the rotating frame, such that ã is approximately

invariant under time evolution.

3.2 Integrating the master equation

We formally integrate (13), to first order in time, implementing the evolved jump operators given

in (15), and noting that ρ̃(0) = ρ(0) to calculate

ρ̃(1)(t) = κ

∫ t

0
dτ

(
(nth + 1)D

((
a− i 2

π
λτSz

)
e−iωrτ

)
+ nthD

((
a† + i

2

π
λSzτ

)
eiωrτ

))
ρ̃(0)(τ).

(16)

After performing the integral, we find three types of terms, such that such that ρ(1)(t)/t ∼ A + B + C.

First, there is a Lindbladian depicting the typical rethermalization of the resonator

A ∝ κ(nth + 1)D(a)ρ(0) + κnthD(a†)ρ(0). (17)

This noise is to be expected, as the spin-resonator interaction does not mitigate resonator rether-

malization noise. Next, we find phonon-induced decoherence of the spin

B ∝ κ(nth + 1)D
(
−i 2
π
λtSz

)
ρ(0) + κnthD

(
i
2

π
λtSz

)
ρ(0), (18)
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such that the spins accumulate a random phase of order ∼ λt as the resonator experiences re-

thermalization noise. For the subspace corresponding to 〈Sz〉 = 0, this term is zero, as expected

for our DFS. Lastly, there are terms that generate off-diagonal matrix elements of the resonator

density matrix,

C ∝ κnthλt
(
aSzρ(0), a†Szρ(0), Szρ(0)a†, Szρ(0)a

)
. (19)

Through the spin-resonator interaction, the resonator coherence of order λtSz is injected by the

spins. This coherence then rethermalizes with single phonon re-thermalization rate κnth. Note that

again in the DFS, these terms are eliminated since Sz is zero.

For all three types of noise, if we include terms higher order in time, each will also be proportional

either to the identity operator on the spins, Sz, or (for S > 1/2) higher powers of Sz, which do not

cause decoherence in the DFS. This is expected: we have neglected the spins’ inherent T1 processes

in our analysis, and both the Hamiltonian and jump opereators are proportional to Sz, but not Sx
or Sy. Note also that for spin states that have the same Sz value but Sz 6= 0 (e.g., using NV ms = 0

and ms = +1 states as a qubit), the phonon induced phase will result in a random global phase

on the spins state after projecting into |01〉 , |10〉 subspace, such that Sz 6= 0 states can in principle

also be employed.

4 Entanglement heralding rates and success probability

In the sections below, we define and discuss the following quantities in detail:

• The false positive heralding rate rf : for an arbitrary attempt, the false positive 〈Sz〉 = 0

assignment probability (not conditional on acceptance of the mechanical measurement as a

heralding event of the spin entanglement).

• The true positive entanglement heralding rate rp: for an arbitrary attempt, the true positive

〈Sz〉 = 0 assignment probability (not conditional on acceptance), as defined in the main text.

• Probability of success S: given acceptance, the probability of a true positive assignment (i.e.,

〈Sz〉 = 0). In the limit that the spin decoherence rate Γ→ 0, this is equal to the entanglement

fidelity.

4.1 False positive heralding rate rf

The false positive rate is the area under the probability density function P〈Sz〉(∆M) (as defined in

the main text) within the thresholds and for 〈Sz〉 6= 0, weighted by the spin populations, such that

rf (t) =
1

4
Erfc

(
(2− α)g(t)√

2

)
− 1

4
Erfc

(
(2 + α)g(t)√

2

)
, (20)

with g(t) given in the main text, and where Erfc(·) is the complement of the error function. A few

remarks about this result:

• Note that rf is small for small values of g(t): since the displacement is very small, the threshold

bounds are very narrow and we almost never choose to post-select and almost never create

entangled states.

• Indeed, rf starts small at low t, then peaks as the post-selection rate goes up, and decreases

again as the distributions separate.

• As noted in [5], the error function complement is bounded by Erfc(x) ≤ e−x
2
, such that we

arrive at a bound on the error

rf (t) ≤ 1

4
e−(2−α)2g(t)2/2 ≈ 1

4
e−(2−α)24CΓt/π2

, (21)

where the last equality is for κtI � and ∆m�
√
κnthtI as in the main text. The false positive

heralding rate is thus at worst exponentially suppressed by C for fixed t.
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Figure 1: The success probability S(α, g(tI)) compared to S(0, g(tI) as given in the main text.

White space corresponds to values less than 10−9. Maximum value in this plot is about 0.08.

4.2 True positive entanglement heralding rp

This rate is given by the integrals of the probability density function P〈Sz〉(∆M) (as defined in the

main text) within the thresholds and for 〈Sz〉 = 0, multiplied by the probability of 〈Sz〉 = 0 (which

is equal to 1/2, given by the populations of the spin states),

rp =
1

2
Erf

(
αg(t)√

2

)
≥ 1

2

(
1− e−α2g(t)2/2

)
. (22)

The bound on the right hand side of the equation is obtained from the bound on the error function

complement used above.

4.3 Probability of success S

The probability of success S is given by the true positive entanglement heralding rate, normalized

to the total rate of acceptance

S = rp/r = rp/(rp + rf ). (23)

We expand this expression in the threshold parameter α and find for small α� 1

S(α) ≈ 1

1 + e−2g(t)2 −
2e2g(t)2

g(t)4

3(1 + e2g(t)2)2
(α)2. (24)

The first order term vanishes as expected by symmetry, and the negative second order term indicates

that α → 0 maximizes the fidelity of the entangled state. Note that ∂2S/∂α2 � 1 for all g(t) and

S(α) ≈ 1

1+e−2g(t)2
is an excellent approximation for many decades of α and g(t), c.f Fig 1.

4.4 Approximation of the optimal interaction time

We can describe the optimal interaction time tI by optimizing the fidelity given in the main text.

For α→ 0
dF
d(Γt)

=
8Ce−16CΓt/π2

(1 + e−2Γt)

π2(1 + e−16CΓt/π2)2
− e−2Γt

1 + e−16CΓt/π2 . (25)

To approximate the optimal time t∗, we assume that Γt∗ � 1 and expand e−2Γt to zeroth order,

setting e−2Γt ≈ 1, and do not expand the exponential e−16CΓt/π2
since C can be large. We arrive at

the expression

Γt∗ ≈ π2ln(16C/π2 − 1)

16C
, (26)
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as stated in the main text. We note that we assumed a Markovian spin bath such that the spin

coherences decay as a simple exponential. A non-Markovian spin reservoir (as encountered in dense

spin ensembles, e.g., for NV centers coupled to a bath of 13C nuclear spins), with same Γ would

result in better performance, since Γt∗ � 1, but cannot be approximated analytically in the same

manner.

5 Inhomogeneous coupling strength

We can include a small difference in coupling ∆λ by treating the DFS HDFS ≡
{
|01〉+|10〉√

2
, |01〉−|10〉√

2

}
as an effective two-level system coupled to a resonator, undergoing thermal noise, with coupling

strength ∆λ, such that the effective Hamiltonian is

H/h̄ =
2

π
λSz

(
a+ a†

)
+

2

π

∆λ

2

(
σ(1)
z − σ(2)

z

)(
a+ a†

)
. (27)

We describe three contributions to the reduction in fidelity from a finite ∆λ: (i) phonon induced

spin decoherence, a random phase accumulated onto the two spin coherences given by the random

fluctuations of the resonator state, as the spin senses the resonator position, (ii) the information

gained by the measurements on the resonator that projects the spins onto the |01〉 or |10〉 state

when 〈Sz〉 = 0, and (iii) the difference in the spin-induced momentum displacements from the ideal

case ∆λ = 0, given by the four possible forces exerted on the resonator, In the following, we treat

each of these three effects independently, assuming that the displacement ∼ ∆λtI is much smaller

than the diffusion
√
κnthtI .

5.1 Phonon induced spin decoherence

Without additional spin control to mitigate the phonon-induced spin decoherence, the spin 〈Sz〉 = 0

state will become an incoherent mixture of |Ψ+〉 and |Ψ−〉, reducing the spin coherence according

to the decrease in spin contrast shown for a thermal resonator state in [6], which can drastically

reduce the fidelity. However, since the duration of our sequence t� 1/κ, then the signal is largely

coherent during the pulse sequence, such that we can apply dynamical decoupling within HDFS

to suppress its effect. If we add an intermediate measurement Mint at time tI/2, threshold on the

variable ∆Mnew ≡ M2 −Minte
−κtI/4 − (Minte

−κtI/4 −M1e
−κtI/2), and add an additional π pulse

at time tI/2, we dynamically decouple the coherent part of the resonator signal (see figure 2 for

an illustration). This is equivalent to applying a so-called Hahn echo sequence in HDFS , while

retaining the same optimal time t∗. In our analysis below, for simplicity we again assume that the

measurement uncertainty is negligible.

In this section, we quantify the remaining random phase and decoherence after such a sequence

due to the phonon-induced spin thermalization, as well as a new success probability defined by all

three measurements. As mentioned above, we assume ∆λtI �
√
κnthtI , such that we can use a

semi-classical picture, neglecting the small (coherent) phase added to the spins from the difference

in the spin-induced resonator displacements between the |01〉 and |10〉 states. A simple estimate

first provides a quite accurate result. During the evolution over the pulse sequence of time tI ,

diffusion occurs with variance given by the single phonon decay rate, κnthtI . As this evolution is

purely Markovian, the extra π pulse halfway through the sequence does not prevent the spins from

sensing these fluctuations with coupling strength ∆λ. Thus we expect the two qubit coherences to

accumulate a random phase ∼ ∆λtI
√
κnthtI .

More precisely, we describe a two-level system |ψ〉DFS (t) in HDFS in the rotating and toggling

frame (eq. (3)) that begins in the state |ψ(t)〉DFS = |Ψ+〉 and accumulates phase during the pulse

sequence over time tI such that, up to a global phase the state becomes

|ψ(tI/2)〉DFS =
|10〉+ eiφ(tI/2) |01〉√

2
, (28)

7



May 5, 2021

����

������

���������M�

M���

���������
���������

�

���

���

���

����

���������

���

���

���

�����

�����
������

M�

��

Figure 2: Pulse sequence replacing that of figure 1(c) that mitigates phonon-induced decoherence in

the presence of inhomogeneous coupling. The extra π pulse (red) halfway through the interaction

time tI eliminates much of the decoherence due to the resonator phase.

where the oscillator-state-dependent phase φ(t) is given by

φ(t) =
4

π

∆λ

zp

∫ t

0
x̃(t′)dt′, (29)

and x̃(t) is described by equation (10). Note that to simplify the derivation, we have again made the

same rotating wave approximation and neglected the higher harmonics of the square wave, unlike

the result in [6] (in the limit κtI � 1, the results are equivalent). After the extra π pulse on both

spins, and further evolution for another time tI/2, the state is

|ψ〉DFS (t) =
|10〉+ ei∆φ(tI) |01〉√

2
, (30)

where

∆φ(t) =
4

π

∆λ

zp

(∫ t

t/2
x(t′)dt′ −

∫ t/2

0
x(t′)dt′

)
. (31)

Taking the statistical average over the distribution for ∆φ(t), we calculate the spin coherences of

the density matrix to be

〈e±i∆φ(t)〉 = e−σ
2
∆φ(t)/2, (32)

where σ2
∆φ(t) is the variance of ∆φ(t), as x̃(t) is Gaussian. Thus, neglecting the change in the

distributions of the resonator state due to the inhomogeneous coupling (treated independently

below), the fidelity is reduced by a factor (see also the next section)

F → F ·

(
1 + e−σ

2
∆φ(tI)/2

2

)
. (33)

To calculate σ2
∆φ(t), we apply equation (10) and integrate:

σ2
∆φ(t) =

(
4

π

∆λzp
h̄

∫ t

t/2

∫ t′

0

f̄x(τ1)

2
e−κ(t′−τ1)/2dτ1dt

′ − 4

π

∆λzp
h̄

∫ t/2

0

∫ t′′

0

f̄x(τ2)

2
e−κ(t′′−τ2)/2dτ2dt

′′

)2

=
16

π2

∆λ2z2
p

h̄2

8D

κ3

(
κt+ 12e−κt/4 + 4e−3κt/4 − 8e−κt/2 − e−κt − 7

)
, (34)

8
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where in the second line, D is the diffusion constant. If we take the limit that κt� 1 and expand

in small κt to the lowest non-zero order (third order in κt) we find that

σ2
∆φ(t) ≈ 16

3π2
κnth∆λ2t3 (35)

such that the average phase induced
√
σ2

∆φ(t) ∼ ∆λt
√
κtnth as predicted above. We can calculate a

maximum allowed ∆λmax,φ such that this phonon-induced decoherence does not limit the fidelity for

a given error rate E (see fig. 3, equation 8 of the main text), by requiring that the error contributed

by the phonon induced decoherence is at most the size of the original error. The maximum allowed

inhomogeneity is then defined to be

∆λmax,φ ∼
( 3π2

16κntht
3
I

ln
1

(1− 2ET )2

)1/2
. (36)

Note that additional measurements and subsequent feedback (through additional electron spin con-

trol or restarting if Sz 6= 0 is likely) can augment this procedure to increase ∆λmax,φ, beyond the

scope of this work.

5.2 Projection into {|10〉 , |01〉} states

When we perform the pulse sequence for time tI and measurements in the presence of an inho-

mogeneity in the coupling strength, there is some information gain about whether |10〉 or |10〉 is

populated, reducing the entanglement fidelity.

Here, we show an optimal reconstruction of spin state after a particular measurement z, calcu-

late the fidelity of the new state with the |Ψ+〉 state, and then average over all measurements z,

weighted by its Gaussian distributions. We then require that the error caused by this effect is less

than the entanglement preparation error E , to define a new ∆λmax,m given by the measurement

and subsequent projection. As we will see in the following, this process critically depends on a

finite measurement uncertainty ∆m 6= 0. Note that this is not in contradiction with the previous

assumption ∆m� κnthtI .

We define state |a〉 ≡ |01〉 and |b〉 ≡ |10〉, and calculate our result using the effective two level

system HDFS ≡ {|a〉 , |b〉}.
Suppose we measure the displacement and obtain value z. The optimal estimates for the popu-

lations of the spin states are

ρa(b) =
Pa(b)

Pa + Pb
, (37)

where Pa(b)(z) is the probability distribution for measurement z given state a(b), a normal distribu-

tion with mean ±δg and variance σ2(tI) as defined in the main text. Since the measurement only

yields information about the population of the spin eigenstates and not the coherences, we assume

that our measurement is projective only along the z axis of HDFS . Thus, after the measurement

with value z, the density matrix will be

ρ(tI |z) =

(
ρa(z) ρab(z)

ρab(z) ρb(z)

)
, (38)

where we approximate the coherence as ρab(z) = e−σ
2
∆φ(t)/2

√
ρa(z)ρb(z), the maximum, real value,

since the state in HDFS begins in |+x〉 and the measurement only weakly projects along the z

axis. The prefactor of the coherence (see previous section) can be interpreted as the information

on the spin state learned by the environment during the pulse sequence. To fully separate these

two processes (information gain by the environment and by the measurement), we formally assume

the back-action of the environment on the mechanical resonator (i.e. it’s diffusion) is known an

can be subtracted from the physical measurement result, such that uncertainty in the difference

9
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measurement ∆m̄ is only given by the uncertainty of the resonator measurements ∆m. For example,

the sequence of figure 2 results in ∆m̄2 ≈ 6∆m2 for three identical measurements. Integrating

equation (10), we obtain the two 〈Sz〉 = 0 displacements δµ ≈ ±2
√

2∆λt/π for ∆m̄2 � σ2(tI) ≈
κnthtI . The fidelity then becomes

F → F ·
(

1

2
+

1

2
e−σ

2
∆φ(t)/2

∫ ∞
−∞

√
Pa(z)Pb(z) dz

)
(39)

= F ·

(
1

2
+
e−σ

2
∆φ(t)/2

2

∫ ∞
−∞

√
e−(z−δµ)2/2∆m̄2e−(z+δµ)2/2∆m̄2

√
2π∆m̄

dz

)
(40)

≈ F ·

(
1− δµ2

4∆m̄2
−
σ2

∆φ(t)

4

)
, (41)

where in the last line we have expanded to lowest non-zero order in δµ and σ2
∆φ(t). The second

(third) term describes the infidelity associated with the measurement (phonon induced decoherence,

treated above). To ensure δµ2

4∆m̄2 � ET , we find the maximum inhomogeneity ∆λmax,m which does

not limit the fidelity is

∆λmax,m ∼
(
π2∆m̄2E

2t2I

)1/2

. (42)

5.3 Change in resonator displacement due to ∆λ

Here, we estimate the effect of the slight displacement of the resonator δµ on the fidelity through

the reduction in the success rate S, and calculate the maximum allowed ∆λmax,disp such that this

effect does not limit the error. With the differential normalized displacement δg ≡ δµ/σ, the true

positive entanglement heralding rate rp as defined in the main text is

rp(δg) =
1

2
− 1

4

(
Erfc

(
αg + δg√

2

)
+ Erfc

(
αg − δg√

2

))
, (43)

with σ ≈ κntht as defined in the main text, and the false positive heralding rate rf is unchanged.

For a minimal change in the error E we require that the change in success rate |δS(α, g, δg)/|� E ,

yielding the condition, by expanding to highest order in δg that

δg2αge−α
2g2/2

2
√

2π (rp0 + rf )2 � E , (44)

where rp0 is the true positive rate when δg = ∆λ = 0. This leads to a condition on the maximum

allowed coupling strength ∆λmax,disp of

∆λmax,disp ∼
πσ(rp0 + rf )

2
√

2tI

(
2
√

2πEeα2g2/2

αg

)1/2

. (45)

5.4 Summary of limits on inhomogenous coupling

We define the maximum allowed inhomogeneity that does not limit the error to be

∆λmax = min(∆λmax,φ,∆λmax,disp,∆λmax,m). (46)

We find that for our parameter regions of interest and in table 1, ∆λmax,φ < ∆λmax,disp,∆λmax,m,

as expected from the assumption that the system is diffusion limite. The maximum inhomogeneity

is on the order of a percent of λ (see table 1 for a list of ∆λmax associated with each example

parameter set). However, for extremely small α, ∆λmax,disp can be small. Note that if ∆λ is

known, the thresholds may be reoptimized to improve ∆λmax,disp. As discussed above, the phonon

induced decoherence σ∆φ(t) can be further improved with additional measurements and feedback.

Furthermore, we note that for a known but finite ∆λ, ∆λmax,m may be improved by optimizing the

measurement uncertainty ∆m.

10
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6 Example parameters

In the table 1, we delineate various parameter sets and their performance under our entanglement

mechanism.

Label 1/Γ Q λ/2π (Hz) T (K) C ∆m2 t∗ (ms) E (%) rp
∆λmax

λ (%)

1 10ms 107 450 4 1.5 24 8.9 49 0.16 1.5

2 1.6s 109 100 4 1206 8 17.5 1.2 0.29 2.3

3 0.6s 109 1000 77 2350 10 2.6 0.48 0.31 0.40

4 10ms 109 400 293 1.6 20 8.2 48 0.15 1.8

5 10ms 109 880 293 8 27 3.1 28 0.18 1.4

6 10ms 1010 2000 293 412 0.06 0.14 1.5 0.28 4.9

Table 1: Example parameters for application of our protocol, for corresponding Bell state prepara-

tion error E at cryogenic temperatures (rows 1 and 2) at liquid nitrogen temperature (row 3), and

room temperature (rows 4-6). The rate rp is the true positive rate, i.e., the inverse of the average

number of repetitions until acceptance. Fifth row: example parameters using values previously

cited in the literature [3, 2, 7, 8, 9]. In all cases, the threshold parameter was α = 0.4, and the

optimal time t∗ is found including measurement uncertainty. For simplicity, the maximum allowed

inhomogeneity ∆λmax/λ is calculated for the corresponding error neglecting the measurement un-

certainty but with the same cooperativity and spin-resonator parameters. Note that in almost all

cases, cooling to the ground state by measurement is not required, i.e. ∆m2 � 1. For these, a

continuous-wave measurement with power .mW (for ωr/2π = 106, zp = 10−14, corresponding to a

high stress SiN beam of length ∼ 100 µm), and a Kalman filter in the steady state [10, 11, 12, 13]

can be employed. The final row assumes a backaction evading measurement [14].

7 Estimating the resonator state with Kalman filters

Estimating the state of the resonator is a key step in the entanglement protocol presented here.

As the resonator follows linear equations of motion, and is subject to a thermal noise bath and a

(spin-state conditional) deterministic force, its state can be estimated with a Kalman filter. This is

an algorithm from optimal control theory that allows for reconstructing the state of a linear system

subject to white noise from a series of measurements with minimal uncertainty.

Here, we employ the framework of a Kalman filter for a realistic estimates of the power re-

quired for the resonator measurements, and analytically derive the expectation value and variance

of the difference between the two measurements M1 and M2 as mentioned in the main text. In

an experimental implementation, a Kalman filter can further be used to address typical deviations

of experimental implementations from the simple analytical model presented here, as well as for

further optimization of the protocol. For example, auxiliary mechanical modes can be included in

the model of the system. Similar to entanglement protocols for trapped ions, spectator modes can

be detrimental for the fidelity of the scheme presented here if they are not accounted for. Employing

a Kalman filter, the state of the spectator modes can be estimated simultaneously, enabling us to

extract the momentum displacement of only the mode of interest. Furthermore, the Kalman filter

can be employed in combination with multiple model adaptive estimation to perform the mechanical

measurements during the pulse sequence, further decreasing the time required to establish entan-

glement between the spin states. As the latter two cases require various unnecessary additional

assumptions and cannot be treated analytically, we focus here on the case of a single mechanical

mode.

Our protocol with Kalman filters consists of the sequence consisting of the following steps:

11
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1. Measure the resonator state (phase and amplitude) using an interferometer. Apply a Kalman

filter to the results to optimally estimate the resonator state M1 with minimal, steady-state

uncertainty ∆m.

2. Execute the spin pulse sequence.

3. Measure the resonator state (phase and amplitude) using an interferometer. Apply a Kalman

filter to the measurement results M2, to optimally estimate the state of the resonator at time

tI , with minimal, steady-state uncertainty ∆m.

4. If the estimated final resonator state is within a threshold about the initial state, continue the

circuit (spin entanglement has been generated with fidelity F). Otherwise, restart.

As illustrated in figure 2(a) of the main text, step (1) localizes the resonator state to some

Gaussian state with uncertainty smaller than the thermal distribution. Step (2) introduces shifts

of the localized resonator state due to the various spin populations. Step (3) records the resonator

state after the interactions with the spins. Step (4) allows for post-selection on entangled states and

collapses the spin state to either a separable or entangled state, with fidelity F . If the resonator

state is approximately unchanged between steps (1) and (3), then the spins are projected into a

Bell state.

Note that we assume the measurement duration is much less than the interaction time tI , such

that the optimal time is accurately represented in the main text. For further description, see sections

7.4.3 and 8 below. Typically, the covariance matrix of a Kalman filter comes close to the steady

state in a time given by the inverse of the smallest frequency gap in the spectrum, in our case 2π/ωr.

7.1 Step 1 - Kalman filter localizes the initial resonator state

Before the measurement, the resonator begins in a thermal state, ρ(0) = ρth at temperature T and

resonator frequency ωr. Let the measurement result value at time t be z(t), which contains the

signal, photon shot noise, and the process noise - fluctuations and drifts from the finite Q factor of

the resonator and its temperature. In this section, we describe the Kalman filter and its results to

localize the resonator state within the thermal distribution. For more information on the filter as

well as the notation employed here, see [11] and [12].

7.1.1 Review of Kalman filters

We denote the classical state vector as X =

(
x

p

)
, and the corresponding estimated state is denoted

M =

(
x̂

p̂

)
. After some measurements, the system (resonator, measurement, and filter) will approach

a steady state, where the information gained by each measurement is equal to the information lost

by the dissipation and noise. The covariance matrix P (t) ≡ 〈(X(t)−M(t))(X(t)−M(t))T〉 at this

steady state is denoted by Pss. The measurement uncertainty ∆m will be equal on both quadratures

and correspond to the diagonal elements of Pss. The state vector undergoes an equation of motion

Ẋ(t) = FX(t) +Gu(t) + Lw(t), (47)

where the evolution matrix F describes the resonator physics relating the two quadratures, G is

the deterministic drive, and L and w(t) describe process (diffusive) noise. The measurements are

described by

z(t) = HX(t) + n(t), (48)

where the row vector H maps the state vector onto the measurement value and n(t) is a Gaussian

noise process corresponding to the measurement (photon shot noise), such that 〈n(t)n(t′)〉 = Rδ(t−
t′) and 〈n(t)〉 = 0. Following [11], let us assume that there is a particular state estimate at
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some point in time t, X′. The covariance matrix of the estimate M at this point in time t is

E[(X − X′)(X − X′)T ] = M . Also, let us assume that we have a set of discrete measurements

z = {z1(t), z2(t), ...} that were performed after time t at which we have the estimate X′, and the

relationship between each z(t) in z and the state X is given by equation (48). The cost function (a

scalar) is the so-called weighted least-squares estimate

J =
1

2

(
(X−X′)TM−1(X−X′) + (z−HX)R−1(z−HX)T

)
. (49)

Optimizing the filter, taking the limit of continuous measurements, and using the notation described

in [11], we obtain the evolution equation for the estimate and the covariance matrix, respectively:

Ẋ(t) = FM(t) +Gu(t) +K(t)[z(t)−HM(t)], (50)

Ṗ (t) = FP (t) + P (t)F T + LQLT − P (t)HTR−1HP (t). (51)

Note that the drive G, u is assumed to be a known, deterministic parameter, such that the covariance

does not depend on G, u. The so-called ‘Kalman gain’ is:

K(t) = P (t)HTR−1. (52)

For the steady state we find

0 = FPss + PssF
T + LQLT − PssHTR−1HPss. (53)

This Lyapunov equation is a system that can be solved analytically for our 2x2 matrices in particular.

Below, we evaluate the steady state matrix Pss in the lab frame, under a rotating wave approximation

(RWA).

7.1.2 Derivation for Pss, ∆m

We can simplify the result for Pss if we allow for measurements to be performed on the resonator’s

momentum. We cannot physically build an experiment to do this directly, as the phase of the

reflected laser beam in the interferometer depends on the resonator position only. However, we can

make an rotating wave approximation, such that waiting for time 1
4

2π
ωr

after measuring the position

is equivalent to measuring the momentum: the momentum and position are highly correlated in

the lab frame, such that they rotate into each other much faster than the diffusion in phase space

described by the finite Q and temperature.

Below, we choose units of momentum such that the x quadrature is scaled by mωr such that

x→ mωrx, with p kept the same. The evolution matrix is:

F =

(
0 ωr
−ωr −κ

)
. (54)

Since we are performing the measurements without the spin pulse sequence on, the drive term

u(t) = 0. We only have a single process noise source here, thermal driving noise, such that w(t) is

a scalar and specifically is equal to ξ(t) as defined above, with the noise spectral matrix Qc equal

to twice the scalar diffusion constant D:

〈w(t)w(t′)〉 = 2kBTκmδ(t− t′). (55)

To describe the Brownian motion process leading to dissipation, we have:

L =

(
0

1

)
. (56)

The matrix H converts the state vector into the equivalent measurement and is

H = (0, 2πR/(mωrλl)) . (57)
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The noise n(t) has properties 〈n(t)〉 = 0 and 〈n(t)n(t′)〉 = Rδ(t− t′), where P is the scattered power

of the laser beam and E is the energy of each photon and the photon flux rate is R = P/E. In this

case, we have for the steady state

0 =

(
0 ωr
−ωr −κ

)(
P11 P12

P12 P22

)
+

(
P11 P12

P12 P22

)(
0 −ωr
ωr −κ

)
+

(
0 0

0 2D

)
−
(
P11 P12

P12 P22

)(
0

2πR/(mωrλl)

)(
0 2πR/(mωrλl)

)(P11 P12

P12 P22

)
1

R
.

(58)

Solving the system of equations we find that, in units of momentum, the measurement variance is

P11 = P22 =

(
h̄λl
z2
p

)2 1

16π2R

−κ+

√
κ2 +

(
2zp
λl

)2

4π2Rκnth

 , (59)

and converting to units of number of excitations

∆m2 =

(
λl

2πzp

)2 1

R

−κ+

√
κ2 + 4Rκnth

(
2πzp
λl

)2
 , (60)

a result consistent with [12]. As expected, the correlations P12, P21 are zero, and the process and

measurement noise symmetrically effect both quadratures.

The quantity in the square root, ∼ nth, is generally much larger than 1 for our parameters (it

is of order ∼ 109). We can therefore expand in its inverse and we find to zeroth order, in units of

phonon excitations, that:

∆m2 ≈ 2

(
λl

2πzp

)√
κnth
R

. (61)

The variance of both quadratures is the resolution of the interferometer in units of the zero point mo-

tion, multiplied by the square root of the net rate of information gain by each photon as decoherence

and information gain compete, namely R/κnth.

7.1.3 A note on quantum backaction noise

To include quantum backaction noise on the resonator from photon shot noise, we have a new steady-

state equation for the covariance, because the measurement and process noise is now correlated.

However, for continuous wave Kalman filtering as described above, and as quoted in table 1, note

that in our parameter regime of interest, ∆m2 � 1, such that we can safely neglect quantum

backaction.

Additionally, as stated in the main text, we can also consider backaction evading measurements,

strong pulses that are timed to act on a particular quadrature, thus broadening the other quadrature,

and carefully time the pulse spacing to induce displacement on the quadrature that does not receive

the quantum backaction noise. See also section 8 for further description and the last row of table 1.

7.2 Step 2 - the spin pulse sequence

Next, the spin pulse sequence begins, which displaces the resonator momentum according to eq.

(10) over time tI .

7.3 Step 3 - measurement after spin pulse sequence

After the spin pulse sequence, another measurement is performed, again for the (short) time required

to reach the steady-state covariance Pss. Suppose the estimate at this time tI isM(tI) and covariance
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given by Pss. At this point, we now have two estimates: M(0) and M(tI). The variance of the final

position estimate is: 〈
ˆ̃x(tI)

2
〉
−
〈

ˆ̃x(tI)
〉2

= ∆m2 + nth
(
1− e−κtI

)
, (62)

since the variance should be given by the sum of two independent Gaussian random variables: the

position x(t) after diffusion as well as the measurement noise ∆m2. 1 By the same argument, the

variance of the final momentum estimate is also〈
ˆ̃p(tI)

2
〉
−
〈

ˆ̃p(tI)
〉2

= ∆m2 + nth
(
1− e−κtI

)
. (63)

7.4 Step 4 - threshold on the 〈Sz〉 = 0 state

Next, we use the two estimates M1 and M2 to threshold appropriately on the 〈Sz〉 = 0 state. To do

so, we consider the difference of the two estimates, accounting for dissipation, one from t = 0 and

one at time tI : ∆M ≡ M2 − e−κtI/2M1, as defined in the main text. Here, we make explicit the

mean values and uncertainties of ∆M .

7.4.1 Mean values of ∆M

In the rotating frame, the position component of 〈∆M〉 is:

〈∆Mx〉 =
〈
x̃(tI)− e−κtI/2x̃(0)

〉
= 0, (64)

and the momentum component 〈∆Mp〉 is

〈∆Mp〉 =
〈
p̃(tI)− e−κtI/2p̃(0)

〉
= −4h̄λSz

κπzp

(
1− e−κtI/2

)
, (65)

as given by the theory of Kalman filters and equation (10) 2.

7.4.2 Covariance of ∆M

The position variance is

〈
∆M2

x

〉
=

〈(
ˆ̃x(tI)− e−κtI/2 ˆ̃x(0)

)2
〉

=
〈

ˆ̃x(tI)
2
〉
− 2e−κtI/2

〈
ˆ̃x(tI)ˆ̃x(0)

〉
+ e−κtI

〈
ˆ̃x(0))2

〉
. (66)

We employ equation (62) to retrieve the first and last term. Since the measurement noise and

diffusion are independent, we have that〈
ˆ̃x(tI)ˆ̃x(0)

〉
=
〈

ˆ̃x(tI)
〉〈

ˆ̃x(0)
〉

= e−κtI/2x̃(0). (67)

The position variance is

〈
∆M2

x

〉
=

〈(
ˆ̃x(tI)− e−κtI/2 ˆ̃x(0)

)2
〉

= ∆m2
(
1 + e−κtI

)
+ nth

(
1− e−κtI

)
≡ σ(tI)

2, (68)

as defined in the main text. A similar calculation shows that the momentum variance is also equal

to σ(tI)
2.

1∆m2 is in the lab frame, but our diffusion description is in the rotating frame. Because the momentum and
position covariances are both equal to ∆m2, they also have covariance ∆m2 in the rotating frame, so our description
is self-consistent.

2By the definition of Kalman filters, we have that 〈ˆ̃x(t)〉 = 〈x̃(t)〉 = e−κt/2x̃(0) = e−κt/2〈ˆ̃x(0)〉, where x̃(0) is the
initial state.
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7.4.3 Minimum pulse sequence duration

Since σ(tI) is a very important quantity in our scheme, we analyze the relative sizes of the two

sources of uncertainty (measurement noise and diffusion). Taking the ratio of the two variances at

small κt, and stipulating that the diffusion dominates the variance (i.e., ∆m2 � κnthtI) we find

that
∆m2

nthκtI
=

λl
πzp

√
κnth
R

1

κnthtI
� 1. (69)

For this quantity to be much less than 1, we arrive at the inequality

tI �
λl
πzp

√
1

κRnth
. (70)

For reasonable parameters, it is possible to have the condition (70) to be satisfied within a typical

interaction time. For example, for resonators with zp ∼ 10−14m and at room temperature, a

resonance frequency of ωr ∼ 1 MHz and quality factor of Q ∼ 107, as well as a 1 mW infrared

scattered beam, we have t � 0.2 ms. However, for smaller nth, higher Q, or short tI , we may

require an optical cavity to enhance the measurement efficiency.

8 Uncertainty of a shot noise limited measurement

In the following we provide an alternative derivation of the measurement uncertainty to provide

some insights into how it depends on the measurement time. We consider a shot noise limited

position measurement, where the imprecision power spectral density (PSD) is

Simp =
1

ηgeoηdet

h̄c

πk

1

P
(71)

where ηgeo is a geometric factor 3, k = 2π/λl is the wavevector, c is the speed of light, P is the

scattered power and ηdet is the detection efficiency. Introducing the rate at which scattered photons

are collected R = ηgeoηdetP/(h̄ck), we can write the above as

Simp =
1

πk2R
(72)

Since the power imprecision PSD is flat, the integrated imprecision over a measurement of duration

τm is simply given by 〈x2〉 = (2π/τm)Simp. Introducing the position uncertainty normalized by the

zero point motion, we find

∆m2
imp =

〈x2〉
2z2
p

=

(
λl

2πzp

)2

[Rτm]−1 . (73)

During the measurement, the position undergoes diffusion due to the interaction with the thermal

environment. This changes the number of excitations by ∆m2
th = κnthτm, where nth = kBT/(h̄ωr)

is the thermal occupation and κ the coupling or damping rate. Hence, the total uncertainty after

time τm is

∆m2
tot = ∆m2

imp + ∆m2
th =

(
λl

2πzp

)2

[Rτm]−1 + κnthτm (74)

The optimal time, that minimizes (74) is given by

τopt
m =

(
λl

2πzp

)
[Rnthκ]−1/2 (75)

3For a dipole measured in back-reflection, this would be ηgeo = 8( 2
5

+A2), with 0.64 ≤ A ≤ 1 and ηdet the detection
efficiency of the setup
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when the imprecision due to diffusion equals the measurement imprecision. Therefore, the total

uncertainty at the optimal measurement time is

∆m2
opt = 2

(
λl

2πzp

)√
κnth

R
(76)

Note that this result agrees with our previous derivation for the Kalman filter (61). This is not

surprising, since the Kalman filter is known to be optimal and allows to extract all the available

information.

With the above, we can now also extend the discussion to the case of a strong measurement,

where the measurement backaction dominates over the thermal diffusion. Unlike thermal diffusion,

which acts symmetrically on the position and momentum quadratures, the measurement backaction

acts only on the position quadrature. Hence, for the momentum quadrature the scaling of the

uncertainty with scattered photons continues to decrease with increasing laser power following (76).

In contrast, for the position quadrature we have to add the backaction term ∝ R to (74). As

a consequence, the uncertainty does not monotonlically decrease with laser power for the positon

qudrature and instead there exist an optimum value given by the Heisenberg uncertainty principle.

9 Scaling with cooperativity

In this section we discuss the details of the scaling of the error with cooperativity.

9.1 Local scaling p(C)

Suppose we write the error as E = E0C
p(C) where p(C) is an exponent that depends on the cooper-

ativity. We quantify the local scaling exponent p(C) for α→ 0 to be

p(C) =
d ln E
d lnC

≈ −π
2

8

(
16C/π2 − 1

)π2/8C
ln
(
16C/π2 − 1

)
C
(

(16C/π2 − 1)π
2/8C − 1

) . (77)

This expression converges to -1 for C →∞.

To derive this, we first define the expression f(A) = (2A−1)1/A. We find that ∀A > 1, f(A) > 1,

as the base exceeds 1. We further find for arbitrarily small ε > 0, ∃A0, such that (2A−1) < (1+ε)A

∀A > A0 and thus f(A) < 1 + ε. Consequently, limA→∞ f(A) = 1+. More specifically, in the

expansion 1/f(A)

1/f(A) = exp

(
− ln (2A− 1)

A

)
≈ 1− ln (2A− 1)

A
for A→∞, (78)

such that limA→∞ 1/f(A) = 1−. Using the substitution A ≡ 8C/π2 and 1/f(A) ≡ y, the limiting

local exponent is

lim
C→∞

p(C) = lim
y→1−

ln(y)

1− y
= −1. (79)

See figure 3 for an illustration for the scaling p(C) for various α threshold parameters and finite C.

9.2 Scaling of error at large C

To show the E ∼ lnC/C scaling, with A, f(A) as defined above, we can express the error of the Bell

state preparation as

E = 1−
(2A− 1)

(
1 + 1

f(A)

)
4A

(80)

=
1

2
− 1

2

1

f(A)
+

1

4A
+

1

4Af(A)
. (81)
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Figure 3: Scaling of the error p(C) ≡ d ln E
d lnC

as a function of cooperativity for various α. The blue

dashed curve is the scaling of the fidelity using the analytic approximation to the optimal time as

defined in the main text.

Inserting the Taylor expansion of the expression in (9.1) into eq. (81), we find the leading order

E =
ln(2A− 1) + 1

2A
+O

(
lnA

A2

)
≈ π2

16

lnC

C
+
π2
(
1 + ln 16

π2

)
16

1

C
for C →∞

of the error of the Bell state preparation.

9.3 Review of deterministic hot gate - scaling of error with C

Previously proposed hot gates [1, 15] require two conditions. One is that the entanglement rate is

faster than the phonon induced spin decoherence

λ2/ωr > (λ/ωr)
2κnth → Q > nth, (82)

and the other is that the entanglement rate is faster than the intrinsic spin decoherence,

λ2/ωr > 1/T2 = Γ. (83)

Combining both of these errors, following [1], we have that the total error is

E ∼ αkκnth/ωr + αTΓωr/λ
2. (84)

As discussed in [1], this is minimized at an optimal resonator frequency ωr,opt, that is a function of

the temperature T and Q factor of the resonator. The pre-factors αk and αT are found numerically

in [1] to be 4 and 0.1, respectively. We assume that λ is independent of the resonator frequency:

the gradient is independent of frequency, and the zero point motion scales as ∼ 1/
√
mωr. When

scaling the resonator frequency of a nanobeam resonator, we generally change the resonator length:

this results in a frequency change of ∼ 1/L and a mass change ∼ L, such that the zero point motion

is also independent of the changing frequency. The optimal frequency as found in [1] is:

ωr,opt = λ

√
κnth

Γ

αk
αT

, (85)

such that the error at the optimal frequency as found in [1] is

E ∼ 1.2/
√
C. (86)
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10 Application: CNOT gate

As discussed in the main text, one application of the entanglement scheme is to use the generated

entangled state between the two spins to teleport a CNOT gate between other nearby, coupled

spins. In this section, we elaborate on other possible sources of error accumulated over the gate

teleportation circuit specific to NV centers.

10.1 Charge state initialization

The charge state initialization error of NV- electronic spins Echarge can be as high as 25% but can

be decreased to 0.5% using real-time feedback without any additional delay [16], and can be further

improved with doping [17, 18] or post-selecting for the negative charge state [19].

10.2 NV-nuclear spin CNOT errors

The two-qubit gate error ECNOT of optimized sequences is expected to be between ∼ 10−5 and

∼ 10−1, depending on the particular values of the NV-nuclear hyperfine coupling and the pulse

sequence [20, 21] while experimentally, error rates of less than 10−2 have been demonstrated in

NV-13C systems [22] at cryogenic temperatures and several percent at room temperature [23, 19].

10.3 Mechanical readout of the NV spin state

As the readout of the spin state does not require to preserve the coherence of the state, it will not

be limited by the spin coherence time 1/Γ but by the spin life time T1 = 1/Γ1. We find that the

expectation value for the displacement in case of a finite spin life-time after a pulse sequence as

described in the main text is applied to spin i for time tRO is

〈µ〉 =
2
√

2λσ
(i)
z

π(κ/2− Γ1)

(
e−Γ1tRO − e−κtRO/2

)
. (87)

For tRO � 1/κ, 1/Γ1, this simplifies to 2
√

2λtROσ
(i)
z /π, as described in the main text. As tRO is

typically very short compared to T1 in order to preserve the nuclear spin coherence, we take the

limit T1 → ∞ for calculating the mechanical readout fidelity. We proceed in close analogy to the

entanglement protocol, i.e. we determine the resonator state, then apply the pulse sequence to spin

i, and we measure the resonator again. A positive (negative) displacement of the resonator indicates

σ
(i)
z = +1 (−1). The fidelity of this assignment can be estimated as FRO = 1 − 1

2Erfc
(
〈µ〉 /

√
2σ
)
.

In the limit of ∆m2 � κnthtRO and tRO � 1/κ, 1/Γ1, we find the associated readout error ERO =
1
2Erfc

(
λ
π

√
4tRO
κnth

)
. This mechanical spin readout can be used for feedback based initialization,

eliminating the need for a spin photon interface for this entanglement protocol. This furthermore

eliminates the need for continuous charge state control.

10.4 Optical readout and initialization of the NV spin state

While implementing a repetitive readout scheme using a second, nearby nuclear spin and a quantum

nondemolition hyperfine coupling [24], the readout error ERO depends on the hyperfine coupling

strengths as well as magnetic field and alignment [25], but has been measured to be as low as

∼ 4 · 10−2 [26, 24], and can approach 5 · 10−3 with machine learning classification [27].

However, optical illumination of the NV induces decoherence on the nuclear spin leading to

significant errors during repetitive readout and optical illumination which can be significant [28].

10.5 Hyperfine interaction

Another contribution to Eint arises from the NV-nuclear spin hyperfine interaction during the pulse

sequence. In a dynamical decoupling sequence, the hyperfine coupling component orthogonal to the

19



May 5, 2021

Figure 4: The success probability S(0, g(tI)full) compared to S(0, g(tI) as given in the main text.

We add 10−9 to all results to avoid numerical errors as the result approaches zero.

bias field A⊥ between the electron and any nearby nucleus can lead to conditional spin rotations. By

using the |±1〉 NV spin states as qubit basis, and choosing a bias field for which the nuclear Lamor

frequency ωL,n strongly exceeds A⊥, A||, the resonances corresponding to conditional spin rotations

of all nuclear spins with the same gyromagnetic ratio (e.g. all 13C atoms) stay closely aligned [29].

By ensuring that ωL,n and ωr are strongly detuned, the unwanted hyperfine interaction can be

minimized. Residual dephasing can be compensated by inverting the nuclear spins at time tI/2.

10.6 Pulse errors and spin flip errors

The UR20 sequence reported in [30] has error ∼ ε10 for 20 pulses, where ε is the single pulse error.

The corresponding error on the nuclear spin can be at most ∼ ε10, corresponding to the case of

maximal entanglement between the electron and nuclear spin, and hence η < 1 as mentioned in

the main text. If we assume ε ∼ 10−3, corresponding to state-of-the-art single qubit gates on NV

centers [31], the contribution of pulse errors to the total error budget are expected to be negligible.

11 Effects of finite κtI

Since we expand g(tI) for small κtI and then insert the result into the equation for the success

probability S given in the main text, we here confirm that the resulting S is the same as if we did

not expand g(tI). We find that the success probability S(0, g(tI)) using the first order expansion of

g as in the main text is the same as the success probability S(0, g(tI)full) without any g expansion,

to a few parts in 105 or below in our region of interest. See figure 4.
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A Table of variables and definitions

Name Description Units

λ spin-phonon coupling 2π Hz

zp resonator zero-point motion m

Sz total spin angular momentum in z none

ωs spin resonance frequency 2π Hz

a(a†) resonator bosonic operators none

ωr resonator frequency 2π Hz

kBT 1/thermodynamic β J

nth thermal occupation number none

K Kalman gain matrix, multiple

λl laser wavelength m

κ resonator bandwidth 2π Hz

Q = ωr/κ resonator Q factor none

D resonator diffusion constant kg2 m2/s3

m resonator mass kg

h̄ Plank’s constant/2π J s

Pss steady-state covariance matrix, multiple

∆m2 variance in momentum (and position) from Pss none

P interferometer scattered laser power W

E energy of an interferometer photon J

R ≡ P/E Scattered photon flux rate 1/s

x(t) resonator state position, lab frame m

p(t) resonator state momentum, lab frame kg m/s

x̃(t) resonator state position, rotating frame m

p̃(t) resonator state momentum, rotating frame kg m/s

x̂(t) estimated position, lab frame kg m/s

p̂(t) estimated momentum, lab frame kg m/s
˜̂x(t) estimated position, rotating frame kg m/s
˜̂p(t) estimated momentum, rotating frame kg m/s
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