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Abstract

We investigate a family of invertible phases of matter with higher-dimensional exotic
excitations in even spacetime dimensions, which includes and generalizes the Kitaev’s
chain in 1+1d. The excitation has Z2 higher-form symmetry that mixes with the space-
time Lorentz symmetry to form a higher group spacetime symmetry. We focus on the
invertible exotic loop topological phase in 3+1d. This invertible phase is protected by
the Z2 one-form symmetry and the time-reversal symmetry, and has surface thermal Hall
conductance not realized in conventional time-reversal symmetric ordinary bosonic sys-
tems without local fermion particles and the exotic loops. We describe a UV realization
of the invertible exotic loop topological order using the SO(3)− gauge theory with unit
discrete theta parameter, which enjoys the same spacetime two-group symmetry. We dis-
cuss several applications including the analogue of “fermionization” for ordinary bosonic
theories with Z2 non-anomalous internal higher-form symmetry and time-reversal sym-
metry.
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1 Introduction

Invertible or short-range entangled phases of matter have a unique ground state with an en-
ergy gap. They are believed to be classified by global symmetry [1–3]. They have important
applications such as topological insulators and topological superconductors, see e.g. [4–8].
They can be characterized by their boundary properties, which realize the global symmetry in
an anomalous way as specified by the invertible phase in the bulk. If the symmetry in invertible
phases is gauged, their effective actions are described by theta terms in gauge theories, which
have important consequences for the dynamics, see e.g. [9,10]. In particular, there is a single
invertible 1+1d fermionic phase protected by fermion parity symmetry. On the boundary, the
phase hosts the famous Majorana zero-mode. [11]
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In this work, we investigate a family of invertible phases in arbitrary even spacetime di-
mensions, which includes the non-trivial phase of the Kitaev’s chain in 1+1d [11,12]. We will
focus on the invertible phase in 3+1d, which we call the “invertible exotic loop topological or-
der (iELTO)”. The theory has a unique loop excitation. When the exotic loops cross each other
i.e. when their open worldsheet intersects in spacetime, the process produces a minus sign
in the correlation function.1 The invertible exotic loop topological order has spacetime two-
group global symmetry that combines the O(4) spacetime Lorentz symmetry, which includes
the time-reversal symmetry, and Z2 one-form symmetry.2 We review some general properties
of higher-group symmetries in Section A. The exotic loop excitation transforms under the Z2
one-form symmetry.3 The spacetime two-group symmetry implies that the exotic loops obey
several properties: for instance, the Lorentz symmetry acts in an anomalous way on the ex-
otic loop. The exotic loop invertible phase in 3+1d has several interesting boundary physics:
(1) the boundary has an anti-semion, which is similar to the dangling Majorana fermion edge
modes in Kitaev’s chain [11,17]. (2) the boundary has a chiral central charge that is different
from conventional time-reversal symmetric ordinary bosonic systems i.e. systems that consist
of boson particles but not exotic loops. The boundary chiral central charge of the exotic loop
invertible phase is indicative of a finite thermal Hall conductance on the boundary. A strict
2+1d time-reversal symmetric system has a vanishing thermal Hall conductance, while a sys-
tem that resides on the boundary of a 3+1d bulk bosonic time-reversal invariant invertible
phase can have thermal Hall conductance that equals an integer multiple of four [18] in units

of
πk2

B T
6~ with T being the temperature. In contrast, the invertible exotic loop topological or-

der phase has a boundary thermal Hall conductance that equals ±1, which distinguishes the
exotic loop phase from ordinary time-reversal symmetric bosonic systems. The thermal Hall
conductance on the boundary is a measurable prediction for the invertible exotic loop phase.

We propose several gauge theory models for the invertible exotic loop phase. The first
is described in terms of a Z2 two-form gauge theory. The second model is the SO(3) gauge
theory with θ = 2π, which also has the two-group spacetime symmetry and the exotic loop
excitation. Moreover, by coupling the gauge theory to matter fields, we find a theory with
exotic loops, describing a plausible deconfined quantum critical point with the spacetime two-
group symmetry which includes the Z2 one-form symmetry and time-reversal symmetry.

The results can be generalized to any even spacetime dimensions. The invertible phase in
2n spacetime dimensions has a Z2 (n−1)-form symmetry that extends the spacetime rotation
group O(2n) to a spacetime n-group symmetry. The theory has a unique excitation, the (n−1)-
dimensional membrane. When the (n−1)-membranes cross i.e. their world history intersect in
spacetime, the process produces a minus sign. The spacetime n-group symmetry implies that
the (n− 1)-dimensional membranes, which are charged under the Z2 (n− 1)-form symmetry,
obey properties similar to the exotic loop in the iELTO phase. When n is even, breaking the
time-reversal symmetry reduces the spacetime n-group symmetry to the direct product of Z2
(n− 1)-form symmetry and ordinary Lorentz symmetry SO(2n), and the invertible phase re-
duces to an invertible phase with Z2 (n−1)-form symmetry. Thus the time-reversal symmetry
is essential to distinguish these invertible phases from other invertible phases discussed in the
literature.

1This is reminiscent of the fermion particle exchange statistics in 1+1d.
2The higher-form symmetries in this work are the relativistic higher-form symmetries [13], where the generators

can be continuously deformed without changing their eigenvalues unless crossing a charged operator. In the
terminology of [14], they are “unfaithful higher-form symmetries”, which means that small deformations of the
symmetry generator do not change its value, in contrast to “faithful higher-form symmetries" where the symmetry
generators supported on different submanifolds are different, such as the higher-form symmetries in the Toric code
lattice model [15].

3This is similar to that the symmetry group for fermionic particles is Spin(d) in d spacetime dimension, which
is the Lorentz symmetry SO(d) extended by the Z2 fermion parity symmetry, see e.g. [16].
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1.1 Organization

The note is organized as follows. In Section 2 we review some properties of ordinary fermionic
phases in 1+1d and an effective Z2 gauge theory description for the Kitaev’s chain. In Section
3 we discuss a phase with exotic loops in 3+1d protected by a spacetime two-group symmetry
that combines Z2 one-form symmetry and time-reversal symmetry. In Section 4 we generalize
the result to higher dimensions. In Section 5 we discuss an application to a generalization of
“fermionizations” procedure. In Section 6 we comment on some future directions.

There are several appendices. In Appendix A we review some properties of higher-group
symmetry. In Appendix B we summarized some mathematical properties of quadratic functions
used to define the gauge theories that describe the invertible fermionic phases. In Appendix
C we give some examples of the partition function for iELTO phase on simple manifolds. In
Appendix D we discussed the continuum description for the invertible exotic loop phase in
3+1d using U(1) two-form gauge theories, when the spacetime is orientable. In Appendix
E we give some example of “fermionizations” using the exotic invertible phases discussed in
Section 3 and 4.

2 Review: invertible fermionic particle topological order in 1+1d

We begin with a review for some properties of the invertible fermionic topological order in
1+1d [11]. We first describe the extension of the Lorentz group by the fermion parity sym-
metry and the corresponding background field in a Lorentz-invariant formulation of invertible
fermionic topological orders. Then, we describe the phase introduced in Ref. [11] using an in-
vertible Z2 gauge theory coupled to the background arising from the extension of the Lorentz
group. In next section, we make the generalization to invertible phases protected by higher
form symmetry and spacetime symmetry, which together form a higher-group.

2.1 Fermion parity symmetry and properties of fermion particles

We will review several implications of the fermion parity symmetry in invertible fermionic
topological orders. These properties will have analogue for the higher-group symmetry dis-
cussed in later sections.

The spacetime symmetry Spin(d) is a group extension of the Lorentz group SO(d) by the
Z2 fermionic parity that transforms fermionic particles4

1→ Z2→ Spin(d)→ SO(d)→ 1 . (1)

The extension is specified by the second Stiefel Whitney class w2 ∈ H2(SO(d),Z2) [19]. This
means that the symmetry actions Rh of h ∈ SO(d) and a ∈ Z2 obeys the following algebra

RhRh′ = aw2(h,h′)Rhh′ , (2)

where aw2(h,h′) with w2(h, h′) = 0,1 acts on bosonic particles (neutral under Z2, a = +1) by
+1 and on fermionic particles (charged under Z2, a = −1) by (−1)w2(h,h′). In other words, the
fermionic particle transforms as a projective representation of SO(d).

The algebraic relation implies that, on a spacetime manfold M , the background ρ1, which
is one-form gauge field, for the Z2 fermion parity symmetry and the background A, another

4In fact, we can also include time-reversal symmetry, then the Lorentz group is replaced by O(d), and the
extension is replaced by Pin±(d). In the invertible fermionic topological order of [12], the symmetry extension is
Pin−(2) for d = 2 spacetime dimension, which corresponds to time-reversal symmetry that squares to 1 instead of
(−1)F .
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one-form gauge field, for the SO(d) symmetry satisfies the relation

dρ1 = w2 , (3)

where the right hand side denotes the pullback of w2 ∈ H2(BSO(d),Z2) to the spacetime
manifold M by the gauge field A : M → BSO(d). Here, remember that a background A for
the SO(d) symmetry on the spacetime manifold M can be viewed as a map from M to the
classifying space BSO(d). Equation (3) implies that the manifold is equipped with a Spin(d)
bundle, with ρ1 plays the role of the spin structure.

In the following we will explore the implications of this relation.
In the presence of background ρ1 for the fermion parity symmetry, the fermionic particle

that transforms under the symmetry is attached to a Wilson line
∫

ρ1 on the world line of the
fermionic particle to be gauge invariant. Then the relation (3) implies that the world line has
an anomaly: under the background gauge transformation w2 → w2 + dλ1, ρ1 → ρ1 + λ1.
Another way to describe the anomaly is using an auxiliary 1+1d bulk (whose boundary is the
worldline) with the effective action

π

∫

Σ

w2(T M) , (4)

which is gauge invariant on closed surfaceΣ, and on an open surface it produces the anomalous
transformation of ρ1. The boundary of Σ carries projective representation of SO(d) described
by w2 [20,21]. As mentioned earlier, a world line of a fermionic particle along a closed loop l
needs to be attached to the Wilson line

∮

l ρ1. Given (3), the Wilson line
∮

l ρ1 can be rewritten
as a Wilson surface operator

∫

Σ
w2(T M) with the surface Σ such that ∂Σ = l. For the world

line of a local fermionic particle, the value of the Wilson surface
∫

Σ
w2(T M) attached to it

is required to be the same for any choice of the surface Σ such that ∂Σ = l, which equiv-
alently requires w2(T M) to belong to the trivial cohomology class in H2(M ,Z2). Note that
this requirement is the same as requiring the spacetime manifold M to be a spin manifold. In
fact, choosing a background ρ1 that satisfies the relation (3) with w2 taken to be the w2(T M)
is equivalent to choosing a spin structure on the spacetime manifold M . The change of the
fermion world line under the transformation w2 → w2 + dλ1, ρ1 → ρ1 + λ1 is exactly the
expected dependence of the fermion world line on the spin structure.5

2.2 Kitaev’s chain as invertible Z2 one-form gauge theory

Consider Z2 gauge theory with action

π

2

∫

qρ1
(b) , (6)

where b is the Z2 one-form gauge field.

5We remark that similar but different phenomena is discussed in [22]. An example is U(1) gauge theory whose
Wilson line describes the world line of a fermionic particles. This means that the particle satisfies the spin/charge
relation i.e. particles with odd U(1) charges are fermions, and the dynamical gauge field is more appropriately
described by a spinc connection a that satisfies6

∫

da
2π
=

1
2

∫

w2(T M) mod 1 . (5)

Then the unit charge Wilson line
∮

γ
a =

∫

Σ
da, which describes a fermion, depends on the surface Σ that bounds

the line by (4): taking two surfaces Σ,Σ′ with the same boundary line produce two operators differed by da
integrating over the closed surface Σ∪Σ′, which is (4) by the condition (5).

5
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The quadratic function q satisfies qρ1
(x + y) = qρ1

(x) + qρ1
(y) + 2x ∪ y mod 4 for Z2 one-

forms x , y; such quadratic functions are labelled by Z2 one-cochain ρ1, which corresponds to
the spin structures. It can also be understood as counting the self intersection of Z2 valued
cycles modulo 4. We summarize some mathematical property of the quadratic function q in
Appendix B.

The theory has a unique ground state on any space manifold and it describes an invertible
topological order. One way to see this is by stacking the theory with its complex conjugation,
whose gauge field denoted by b′: the total action is

π

2

∫

qρ1
(b)−

π

2

∫

qρ1
(b′) =

π

2

∫

qρ1
(b′′) +π

∫

b′′ ∪ b′ , b′′ = b+ b′ , (7)

where b′ acts as a Lagrangian multiplier that forces b′′ = 0, and thus the total theory is trivial.
This shows that the theory (6) is invertible, with the inverse theory given by the complex
conjugated theory described by the gauge field b′. In particular, the theory is gapped with a
unique ground state.

The theory has Z2 0-form symmetry generated by the closed loop
∮

b. Denote the back-
ground of the symmetry by ρ1. Due to the quadratic action of the gauge field, the symmetry
mixes with the spacetime symmetry to form the extension Spin(d) and it can be identified
with the fermion parity symmetry. The background satisfies

dρ1 = w2 , (8)

where w2 is the Z2 two-cocycle that represents the second Stiefel-Whitney class of the mani-
fold.

The 0-form symmetry transforms disorder operator of the one-form gauge field b. It is a
point operator that carries unit holonomy

∮

b = 1. As the 0-form symmetry is the fermion
parity symmetry, the operator is a fermion. Due to the quadratic action of b, it also carries
gauge charge7 and needs to attach to the Wilson line

∫

b. We can express the disorder operator
as

eiφ(p)+i
∫

W b , (10)

where W is a line ending on point p where the disorder operator φ is inserted. For a closed
circle the operator takes value in ±1 depending on whether the fermion particles obey the
anti-periodic or periodic boundary condition, which is the spin structure along the circle as
specified by

∮

ρ1 = 0,1. The property of the quadratic function for the intersection form
implies that when the fermion particles intersect it produces a (−1), in agreement with the
fermion statistics.

The partition function of the theory is given by

Z[ρ1] =
1

|H1(M ,Z2)|1/2
∑

b∈H1(M ,Z2)

e
πi
2

∫

qρ1
(b) , (11)

7For instance, we can take the theory on S2 with the disorder operator inserted at a point on S2, and we take S2

to be infinitely elongated along a direction. This means that when expressing S2 as fibration of S1 over an infinite
interval (−∞,∞) with the disorder operator inserted at +∞, the S1 carries holonomy of the one-form gauge
field b. In other words, b = b′ + Ω where Ω is the volume form on S1 and b′ is in the perpendicular direction.
Then when we take the size of S1 to be small, the system can be described by disorder operator attached to

π

2

∫

S2

qρ1
(b) =

π

2

∫

S2

qρ1
(b′ +Ω) = π

∫

R
(b′ +ρ1) , (9)

where we used qρ1
(b′ +Ω) = qρ1

(b′) + q0(Ω) + 2(ρ1 + b′)∪Ω for S2, and the integration over S1 picks up to the
coefficient of the linear terms for Ω. Thus the disorder operator carries gauge charge and needs to be attached to
a Wilson line.
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which is known as the Arf-Brown-Kervaire invariant in 1+1d [16]. The partition function is
that of the Kitaev’s Majorana chain in the non-trivial phase [11,12]. On a spacetime torus the
partition function can be expressed as

Z[ρ1] = (−1)Arf(ρ1) , (12)

which equals (−1) for the odd spin structure i.e. periodic boundary condition for the fermions
along both circles, and +1 for the even spin structure.

The theory describes the same low energy physics as a massive Majorana fermionψ, where
the fermion parity symmetry maps to the symmetry generated by

∮

b, and schematically the
operators that are transformed under the symmetry map as

“ ψ(p)∼ eiφ(p)+i
∫

W b ” . (13)

3 Invertible exotic loop topological order in 3+1d

In this section we describe the generalization of Kitaev’s chain to 3+1d, called the invertible
exotic loop topological order (iELTO). We will present the phase as a twisted Z2 two-form
gauge theory that is invertible [25], i.e. it is gapped with a unique ground state on any space.
The theory has Z2 one-form symmetry and time-reversal symmetry, which are not a direct
product but instead combine into a spacetime two-group symmetry; as a consequence, the
one-form symmetry is a part of the spacetime symmetry instead of an internal symmetry. Let
us first discuss the property of the symmetry, then we will describe an invertible phase with
spacetime two-group symmetry realized by a Z2 two-form gauge theory. In Section 3.5 we
will investigate the boundary properties that characterize the invertible exotic loop topological
order. Then we will describe a UV model given by SO(3) gauge theory in Section 3.6.

3.1 Global two-group symmetry and its consequences

Let us begin with a discussion of spacetime two-group global symmetry. We give a detailed
introduction in Appendix A. The discussion here applies to any system with the spacetime two-
group symmetry. In Section 3.2 we will introduce a model (34) for the invertible exotic loop
topological order, that describes an invertible phase with spacetime two-group symmetry.

The two-group symmetry extends the O(4) Lorentz symmetry by a Z2 one-form symmetry

1→ Z2→G(2)→ O(4)→ 1 . (14)

The two-group extension is specified by a class in H3(BO(4),Z2) = Z2[w1w2, w3
1, w3]. No-

tice that we start from the O(4) Lorentz symmetry here because we are interested in sys-
tems with time-reversal symmetry. We will discuss the two-group that corresponds to
ω3 = w1w2 ∈ H3(BO(4),Z2). We denote the two-group by

G(2)[w1w2] = Z
(1)
2 ×w1w2

O(4)(0) , (15)

where w1w2 ∈ H3(BO(4),Z2). The associativity of the O(4) spacetime symmetry transforma-
tions is modified,

Rh,h′Rhh′,h′′ = ε
w1(h)w2(h′,h′′)Rh′,h′′Rh,h′h′′ , h, h′, h′′ ∈ O(4) , (16)

where ε denotes the non-trivial element of theZ2 one-form symmetry. Here, Rh,h′ characterizes
the difference between the two operations: (1) two consecutive actions of h′ and h and (2) a

7
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single action of hh′. To be more precise, we should think about the two types of operations
on a segment of a loop charged under the Z(1)2 symmetry. Within the interior of the segment,
there is no difference between the two operations. This difference is characterized by the two
operators Rh,h′ and its conjugate with each acting on each end of the segment. The so-defined
operator Rh,h′ characterizes the cohomology class with the 2-group G(2)[w1w2] via (16).8 As
an example of (−1)w1w2(h,h′,h′′) = −1, if we take h′, h′′ ∈ O(4) such that πh′πh′′ = −πh′h′′ for
a defect carrying spinor projective representation π (it will not be a genuine particle since
it is not a linear representation),9 then w2(h′, h′′) = 1 ∈ {0,1} = Z2. Then for h = T the
time-reversing transform in O(4) , w1(h) = 1, and (−1)w1w2(h,h′,h′′) = −1.

The background gauge fields for the two-group symmetry (15) obey the following relation

dρ2 = w1w2 , (17)

where ρ2 is the background gauge field for the Z2 one-form symmetry, and w1w2 above are
the pullback of w1w2 ∈ H3(BO(4),Z2) by the O(4) background gauge field A : M → BO(4)
to the spacetime manifold M . In the following we will investigate several implications of the
above relation.

3.1.1 Time-reversal symmetry

Let us discuss in more detail the time-reversal symmetry of the theory. Being part of the
spacetime two-group symmetry, the time reversal symmetry will transform ρ2, the background
gauge field of the Z2 one-form symmetry. Let us see how it works. From the relation between
background gauge fields

dρ2 = w1w2 , (18)

the time-reversal symmetry transformation reverses the local orientation on the spacetime by

w1→ w1 + dλ0 , (19)

where λ0 = 0, 1 ∈ Z2, and a nonzero value reverses the orientation. Here, w1 describes the
orientation bundle10. It follows that

ρ2→ ρ2 +λ0w2 , (20)

where we have used dw2 = 0. Plugging in λ0 = 1, it means that ρ2 also shifts by

T : ρ2→ ρ2 +w2 . (21)

Therefore, we conclude that on an orientable manifold (w1 = 0), the time reversal sym-
metry in the two-group is the ordinary time reversal symmetry together with a shift of the
background gauge field ρ2 for the one-form symmetry part of the two-group symmetry by w2.
This additional shift of ρ2 is first studied in [26] as the fractionalization map.

8For a similar discussion in 2+1d SPT phase, see e.g. [20]; here, the boundary of the SPT is the worldsheet of
the string charged under the one-form symmetry, see Section 3.1.2 for more detail.

9SO(4) = (SU(2)× SU(2))/Z2, where the two SU(2)s describe the six rotations on the six planes in R4.
The representations are labelled by ( j1, j2) for SU(2) spin j. Projective spinor representations are those with
j1 − j2 ∈ Z + 1/2. An example is j1 = 1/2, j2 = 0. For instance, we can take h, h′′ to be the π rotation on
the x , y-plane in (t, x , y, z) coordinate, then they compose to a 2π rotation, which acts on the projective spinor
representation as −1.

10The manifold is unorientable if and only if w1 is non-trivial, where a one-cycle is unorientable if and only if w1

has non-trivial holonomy on it. One can roughly think of it as the “gauge field for the time-reversal symmetry”.
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Let us investigate the property of any loop W that is charged under the one-form symmetry
part in the two-group. In the presence of background gauge field ρ2 for the one-form symme-
try, under a background gauge transformation ρ2→ ρ2+ dλ′1 the loop W transforms as (with
parameter given by one-form λ′1)

W →Wei
∮

λ′1 . (22)

Thus W is not invariant, and it needs to be attached to the boundary of a Wilson surface
∫

ρ2
to form a one-form gauge invariant configuration. That is to say the world history of the loop
needs to be stacked with the Wilson surface

∮

ρ2. Since the world history of the loop that
transforms under the one-form symmetry is stacked with

∫

ρ2, the background gauge field for
the one-form symmetry, to be invariant under the one-form transform, the transformation (21)
implies that the world history surface is stacked with additional

∫

w2 under the time-reversal
symmetry. The stacking of an additional

∫

w2 to the world history surface of the loop can be
rephrased as the stacking of an additional world line that carries the spinor representation of
the Lorentz group to the boundary of the world history surface, i.e. the loop itself.

We remark that the loop excitation transforms as a representation of the two-group sym-
metry [27], which includes the time-reversal symmetry. It is also a projective 2-representation
[28] of the Lorentz group (which is a category equipped with a non-associative symmetry ac-
tion), similar to the property that fermion particle transforms as a projective representation of
the Lorentz group.

In the case without time-reversal symmetry, w1 = 0, the equation (17) no longer de-
scribes a non-trivial extension of the spacetime rotation group SO(4) by the Z2 one-form
symmetry. The two-group reduces to the product of a 0-form symmetry and one-form sym-
metry that are unrelated. In this case the two-group SPT phases become the previously
known SPT phases with SO(4) spacetime rotation symmetry and a factorized Z2 one-form
symmetry. In other words, the SPT phase protected by the non-trivial two-group symmetry
G(2)[w1w2] = Z

(1)
2 ×w1w2

O(4)(0) reduce to the SPT phases protected by G(2) = Z(1)2 ×SO(4)(0)

if the time-reversal symmetry is broken explicitly.
In Section 3.4.1 we will show the partition function is invariant under the modified time-

reversal symmetry in the two-group spacetime symmetry.
We remark that since performing a time-reversal transformation on an open worldsheet of

the exotic loop produces additional spinor projective representation of the Lorentz symmetry
on the boundary of the worldsheet, which is a loop in 3+1d. The spinor projective represen-
tation makes the correlation function depend on the framing of the worldsheet. For instance,
performing a 2π rotation on the normal vectors along the boundary of the worldsheet (after
the time-reversal transformation) changes the correlation function by a sign. Thus, the correla-
tion function depends on the normal vectors on the worldsheet.11 Similar framing dependence
of the correlation function of open surfaces on S4 was also discussed in [29].

3.1.2 Lorentz symmetry acts anomalously on exotic loop

The theory describes an invertible phase protected by the two-group symmetry. Recall that in
an ordinary 0-form G SPT phase in 2+1 dimensions, on its boundary, there are excitations on
which the symmetry acts anomalously– with an associator ω3 ∈ H3(BG, U(1)) [20]. Here, in
the invertible phase protected by two-group symmetry (15), there is a similar but more pecu-
liar phenomenon. The O(4) symmetry acts on the loop carrying one-form symmetry charge
anomalously, with the associator (−1)w1w2 ∈ H3(BO(4), U(1)). This can be understood from

11More generally, we can perform the time-reversal transformation on a region of the worldsheet. Then the
boundary of the region on the worldsheet will carry additional spinor projective representation according to Section
3.1.1. As the region is arbitrary, the correlation function depends on the normal vectors on the entire worldsheet,
not just the normal vectors on the boundary.
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the relation between the symmetry actions of the O(4) symmetry and the Z2 one-form symme-
try, given by (16). Since the loop is transformed by a sign under the Z2 one-form symmetry,
the O(4) symmetry action on the loop is not associative, but only up to a sign:

Rh,h′Rhh′,h′′ = −Rh′,h′′Rh,h′h′′ , if w1w2(h, h′, h′′) = 1 . (23)

Alternatively, the anomalous symmetry action on the loop can be understood from the
transformation of the loop in the presence of background gauge fields, which obey the relation
(17). The symmetry action (16) implies that when the 0-form symmetry defect undergoes an
F-move, which can be implemented by a gauge transformation, there is an additional one-form
symmetry defect. We turn on the background gauge fields A for the Lorentz symmetry O(4)
and the ρ2 for Z2 one-form symmetry. Consider a gauge transformation for O(4),

w1→ w1 + dλ0 , w2→ w2 + dλ1 , (24)

with Z2 scalar λ0 and Z2 one-form λ1. Then the relation (17) implies that the gauge field ρ2
also undergoes a gauge transformation,

ρ2→ ρ2 +λ0w2 +w1λ1 +λ0dλ1 . (25)

In other words, the gauge transformations for A and ρ2 are not independent.
In the presence of background gauge field ρ2 for the one-form symmetry, any loops W

that transforms under the one-form symmetry is not by itself invariant under the one-from
transform, and needs to be stacked with the Wilson surface

∫

ρ2 to form a one-form gauge in-
variant configuration. On the other hand,

∫

ρ2 is not invariant under the O(4) transformations
of backgrounds w1, w2, but transforms as in (25). Thus, the world history surface of the loop,
which is stacked with the Wilson surface

∫

ρ2, is not invariant under the O(4) transformations
for backgrounds w1, w2, i.e. the O(4) symmetry acts anomalously on the loop.

The anomaly can also be described by an auxiliary three-dimensional bulk V that bounds
the loop world history (when it is a closed surface), with the effective action

π

∫

V
w1w2(T M)|V , (26)

where w1w2(T M)|V denotes the restriction to V . The effective action is gauge invariant on
closed manifolds, and on manifolds with boundaries the transformation (24) produces the
boundary term π

∫

(λ0w2 +w1λ1 +λ0dλ1) as in (25).
Similar to the discussion in Section 2.1, when we want to construct invertible topological

phases using the exotic loops as the elementary degrees of freedom, we will need to make
sure that the world history surface of the exotic loop does not depends on the choice of the
3d manifold V . This requirement means that we will only focus on the spacetime manifolds
M such that w1w2(T M) belongs to trivial cohomology class in H3(M ,Z2), namely spacetime
manifolds M that admits a v3 Wu structure. A v3 Wu structure, or Wu structure of degree 3, on a
spacetime manifold M is specified by a background ρ2 that satisfies the condition (18) with the
w1w2 term taken to be w1w2(T M)which is known as the third Wu class v3(T M) = w1w2(T M)
of the spacetime manifold. The invertible topological phase that is constructed from the exotic
loop, namely that is protected by the two-group symmetryG(2)[w1w2], has a partition function
that depends on the background ρ2, i.e. the v3 Wu structure.

3.1.3 Consequence of breaking Z2 one-form symmetry

The Z2 one-form symmetry cannot be explicitly broken without also breaking the time-reversal
symmetry, or introducing local fermionic particles to the system. This can be understood using
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the relation between background fields

dρ2 = w1w2 , (27)

which implies that if we were to break the Z2 one-form symmetry, as there is no longer a Z2
one-form symmetry, the system cannot couple to a non-trivial background in a gauge invariant
way, and we are forced to have ρ2 = 0. Then it is not consistent with a nonzero right hand side
unless w1 = 0 or w2 = 0. The latter condition changes the spacetime two-group symmetry:
O(4) symmetry is replaced by SO(4) or Pin+(4) in the two cases, respectively. The former case
w1 = 0 would restrict the gauge field to be that of SO(4) symmetry, and the system would
no longer have time-reversal symmetry. In a system with time-reversal symmetry, one can
consider the twisted boundary condition under time-reversal symmetry along one direction.
In this system, w1 is non-trivial. Thus there is no time-reversal symmetric system where w1 is
always trivial. The other case w2 = 0 restricts the gauge field to be that of Pin+(4) symmetry,
which implies that the system has local fermionic particles with the property the time-reversal
element of Pin+(4) squares to (−1)F where (−1)F is the fermion parity operator of the local
fermion [16].

3.1.4 Symmetry in the renormalization group flow

It often occurs that the symmetry in a microscopic system, such as lattice model, differs from
the symmetry in the low energy physics. Suppose the two-group symmetry is approximate,
and it only emerges in the low energy physics. We will derive a constraint on the symmetry in
the microscopic model for the iELTO phase, similar to the discussion in [21,30,31].

Suppose the microscopic system has 0-form symmetry G(0)UV and one-form symmetry G(1)UV .
They map to the symmetry at low energies by homomorphisms f0, f1,

f0 : G(0)UV → G(0)IR = O(4) , f1 : G(1)UV → G(1)IR = Z2 . (28)

In general, the UV 0-form symmetry and one-form symmetry can also be described by a two-
group, with potentially trivial Postnikov class ωUV

3 ∈ H3(BG(0)UV , G(1)UV ) that describes the G(1)UV -

valued associator of the 0-form symmetry G(0)UV . If we turn on background gauge fields BUV
2 , AUV

for the UV one-form and 0-form symmetries, they satisfy

dBUV
2 = (AUV)∗ωUV

3 , (29)

where star denotes the pullback by the gauge field. Then for the relations (29) and (17) to be
compatible, ωUV

3 is constrained to satisfy

f1ω
UV
3 = f ∗0ω

IR
3 , ωIR

3 = w1w2 . (30)

For instance, if the UV symmetry is a trivial two-group withωUV
3 = 0 (for instance, when there

is no one-form symmetry), then f0 must satisfy f ∗0ω
IR
3 = 0 and it is not the identity map: the

time-reversal symmetry is broken, namely, the UV Lorentz symmetry is only SO(4), or the O(4)
symmetry is extended to be Pin+(4).

3.1.5 Extending the two-group symmetry by fermion parity

Although the iELTO phase does not have local fermion particles and Z2 fermion parity sym-
metry, let us contemplate the situation when we stack the iELTO phase with a fermionic SPT
phase with time-reversal symmetry that satisfies T ′2 = (−1)F and leaves ρ invariant, where
we used different notation T ′ to distinguish this symmetry from the time-reversal symmetry
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T in (21).12 We will show that in such case the spacetime two-group symmetry is extended
by the fermion parity symmetry to be the direct product of internal Z(1)2 one-form symmetry
and Pin+(4) Lorentz symmetry in which the time-reversal satisfies T ′2 = (−1)F :

1→ ZF
2 → Z

(1)
2 × Pin+(4)→G(2)[w1w2]→ 1 . (31)

Conversely, the direct product of an internal Z2 one-form symmetry and Pin+(4) symmetry can
be expressed as the extension of the spacetime two-group symmetry with additional fermion
parity symmetry.

The extension can be understood using their background gauge fields as follows. In the
presence of fermion parity symmetry, we need to consider spin (or pin+ manifold if unori-
entable) instead of general manifolds, where [w2] = 0 ∈ H2(M ,Z2) is exact i.e. w2 = dz for a
Z2 one-cochain z that represents the spin (or pin+) structure. 13. Here, [w2] denotes the coho-
mology class w2 represents in H2(M ,Z2). The two-group background satisfies dρ2 = w1w2.
Then the field redefinition ρ̃2 = ρ2 − w1z with dz = w2 being the spin structure, satisfies
dρ̃2 = 0 and it is the background for the Z2 one-form symmetry that is independent of the
spacetime symmetry Pin+(4).

The symmetry extension Z(1)2 × Pin+(4) contains the following two time-reversal symme-
tries:

1. T ′2 = (−1)F , independent of the one-form symmetry. This is the ordinary time-reversal
symmetry in Pin+(4).

2. Modified time-reversal symmetry T , independent of the fermion parity symmetry gener-
ated by (−1)F . This is the time-reversal symmetry in the spacetime two-group
G(2)[w1w2]. It changes the spin of the loop that transforms under the one-form symme-
try.

The second time-reversal symmetry was discussed in Section 3.1.1. Under the time reversal
transformation,14

∫

Σ

ρ′2 =

∫

Σ

ρ2 +

∮

γ

z , γ= ∂Σ . (32)

Thus after the time-reversal transformation, the exotic loop that is charged under the one-form
symmetry is attached to the Wilson line of the spin structure,

Wγe
πi
∫

Σ
ρ′2 =

�

Wγe
πi
∮

γ
z
�

eπi
∫

Σ
ρ2 . (33)

The spin structure is the gauge field for (−1)F symmetry which transforms spinor representa-
tions. Thus Wγ carries additional spinor representation after the time-reversal transformation,
just as in the discussion of Section 3.1.1.

3.2 Invertible phase as Z2 two-form gauge theory

The model can be described by a Z2 two-form gauge theory with gauge field b. It has the
following action,

S[ρ2] =
π

2

∫

qρ2
(b) , (34)

12For instance, if we consider theories on a spin (or pin+ if unorientable) manifold, the Lorentz group SO(4) (or
O(4)) is extended by ZF

2 fermion parity symmetry (that transforms the spinors by (−1)) to be Spin(4) (Pin+(4)).
The manifold is equipped with a gravitational Wilson line of the spin connection in the spinor representation of
Spin(4) (Pin+(4)), and it is the world line of a decoupled neutral massive fermion particle.

13It is a H1(M ,Z2) torsor.
14For instance, Σ can be a higher-genus Riemann surface with boundary γ.
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where b is a Z2 two-form gauge field b. This gauge theory is defined through a quadratic form
qρ2
(b). We summarize some mathematical properties of the quadratic function q in Appendix

B. The theory is invertible, i.e. gapped with a unique ground state, by a similar argument as
in (7) using the property of the quadratic function q. ρ2 is the background gauge field for
Z2 one-form symmetry, and the subscript 2 indicates it is a 2-form gauge field. To simplify
notation, in this section we will sometimes drop the subscript and write it as ρ. As a property
of the quadratic form in four dimensional spacetime, ρ2 is specified by

dρ2 = v3 = w1w2 ∈ H3(BO(4),Z2) , (35)

where v3 is the third Wu class. As we discussed in Section 3.1, this means that the theory has
a spacetime two-group symmetry. This symmetry implies that the loops, which are charged
under the one-form symmetry part of the two-group, have exotic properties as discussed in
detail in Section 3.1. Equation (35) implies that the manifold is equipped with a two-group
bundle, with ρ2 plays the role of the v3 Wu structure.

The disorder operator, denoted by W , that carries unit flux of the two-form gauge field b,
transforms under the one-form symmetry. The disorder operator W is defined on a closed loop.
Due to the quadratic action, it also carries one-form gauge charge15 and needs to attach to the
Wilson surface eπi

∫

b. Thus we can express the disorder operator as the open Wilson surface
Weπi

∫

b (in the presence of background ρ2 for the one-form symmetry, it needs to be attached
with the Wilson surface eπi

∫

ρ2 to be invariant under the one-form gauge transformation of
ρ2). The world history of the loop is described by a closed surface operator eπi

∮

b, and it is
also the generator of the Z2 one-form symmetry.

The action counts the mod-4 self-intersection number for the loops with world history dual
to b, denoted by b̃:

e
πi
2 (#self-intersection of b̃) = ei π2

∫

qρ2
(b) . (37)

The self-intersection number determined by the quadratic function q needs to be defined by
a regularization and it can be an integer in the above expression.16 Different regulariza-
tions correspond to different ρ. They all give the same mutual intersection number, namely
qρ2
(b+ b′) = qρ2

(b)+qρ2
(b′)+2b∪ b′. In particular, when two loops intersect the action pro-

duce aπ phase. This is a generalization of theπ phase appearing when two fermion worldlines
intersect in the 1+1d Z2 theory (6) describing the Kitaev’s chain invertible fermion topological
order. As the intersection between a surface and an open surface with boundary equals the
linking between the surface and the boundary of the open surface, the π phase intersection
is in agreement with the property that loop, which lives on the boundary its world history,
transforms non-trivially under the one-form symmetry generated by the world history surface

15For instance, we can take the theory on S3 × S1 with the disorder loop W wraps S1 and inserted at a point on
S3, and we take S3 to be infinitely elongated along a direction. This means that when expressing S3 as fibration
of S2 over an infinite interval (−∞,∞) with the disorder operator inserted at +∞, the S2 carries flux of the
two-form gauge field b. In other words, b = b′ +Ω where Ω is the volume form on S2 with

∮

Ω = 1, and b′ is the
two-form gauge field in the perpendicular directions. Then when we take the squashing limit with vanishing size
of S2, the system can be described by disorder operator attached to

π

2

∫

S3×S1

qρ2
(b) =

π

2

∫

S3×S1

qρ2
(b′ +Ω) = π

∫

R×S1

(b′ +ρ2) , (36)

where we used qρ2
(b′ +Ω) = qρ(b′) + q0(Ω) + 2(b′ +ρ2)∪Ω for S3 × S1, and the integral over S2 is nonzero only

when integrated over linear terms of Ω. Thus the disorder operator carries one-form gauge charge and needs to
be attached to a Wilson surface.

16On a manifold with a spin structure, the quadratic function q is an even integer. Odd q (i.e. odd self-intersection
number in (37)) can appear on a manifold without a spin structure. For example, on the complex projective plane
CP2, the complex projective line CP1 ⊂ CP2 has the minimal self-intersection number #(CP1,CP1) = 1 [32].
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eπi
∮

b. We compute the correlation function of the worldsheet of the exotic loop in Section
3.4.2.

3.3 Z8 classification

Let us show that the invertible phase has Z8 classification. Consider four copies of the theory
described by four independent Z2 two-form gauge fields bi , i = 1, 2,3, 4. The action is given
by

4
∑

i=1

π

2
qρ2
(bi) . (38)

By a change of variables

b′1 = b1 , b′2 = b2 + b3 + b4 , b′3 = b3 + b2 , b′4 = b4 + b2 , (39)

the theory is equivalent to
�π

2
qρ2
(b′1)−

π

2
qρ2
(b′2)

�

+π(b′3)2 +π(b′4)2 +πb′3 b′4 . (40)

The first term describes the phase in the trivial class, while the remaining terms can be simpli-
fied using the Wu formula (b′4)2 = b′4(w2+w2

1), and integrating out the Lagrangian multiplier
b′4 results in

πw2
2 +πw4

1 . (41)

It describes the bosonic SPT phase with time-reversal symmetry, whose partition function is
−1 on both RP4 and CP2. In fact, the theory of b′3, b′4 describes the low energy theory of
the three-fermion Walker Wang model, which has boundary state given by the three-fermion
theory, where the fermions are Kramers singlet [18, 23, 33, 34].17 Since two copies of the
bosonic SPT phase with time-reversal symmetry is trivial, we conclude that the classification
of the new phases is Z8, with the fourth class differing from the trivial class by the above
bosonic time-reversal symmetric SPT phase.18

If we take instead two copies of the iELTO, described by

π

2
qρ2
(b1) +

π

2
qρ2
(b2) =

π

2
qρ2
(b′1) +π(b′2)2 +πb′1 b′2 , (42)

where b′1 = b1+ b2, b′2 = b2. Then using the Wu formula (b′2)2 = (w2+w2
1)b
′2 and integrat-

ing out b′2 we find b′1 = w2 + w2
1, and thus two copies of the iELTO phase has the effective

action
π

2
qρ2
(w2 +w2

1) . (43)

Since the quadratic function has order 4, this is also consistent with the Z8 classification.

17One way to understand this is to start from an ordinary 2+1d Z2 gauge theory, which has Z2 × Z2 one-form
symmetry that acts on the bosonic electric and magnetic line e, m, with anomaly described by the SPT phase in
3+1d π

∫

Be ∪ Bm where Be, Bm are the background Z2 two-forms for the one-form symmetry. Then coupling the
theory to Be = Bm = w2 + w2

1 turns the electric and magnetic particles into Kramers singlet fermions, with the
anomaly described by the SPT phase π

∫

(w2 +w2
1)

2 = π
∫

w2
2 +w4

1.
18We remark that a similar reasoning implies that the invertible femrionic topological order of [12] in 1+1d with

fermion parity and time reversal symmetry (that squares to 1 instead of (−1)F ) has Z8 classification, in agreement
with the result in [12,16].
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3.4 Partition functions

In the following we will study the partition function of the model (34) describing the invertible
exotic loop topological order. The theory has partition function

Z iELTO[ρ2] =
1

|H2(M ,Z2)|1/2
∑

b∈H2(M ,Z2)

e
πi
2

∫

qρ2
(b2) . (44)

The partition function on general manifolds is an 8th root of unity, which leads to Z8
classification of the invertible phase. In the special case when the manifold is orientable, the
partition function can be expressed as [13,35,36]

Z iELTO = exp

�

i
96π

∫

Tr R∧ R−
2πi
4

∫

P(ρ2)

�

, (45)

where P(ρ2) is the quadratic function qρ′2(B) with ρ′2 = 0, B = ρ2, and it coincides with
the Pontryagin square operation of ρ2. Note that on an oriented spacetime manifold M , it is
always valid to take the background ρ′2 = 0 in qρ′2(B), since w1(T M) = 0. The second term
has order 4, while the first term has order 8 on general orientable manifolds.19 The first term
can also be written in terms of the signature σ(M) of the manifold M :

exp
�

iπ
σ(M)

4

�

, (46)

where σ(M) = 1
24π2

∫

M Tr R∧ R .

3.4.1 Time-reversal symmetry of partition function

We can also examine the time-reversal symmetry of the following partition function on general
orientable manifolds

Z iELTO[ρ2] = Z iELTO[0]e−
2πi
4

∫

q0(ρ2) , (47)

where q0 is the Pontryagin square operation, and

Z iELTO[0] =
∑

b

e
πi
2

∫

q0(b) = eiπσ(M)4 . (48)

The time-reversal transformation flips the sign of the action and also transforms ρ2 as in
(21) on an orientable manifold. This gives

Z iELTO[ρ2]
′ = Z iELTO[ρ2 +w2]

∗ = Z iELTO[0]∗e
2πi
4

∫

q0(ρ2+w2)

= Z iELTO[0]∗e
2πi
4

∫

q0(w2)e−
2πi
4

∫

q0(ρ2) .
(49)

In the last expression20, the first two terms combine into21

Z iELTO[0]∗e
πi
2

∫

q0(w2) = Z iELTO[0] . (51)

Thus the theory is time-reversal invariant, namely

Z iELTO[ρ2]
′ = Z iELTO[ρ2] . (52)

19On the other hand, spin manifolds cannot detect the first term which becomes trivial, and the second term has
order 2. In fact, on spin manifolds the partition function is real and thus invariant under the ordinary time-reversal
symmetry, see Section 3.1.5 for details.

20To derive the last expression, we have used that q0(ρ2 + w2) = q0(w2) + q0(ρ2) + 2ρ2 ∪ w2 and
ei π2

∫

(q0(ρ2)+2ρ2∪w2) = ei π2
∫

(q0(ρ2)+2ρ2∪ρ2) = e−i π2
∫

q0(ρ2).
21The equality follows from

Z iELTO[0]∗e
2πi
4

∫

q0(w2) =
∑

b

e−
πi
2

∫

q0(b)+πi
∫

b2
=
∑

b

e
πi
2

∫

q0(b) = Z iELTO[0] . (50)

Also note that on a spin manifold, ei π2
∫

ρ0(w2) = 1, and Z iELTO[0] = 1.
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3.4.2 Correlation function

Let us compute the correlation function of a world-history surface
∮

Σ
b on a general man-

ifold. The correlation function on S4 spacetime was also discussed in Section 7 of [29] in
the absence of background ρ2 and without imposing the two-group symmetry. The corre-
lation function is normalized by the partition function without insertions (44). For simplic-
ity, let us begin by computing the correlation function on orientable manifold with vanish-
ing background ρ2. Consider the correlation function of world-history surface of the loop,
W (Σ) = exp

�

πi
∮

Σ
b
�

= exp
�

πi
∫

b ∪δ2(Σ)⊥
�

with delta function two-form δ2(Σ)⊥ that re-
stricts the integral to Σ:

〈W (Σ)〉=
1

|H2(M ,Z2)|Z[0]

∑

b∈H2(M ,Z2)

eiπ
∫

b∪δ2(Σ)⊥ei π2
∫

M q0(b)

=
1

|H2(M ,Z2)|Z[0]

∑

b′∈H2(M ,Z2)

ei π2
∫

M q(b′)e−i π2
∫

M q0(δ2(Σ)⊥) , (53)

where b′ = b+δ2(Σ)⊥, and we have used
q0(b′) − q0(δ2(Σ)⊥) = q0(b + δ2(Σ)⊥) − q0(δ2(Σ)⊥) = q0(b) + 2b ∪ δ2(Σ)⊥. Therefore, the
correlation function equals the self-intersection number of Σ in (37) for ρ2 = 0:

〈W (Σ)〉= e−i π2
∫

M q0(δ2(Σ)⊥) . (54)

In the presence of non-trivial background ρ2, following the similar derivation, the correlation
function becomes

〈W (Σ)〉= e−i π2
∫

M qρ2
(δ2(Σ)⊥) . (55)

We remark that the correlation function depends on the background ρ2. If we change the
background by ρ2 → ρ2 + z for some z ∈ H2(M ,Z2), the correlation function for eiπ

∮

b is
changed by replacing eiπ

∮

b with eiπ
∮

b+z:22

〈eπi
∮

b〉ρ2+z =
1

|H2(M ,Z2)|1/2Z[ρ2 + z]

∑

b

e
πi
2

∫

qρ2+z(b)eπi
∮

b

=
1

|H2(M ,Z2)|1/2Z[ρ2]

∑

b

e
πi
2

∫

qρ2
(b)eπi

∮

b+z = 〈eπi
∮

b+z〉ρ2
, (57)

where in the second equality we redefine b→ b+z, and we normalize the correlation function
by the partition function Z[ρ] without insertions. Therefore, the correlation function of the
world-history of the loop W (Σ) = eiπ

∮

Σ
b depends on the background gauge field ρ2: changing

ρ2 can change the correlation function by ±1.

3.5 Boundary properties of iELTO

The iELTO is protected by both the one-form symmetry and the zero-form spacetime symmetry.
On its boundary, both the one-form symmetry and the time-reversal symmetry are realized
anomalously. In particular, as we will show, the boundary has a particle-like excitation with
anti-semionic self-statistics, and chiral central charge.

These boundary property of iELTO can be derived from the partition function that depends
on the background fields (“symmetry twists”). The partition function is well-defined on a

22We used the identity
qρ2+z(b) = qρ2

(b) + 2bz = qρ2
(b+ z)− qρ2

(z) . (56)
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closed manifold, while on a manifold with boundary the partition function is not invariant but
must be accompanied by some boundary degrees of freedom, which characterizes the bulk
phase by the bulk-boundary correspondence.

3.5.1 Anomalous one-form symmetry on the boundary

The partition of iELTO phase, Z iELTO[ρ2], depends on the background ρ2 for the Z2 one-form
symmetry part of the two-group. Let us fix some ρ2 = ρ?, then a general background ρ2
for the one-form symmetry can be written as ρ2 = ρ? + z with δz = 0 that parametrizes the
background ρ2. The partition function depends on the background for the one-form symmetry
by (B.5):

Z iELTO[ρ? + z] = Z iELTO[ρ?]e
−πi

2

∫

qρ? (z) , (58)

where z ∈ H2(M ,Z2) classifies different background ρ2 by its two-holonomy
∮

z. It is a back-
ground two-form gauge field with the gauge transformation z → z + dλ that leaves the two-
holonomy

∮

z invariant.
In the presence of a boundary, the partition function is not well-defined. In particular, the

second term23 in the effective action

−
πi
2

∫

qρ?(z) (59)

is not gauge invariant under a one-form background gauge transformation z → z + dλ. It
implies that the boundary of iELTO also realizes the one-form symmetry in an anomalous way.
In particular, the charge of the one-form symmetry is not the worldline of a boson, but that of
an anti-semion.

The single anti-semion theory has a Z2 one form symmetry that is anomalous. To see why
the anomaly can be canceled by the bulk, let us take the spacetime manifold to be orientable
for simplicity, then there is a canonical ρ? = 0, and the effective action (59) can be written as

−
∫

1
2π

Y Y , (60)

where we describes the Z2 two-form z as a U(1) background two-form field Y ∼ πz with Z2
holonomy

∮

Y = 0,π mod 2π. The anti-semion theory can be expressed as a U(1)−2 Chern-

Simons theory with U(1) gauge field u. It has Z2 one-form symmetry generated by ei
∮

u which
is the worldline of the anti-semion. The theory coupled to background gauge field Y for the
one-form symmetry as

−
∫

boundary

2
4π

udu+
2

2π
uY , (61)

where
∮

Y = 0,π has Z2 valued holonomy. The one-form symmetry transforms u → u − λ,

Y → Y+dλ, which transforms the Wilson line as ei
∮

u→ ei
∮

ue−i
∮

λ. The action is not invariant
but changes by

∫

boundary

2
4π
λdλ+

2
2π
λY . (62)

This change on the boundary can be compensated by the transformation of the bulk term
(60) [39], which is gauge invariant on a closed manifold but on an open manifold it changes by
the opposite of the boundary term (62) such that the bulk-boundary system is gauge invariant.

23On an orientable manifold, the second term is the same as the effective action of the Z2 one-form symmetry
SPT phase with p = 3 in [37] (or m= 3 in [38]).
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This means that the anomaly on the boundary (61) is cancelled by the bulk (60) so the bulk
system and boundary semion together couple to the background Y consistently i.e. together
have anomaly-free one-form symmetry.

The SPT phase distinguishes the half-braiding of the generator of the one-form symmetry
on the boundary. Although semion and anti-semion have the same mutual braiding, only
anti-semion can realize the required anomaly as discussed above. Indeed, if the sign of (60)
is the opposite, then it can only cancel the anomaly of boundary semion theory instead the
anti-semion theory, but not the other way around.

Another way to see the boundary has an anti-semion is by considering loops ending on the
boundary. The intersection number of the open surfaces in 3+1d equals the linking number
of the bounding loops on the 2+1d boundary. To see this, consider two closed loops γ,γ′ on
the boundary, which we take to be R3, with γ′ being the boundary of some surface Σ′. The
linking number of γ,γ′ on the boundary is

link(γ,γ′) =

∫

3d
δ3d(γ)

⊥δ3d(Σ
′)⊥ , (63)

where δ3d(γ)⊥ is the Poincaré dual of γ on the boundary and it is a delta function two-form
that restricts the integral to γ, and similarly for δ3d(Σ′)⊥. Thus the integral computes the
intersection number of γ,Σ′. Next, we can write it as a bulk integral by introducing bulk
coordinate z,

link(γ,γ′) =

∫

4d
δ3d(γ)

⊥δ3d(Σ
′)⊥δ(z)dz =

∫

4d
δ4d(Σ)

⊥δ4d(Σ
′)⊥ =

∫

4d
δ4d(Σ)

⊥δ4d(Σ
′′)⊥ ,

(64)
where Σ is an open surface in the bulk that intersects the z = 0 boundary by γ, and
δ4d(Σ′)⊥ = δ3d(Σ′)⊥δ(z)dz. Then we can replace Σ′ by another surface Σ′′ that extends in
the bulk and ends on the boundary at locus γ′ without changing the integral, since Ω= Σ′∪Σ′′
is a closed surface, and

∫

4d δ4d(Σ)⊥δ4d(Ω)⊥ = 0 for bulk with trivial topology. The last expres-
sion in (64) equals the intersection number of the surfaces Σ,Σ′′ that bounds the curves γ,γ′

on the boundary. Thus when the world histories of loop intersect in the 3+1d bulk, the loops
braid on the 2+1d boundary. This can also be understood from the following world history
of two loops that intersect once: first, two loops are created from two points in 3+1d, they
then move toward each other until crossing each other and become linked, and remain linked
as they move to the boundary. Since the intersection of loop world history produces a minus
sign, this implies that the braiding of loop in 2+1d also produces a minus sign, and the loop
on the boundary represents a semion or anti-semion. (See Figure 1 for an illustration).

3.5.2 Boundary chiral central charge and thermal Hall property

Let us consider the partition function on orientable manifold,24 and we turn off the background
for the Z2 one-form symmetry. In this fixed background field, the partition function reduces
to [13,35,36]

exp
�

iπ
σ

4

�

= exp

�

i
96π

∫

Tr R∧ R

�

, (65)

where σ is the signature of the manifold. On a manifold with boundary, the term
∫ 1

96πTrR∧R
can be rewritten as a gravitational Chern-Simons term 2CSgrav =

1
96πTr

�

ωdω+ 2
3ω

3
�

with

24Although we study the boundary property using the partition function on orientation manifold i.e. with a
special choice of background gravity geometry, the same physics can in principle be obtained from the partition
function on arbitrary manifolds.
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Figure 1: Slices of the two open surfaces that intersect in 3+1d bulk and end on
the boundary (z = 0) by two linked loops. The slices are taken at different bulk
coordinate z ≥ 0. The loops on the boundary (z = 0) represent creating and anni-
hilating two pairs of particles and braiding two of them in the time evolution. The
intersection point in 3+1d bulk is denoted by the green dot at the slice z = 1.

spin connection ω on the boundary, which implies chiral central charge c = −1 on the bound-
ary. This boundary chiral central charge is indicative of a boundary thermal Hall conduc-
tance. In general, a 3+1d bulk gravitational response gravitational response described by
− c

96π

∫

TrR ∧ R gives rise to a 2+1d boundary gravitational Chern-Simons response with chi-
ral central charge c. In a purely 2+1d system, the relation between the gravitational Chern-
Simons response and the chiral central charge of the 1+1d conformal field theory on the 1+1d
edge of system leads to the relation between the chiral central charge c and the thermal Hall
conductance

κx y = c , (66)

where κx y here is given in unit of π2k2
B T/(3h) = πk2

B T/(6~) with T the temperature [40].25

Here, even though we will mainly focus on a 3+1d system with a gravitational Chern-Simons
response on its boundary, we assume that the relation between κx y and c still holds. Moreover,
the boundary gravitational Chern-Simons response is also related to the contact term in the
stress-tensor two-point function in 2+1d boundary [41].

In an ordinary bosonic SPT state in 3+1d, the time-reversal symmetry forces the chiral

25For instance, a boundary theory in 2+1d is the anti-semion theory, which has chiral central charge (or framing
anomaly) c = −1, and the anti-semion theory can have 1+1d chiral edge boson theory with cL − cR = −1.
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central charge on the boundary to be a multiple of 4 [18], where the time-reversal transfor-
mation produces a boundary E8 state that can be compensated by the transformation of the
bosonic bulk invertible phase with time-reversal symmetry and with effective action π

∫

w2
2.

On the other hand, here we find the boundary of the system without fermionic particles can
have boundary chiral central charge that is an integer not a multiple of 4. This provides an
invariant that distinguishes the exotic loop phase from the usual bosonic SPT phases.

The iELTO phase is time-reversal invariant, yet it has non-vanishing thermal Hall conduc-
tance due the the chiral central charge on the 2d boundary. To probe the chiral central charge
that generates the thermal Hall conductance, which is a gravitational response, let us place the
system on a curved manifold that is orientable. In general, such manifolds can be non-spin.
The time-reversal symmetry is the complex conjugation combining the map (21). The map
(21) transforms the chiral central charge on the 2+1d boundary in the following way. The
boundary of the iELTO has anomalous Z2 one-form symmetry, corresponds to the bulk SPT
phase which on an orientable manifold is given by

−
π

2

∫

P(ρ2) . (67)

Additional background w2 for the one-form symmetry from the shift (21) produces an addi-
tional bulk action26

−
π

2

∫

P(w2) =
1

48π

∫

Tr R∧ R mod 2πZ . (68)

The right hand side of (68) can be written as a gravitational Chern-Simons term on the
boundary, and it contributes additional thermal Hall conductivity ∆κx y = −2 in the unit of
(πkB)2T/3h.27 Then we find the modified time-reversal symmetry transforms the thermal Hall
conductivity κx y by

T : κx y →−κx y − 2 . (69)

Thus the time-reversal invariant value is c = κx y = −1.
Consistently, since the anti-semion on the boundary has chiral central charge c = −1, it is

symmetric under the modified time reversal symmetry. The ordinary time-reversal maps it to
a semion, and after the modified time-reversal (21) the spin shifts by 1/2 and it returns to the
anti-semion, invariant under the time-reversal transformation.

3.5.3 A gapless boundary state with extended symmetry

We will discuss a possible 2+1d boundary state of the iELTO with local fermion particles, which
are transformed under the Z2 fermion parity 0-form symmetry Z(0)2 , generated by (−1)F . As
discussed in Section 3.1.5, the two-group spacetime symmetry is extended on the boundary by
the Z(0)2 fermion parity symmetry to become the direct product of the Z2 one-form symmetry
and the double-covering of Lorentz symmetry that satisfies T ′2 = (−1)F (we used the notation
T ′ to distinguish with the modified time-reversal symmetry T of the iELTO with the action
(21)):

1→ Z(0)2 →G
(2)
boundary = Z

(1)
2 × Pin+(3)→G(2) = Z(1)2 ×w1w2

O(3)→ 1 , (70)

26We used the identity −P(w2) = p1+2(w4
1+w1w3) mod 4, which follows from P(w2) = p1+2(w1Sq1w2+w4)

mod 4 [42,43] and Sq1w2 = w3 +w1w2 mod 2, and the fact that w4
1 +w2

2 +w4, w2
1w2 are trivial mod 2 [32]. The

last two terms that depend on w1 are non-zero only on unorientable manifolds with nonzero w1, so they do not
contribute to the thermal Hall effect and are omitted here. Here, p1 is the first Pontryagin class p1 =

1
24π2 Tr R∧ R

27This is the thermal Hall conductance before adding time-reversal symmetry breaking perturbations such as
in [44].
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where G(2)boundary is the symmetry of the boundary and we note that the 2+1d boundary only
has O(3) subgroup of the O(4) Lorentz symmetry in the 3+1d bulk. We also emphasize that
the Z2 fermion parity 0-form symmetry only acts on the boundary. Hence, the local fermions
only reside on the boundary of the iELTO phase but not the bulk.

A possible gapless boundary state is U(1) gauge theory with a single Dirac fermion of
charge two, together with 7 decoupled neutral massless Dirac fermions. The theory has Z2
one-form symmetry that transforms the Wilson line of U(1) charge one, while the Wilson line
of even charges are screened by the charge-two fermion. The theory also has ordinary time-
reversal symmetry T ′ that satisfies T ′2 = (−1)F . The theory has Z2 fermion parity symmetry
(−1)F that transforms a spin-1/2 local operator given by the monopole operator, which is
dressed with the charge-two fermion field to be gauge-invariant, and the fermion zero modes
make the monopole operator acquire half-integer spin [45,46]. The fermion parity symmetry
also transforms the 7 decoupled massless Dirac fermions.

There are several ways to see the theory can be a boundary state of the iELTO phase. The
Z2 one-form symmetry has the required anomaly for the theory to be a boundary of the iELTO
phase, where the anomaly can be described by the part of the bulk effective action (59) that
depends on the background of the one-form symmetry [46].

Another way to see the theory can be a boundary is using the particle/vortex duality. The
U(1) gauge theory with a single Dirac fermion of charge two has a dual description given by
a free Dirac fermion and a decoupled anti-semion-fermion theory: [46]

U(1)0 + charge-two fermion+ 7 Free Dirac fermions ←→ 8 Free Dirac fermions+ U(1)−2 ,
(71)

where U(1)0 means that the U(1) gauge theory has vanishing Chern-Simons level. The free
Dirac fermions on the right hand side are purely on the boundary. This makes manifest that
the U(1) gauge theory with a single charge-two Dirac fermion can be a boundary theory of the
iELTO phase. Following (71), the dual theory is given by the anti-semion theory stacked with
8 free massless Dirac fermion. More precisely, the presence of the free Dirac fermions imply
that the anti-semion theory should be viewed as the anti-semion-fermion TQFT. From the dual
theory perspective, the boundary theory has the following symmetries

• Z2 one-form symmetry that acts only on the anti-semion.

• Fermion parity symmetry (−1)F that transforms the free fermions.

• O(16) flavor symmetry that rotates the 16 Majorana components of the Dirac fermions.
We will not discuss this symmetry.

• Time reversal symmetry T ′2 = (−1)F which acts on the Dirac fermion as
T ′Ψ(t) = γ0Ψ(−t)∗. It also acts on the anti-semion-fermion theory. It is part of the
Pin+(3) symmetry.

• Modified time reversal symmetry T total,

T totalΨ(t) = T ′Ψ(t) = γ0Ψ(−t)∗ , (72)

T total(anti-semion) = T (anti-semion) . (73)

There is no mixed anomaly between the fermion parity symmetry and the modified time-
reversal symmetry, and this ensures the fermion parity symmetry does not act in the bulk.
In fact, the 16 free Majorana fermions can be removed by a deformation on the boundary
that preserves both the modified time-reversal symmetry and fermion parity symmetry. Then
after the boundary deformation, the boundary theory becomes the trivial fermionic SPT phase
stacked with the anti-semion theory; it is thus manifestly a boundary state of the iELTO phase.
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These symmetries have counterparts on the other side of the duality i.e. U(1) gauge theory
with charge-two fermion, together with 7 free Dirac fermions.

• Z2 one-form symmetry that acts on the U(1) Wilson lines of odd charges.

• O(14) flavor symmetry that transforms the 14 Majorana components of the 7 free Dirac
fermions.

• O(2) = U(1) o Z2 symmetry that combines the U(1) magnetic symmetry and the Z2
charge conjugation symmetry. The O(2)×O(14) symmetry is enhanced to O(16) sym-
metry at low energy according to the duality.

• Time-reversal symmetry T̃ ′2 = (−1)F

T̃ ′Ψ̃q=2(t) = γ
0Ψ̃q=2(−t) , T̃ ′Ψ̃ I

q=0(t) = γ
0Ψ̃ I

q=0(−t)∗ , (74)

where the subscript q = 2, q = 0 denote the charge two fermion and the neutral free
Dirac fermions, with I = 1, 2, · · · , 7.

• The gauge theory description also has modified time-reversal symmetry.

Bosonic boundary from gauging fermion parity symmetry Another boundary, which does
not have the fermion parity symmetry, can be obtained by gauging the fermion parity symme-
try in the previous boundary theory. The new boundary theory is given by U(1)× Z2 gauge
theory without Chern-Simons term, where one massless Dirac fermion has charge (2,1) under
the U(1)× Z2 gauge group and the other 7 massless Dirac fermions have charge (0,1). The
basic monopole operator for the U(1) gauge field, which is a fermion, now attaches to the Z2
Wilson line for the operator to be gauge invariant, and thus it is no longer a local operator. The
monopole operator of magnetic charge two, which is a boson, remains a gauge-invariant local
operator. At low energies, the theory flows according to the duality (71) to the tensor product
of the U(1)−2 anti-semion TQFT and the Z2 gauge theory without Chern-Simons term [47]
coupled to 16 massless Majorana fermions. The latter sector can be gapped out while preserv-
ing the time-reversal symmetry, resulting in a Z2 gauge theory with Kramers singlet bosonic
magnetic particle and it is free of time-reversal symmetry anomaly. The one-form symmetry
of the two-group only acts on the anti-semion TQFT, and thus the Z2 gauge theory sector does
not contribute to the anomaly of the two-group symmetry and can be gapped out, for example,
by condensing the magnetic particle of the Z2 gauge theory.

3.6 Microscopic model: SO(3)− gauge theory

In this section we will describe a gauge theory in 3+1d that has the spacetime two-group
symmetry, and at low energy it flows to the invertible exotic loop topological order. It is the
SO(3)− theory with θ = 0 in the notation of [48], where the subscript − indicates that it has a
non-trivial discrete theta parameter (given by (75) with p = 1). The theory is also equivalent
to SO(3)+ theory with θ = 2π, where the subscript + indicates that it has zero discrete theta
parameter.28 This UV model on a spin manifold gives essentially the same physics as the
combination of the Z2 one-form symmetry SPT phase that belongs to the class m = 3 in the
Z4 classification [37, 38] (whose partition function is given by (E.1)) and the ν = 2 class
DIII topological superconductor discussed in Subsection 3.7. The difference is that the model

28On spin manifolds, the discrete theta angle has the identification p ∼ p+2, and thus the discrete theta angles
reduce to only two possible values as discussed in [48]. Here, we consider the theory on general non-spin manifolds
and distinguish four different discrete theta angles p = 0, 1,2, 3 mod 4.
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described by the SO(3)− gauge theory is well-defined on both spin and non-spin manifolds.
So in this subsection, we will focus on the model on a non-spin manifold.

The discrete theta parameter can be described as follows. The SO(3) gauge theory can
be obtained from SU(2) gauge theory by gauging the center electric Z2 one-form symmetry.
Denote the two-form gauge field by b, which can be identified with the second Stiefel-Whitney
class of the SO(3) gauge field. The SO(3) gauge theory has additional discrete theta term:

p
π

2

∫

qρ2
(b) . (75)

Thus the theory has the following action in the Euclidean signature:
∫

−
1

2g2
YM

Tr FµνFµν +
iθ

32π2
εµνλρTr FµνFλρ + ip

π

2
qρ2
(b) , (76)

for SO(3) field strength F , and the second Stiefel-Whitney class of the SO(3) bundle is b. The
SO(3) gauge theory with p = 0 is denoted as SO(3)+ and the SO(3) gauge theory theory with
p = 1 is denoted as SO(3)−. For the SO(3)− theory on a oriented manifold, we can rewrite the
discrete theta terms as π2

∫

P(b)+π
∫

ρ2∪ b which indicates that ρ2 can be understood as the

background of the magnetic Z2 one-form symmetry generated by ei
∮

b in the SO(3)− gauge
theory. As shown later, the SO(3)− theory in fact has the Z(1)2 ×w1w2

O(4) two-group symmetry.
Hence, the background field ρ2 should be more generally viewed as the Wu structure of degree
three, which enables us to define the theory on general unorientable spacetime.

SO(3) or SU(2) gauge theory has line operators (qe, qm) labeled by the weight qe and
coweight qm of su(2), which represent the electric and magnetic (GNO) charge which are all
integers [49]. The lattice of line operators depend on the gauge group and the discrete theta
parameter p as discussed in [48, 50]. The magnetic Z2 one-form symmetry acts on the lines
with odd qm. The lines (qe, qm), (q′e, q′m) have mutual statistical Berry phase ei(qeq′m−qmq′e)Ω/4,
where Ω is the solid angle subtended by the trajectory of one particle at a fixed distance with
the other particle placed at the origin, which is equivalent to the Berry phase for a particle in
a constant-magnitude electric and magnetic fields pointing in varying radial directions. Note
that (qeq

′
m−qmq′e)/4 is also the angular momentum stored in the gauge field [51] in unit of ~.

The self-statistics of the spectrum (qe, qm) for the SO(3) gauge theory with θ = 0 and discrete
theta parameter p is

h(qe, qm) =
qm(qe − pqm)

4
. (77)

Based on Ref. [50], the genuine line operators of the SO(3)+ and the SO(3)− theories (both
with θ = 0) are marked as the green dots shown in Figure 2. The letters “b” and “ f ” indicates
the bosonic and fermionic statistics of the corresponding line.

3.6.1 Low energy excitations in SO(3)± theories

Consider the basic electric line E with charge (1,0) and the basic ’t Hooft line M with charge
(0, 1). The electric line transforms under the center one-form symmetry in SU(2) gauge theory,
and the symmetry is gauged in the SO(3) gauge theory with two-form gauge field b. Thus the
electric line is not gauge invariant, the gauge invariant combination is

Eeπi
∫

Σ
b , (78)

where the line is supported on the boundary of the surface Σ. Thus the electric line (q, 0) with
odd q is not a genuine line operator in the SO(3) gauge theory. The basic magnetic line M
with charge (0,1) carries unit flux of

∮

b. In the theory with discrete theta parameter p, M is
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qm
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f fb

f fb
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qeb b

f

f

b

b

(a) (b)

Figure 2: The genuine line operators of the SO(3)+ and the SO(3)− theories (both
with θ = 0) are marked as the green dots in the integer lattice (qe, qm). The letters
“b” and “ f ” indicates the bosonic and fermionic statistics of the corresponding line.

also not invariant under the gauged one-form center symmetry if p is odd, and it needs to be
attached with a Wilson surface

Mepπi
∫

Σ
b , (79)

where the line is supported on the boundary of the surface Σ. Therefore, in the theory with
even p, the electric line (78) is not a genuine line, since it depends on the surface by eπi

∫

b,
but the magnetic line (79) is a genuine line. The dyon, given by their fusion, is also not
a genuine line. In the theory with odd p, both the electric line (78) and the magnetic line
(79) are not genuine lines, but the dyon, given by their fusion, is a genuine line, since the
surface dependence cancels eπi

∫

bepπi
∫

b = 1 for odd p. This reproduces the spectrum in
SO(3) gauge theory with discrete theta angle p [48, 50]. Again, the spectrum for discrete
theta angle p = 0,1 is shown in Figure 2. In the following we will discuss the low energy
behavior of the microscopic spectrum in the SO(3) gauge theory.

Genuine line operators For the SO(3)+ theory with p = 0 (and θ = 0), in the phase where
the magnetic monopole (0,2) condenses, the monopole (0,±1) is deconfined. The low-energy
physics describes the Z2 gauge theory. In contrast, in the SO(3)− theory with p = 1 (and
θ = 0), there is no deconfined particles after the condensation of the magnetic monopole
(0, 2). The low-energy physics describes the iELTO phase. The line operators of the confined
dyons (±1,±1) are charged under the one-form symmetry associated with the background ρ2.
Two of these dyons are bosons while the other two are fermions. They are pairwise related
by time-reversal symmetry: {(−1,1), (1,1)} and {(1,−1), (−1,−1)}, with each pair contains a
boson and a fermion. 29 In fact, the theory with the p = 1 lattice has the spacetime two-group
symmetry, while the theory with p = 0 lattice has the ordinary time-reversal symmetry.30

Non-genuine line operators In the theory SO(3)+ with p = 0 and θ = 0, the boundary of
the open surface Σ of the surface operator eiπ

∫

Σ
b can be the (n, 0) operator with any odd n,

which is indeed not a genuine line on the p = 0 lattice. In the theory SO(3)− with p = 1
and θ = 0, the intersection of surfaces

∫

b produces a minus sign. Thus the boundary of the
open surface carries magnetic charge, and the only such non-genuine line operators are (0, n)
for any odd n. Note the dyons (n, m) for even n+m, i.e. for n, m both even or both odd, are
genuine lines in the SO(3)− theory [48]. If we view the SO(3)− theory as the SO(3)+ theory at
θ = 2π, the dyons in SO(3)− can be obtained, by increasing θ = 0 to θ = 2π, from the lines in

29We will focus on the vacuum where the monopole (0, 2) condenses. We can also study the phase when the
dyon (2, 2) condense. The monopole (0, 1) on the p = 0 lattice confines, while the dyon (±1,±1) on p = 1 lattice
is deconfined.

30This is consistent with the low energy Z2 gauge theory for p = 0 has ordinary time-reversal symmetry and not
the two-group spacetime symmetry.
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SO(3)+ at θ = 0 that have even electric charges. On the other hand, the pure magnetic lines
(0, n) in SO(3)− with odd n are obtained from the dyon lines (−1, n), which are not genuine
lines in the SO(3)+ theory with θ = 0. These lines are attached to the surface

∫

b as they
carry odd electric charges. The lines that attached to surfaces in PSU(N) gauge theory with
discrete theta parameter are also discussed in [37].

Phase transition at θ = π We remark that as we tune θ in SO(3)+ gauge theory between
θ = 0 and θ = 2π, the theory interpolates between the p = 0 theory with low energy Z2
gauge theory, and the p = 1 theory, namely the SO(3)− theory, with low energy iELTO phase.
There must be a phase transition in between the two phases, which is proposed to occur at
θ = π [52].

3.6.2 Time-reversal symmetry

Under the ordinary time-reversal transformation, the line operator (qe, qm) in SO(3) gauge
theory with θ = 2π (or SO(3)− in this paper) is mapped to (−qe, qm) in SO(3) gauge theory
with θ = −2π, since the electric field F a

0i flips sign while the magnetic field F a
i j stays invariant.

In particular, the ordinary time-reversal symmetry transforms the bosonic dyon (1, 1) to the
bosonic dyon (−1,1), while the dyon (−1, 1) in the SO(3)− is a fermion. Thus the theory is
not invariant under the ordinary time-reversal symmetry.

Another way to see the ordinary time-reversal transform is not a symmetry is as follows.
The ordinary time-reversal transformation flips the sign of the theta term, changing θ = 2π
into θ = −2π. They differ by a theta term with θ = 4π. Such theta term θ = 4π is non-trivial,
and thus the theory is not invariant under the ordinary time-reversal symmetry. To see the
theta term θ = 4π is a non-trivial topological term, we can compare the operator spectrum in
the theories with θ = 4π and θ = 0. The statistics of the particle with odd magnetic charge
differ by spin 1/2. To understand this effect, we note that in the presence of magnetic flux m,
an electric charge q (in the unit of the minimal electric charge in the theory) has canonical
angular momentum shifted by qm/2 [53]. The pure monopole (0, 1) at θ = 4π comes from a
dyon at θ = 0 due to the Witten effect [51], and the dyon (−2,1) at θ = 0 is a fermion due
to the shifted angular momentum, and thus the monopole at θ = 4π is also a fermion [54],
while the monopole (0,1) at θ = 0 is a boson.31

However, as we will see, the theory has a modified time-reversal symmetry where (qe, qm)
and (−qe, qm) transform into one another. In particular, the bosonic dyon (1, 1) and the
fermionic dyon (−1,1) form a doublet under the modified time reversal symmetry.

Modified time-reversal symmetry The ordinary time-reversal changes θ = 2π to θ = −2π
(or equivalently, p = 1 to p = −1). The difference is

π

2

∫

qρ2
(b)−

�

−
π

2

∫

qρ2
(b)

�

= π

∫

b∪b = π

∫

b∪w2 =
π

2

∫

qρ2+w2
(b)−

π

2

∫

qρ2
(b) . (80)

The operator
∮

b generates the magnetic one-form symmetry that transforms the line opera-
tors that create the magnetic charges. The background for the one-form symmetry is ρ2. By
comparing (80) and (75), we find that the time-reversal symmetry in addition to performing
the ordinary time-reversal transformation that brings θ = 2π to θ = −2π, must also act on

31Another way to understand this is noting that the theta term θ = 4π on a manifold with boundary gives rise
to SO(3)1 = SU(2)2/Z2 Chern-Simons term, which has a magnetic monopole that carries an electric charge due
to the Chern-Simons interaction and becomes a fermion by the same statistics shift em/2. This monopole comes
from the bulk monopole, so the bulk monopole is also a fermion.
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the background field ρ2 to compensate the difference θ = 4π:

Modified time-reversal T : ρ2→ ρ2 +w2 . (81)

This additional transform also has the effect of changing the spin of the particles for the lines
carrying odd magnetic charge by 1/2. The modified time-reversal symmetry indicates that
the UV SO(3)− gauge theory (or SO(3) gauge theory with θ = 2π) has the same spacetime
two-group symmetry as that of the iELTO phase.32 In fact, we will argue that the low energy
physics of the SO(3) gauge theory with the discrete theta parameter p = 1 is the iELTO phase.

3.6.3 iELTO phase

At low energy when the SU(2) or SO(3) gauge field dynamics confines, the SO(3)− theory is
described purely by the two-form Z2 gauge theory with the action (34), which also describes
the iELTO phase as discussed in Section 3. Thus the SO(3)− provides a microscopic description
of the iELTO phase that has time-reversal symmetry. The basic ’t Hooft line (0, 1), which is a
non-genuine line in the UV, when terminates on the 2+ 1d boundary, carries an antisemion,
with self-statistics h(0,1) = −1

4 according to (77). Thus the (0, 1) line is the loop in the iELTO
phase at low energy.33

3.6.4 A phase transition with spacetime two-group symmetry

In this section we discuss a theory describing a quantum phase transition in 3+1d with the
spacetime two-group symmetry, and it has a trivial symmetric phase and the iELTO phase,
similar to the theory of massless Majorana fermion in 1+1d that has the trivial symmetric
phase and the Kitaev’s chain invertible fermionic phase.

Consider SO(3) gauge theory with θ = 2π and two scalars in the vector representation,
and the scalars have a quartic potential,

1
4π

Tr (F ∧ F) +
1

2g2
Tr (F ∧ ?F) +

∑

i=1,2

(Daφ
i)2

−M2
i (φ

i)2 −λi(φ
i)4 −λ12(φ

1)2(φ2)2 −λ′(φ1 ·φ2)2 , (82)

where a is the SO(3) gauge field with field strength F , and φ i with i = 1, 2 are two real
scalars in the vector representation. We will take the couplings λi ,λ12,λ′ > 0, with λ12 small
compared with λi ,λ

′.
The theory has Z2 magnetic one-form symmetry (denoted as Z(1)2 in Figure 3) and time-

reversal symmetry T that combine into the spacetime two-group symmetry, as in the pure
SO(3) gauge theory with θ = 2π discussed previously. The scalars φ i=1,2 are neutral under
these symmetries. We also impose a Z2 flavor symmetry that exchanges the two scalars, which
constrains M1 = M2 = M and λ1 = λ2 = λ.

The theory has a relevant operator given by the mass term M2
∑

i(φ
i)2. Under the defor-

mation by such operator, the theory has the following phases:

• M2 < 0: the scalarsφ1,2 both condense with their vacuum expectation values orthogonal
to each other due to λ′. Hence, the gauge group SO(3) is completely Higgsed, at low
energy leading to a trivial symmetric phase.

32On the other hand, both the SU(2) gauge theory with θ = 2π and the SO(3) gauge theory with θ = 0
(i.e. SO(3)+) are invariant under the ordinary time-reversal, (their weight lattices are symmetric under
(qe, qm)→ (−qe, qm),) and thus they break the modified time reversal symmetry.

33We note that at low energy the particle excitations are confined due to monopole condensation, and they do
not appear in the low energy description.
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trivial symmetric phase Kitaev’s chain SPT phase 

trivial symmetric phase iELTO

fermion mass Symmetry:        (embedded in              ) 

Symmetry:         and        (embedded in                          ) 

Figure 3: The upper diagram describes the phase transition of massless Majorana
fermion in 1+1d with the fermion parity symmetry Z(0)2 embedded in the full space-
time Spin(2) symmetry. This phase transition separates the trivial phase and the
Kitaev’s chain invertible fermionic phase. The free Majorana fermion in 1+1d is
also dual to the Z2 gauge theory with the discrete theta angle (6), and the gauge
field couples to a real scalar that has a quartic potential (for a review, see e.g. (2.9)
of [55], where the Z2 gauge field is dentoed by s, and the discrete theta angle is
denoted by π

2

∫

qρ(s) = π
∫

Arf(s · ρ) + Arf(ρ) with spin structure ρ), which is the
1+1d analogue of the action (82). The mass square of the real scalar is identified
with the fermion mass m with appropriate sign. The lower diagram describes the
phase transition with exotic loops, which has Z(1)2 one-form symmetry and the (mod-
ified) time-reversal symmetry T that are both embedded in the spacetime two-group
symmetry Z(1)2 ×w1w2

O(4)). The two sides of the phase transition are given by the
trivial phase and the iELTO phase respectively. A proposed theory of this transition
is given in (82). In both phase diagrams, the symmetry is unbroken on both sides of
the phase transition, and thus the symmetry is also unbroken at the phase transition.

• M2 > 0: the scalars do not condense, and at low energy the theory becomes pure SO(3)
gauge theory with θ = 2π, which describes the iELTO phase.

Both sides of the phase transition are in the confined phase with a symmetric vacuum and
unbroken one-form symmetry, so the symmetry is also unbroken at the transition. Moreover,
since the two sides are different SPT phases for Z2 one-form symmetry, the phase transition
must contain deconfined excitations to account for the difference. It is thus a plausible decon-
fined quantum critical point with the spacetime two-group symmetry. The phase diagram of
the theory is sketched in the lower part of Figure 3.

If we do not impose the Z2 symmetry that exchanges the two scalars, we can turn on a
negative mass square for one of the two scalars, while the other scalar remains massless. Then
the theory flows to the U(1) gauge theory with θ = π coupled to a scalar of charge one. The
theory also has two-group spacetime symmetry, where the magnetic one-form symmetry is
enhanced from Z2 to U(1).34 If furthermore the remaining scalar has positive mass square,
then the theory flows to the free U(1) gauge theory with θ = π, which has emergent U(1)
electric and magnetic one-form symmetries, both are spontaneously broken. Alternatively,
we can also turn on a positive mass square for one of the two scalars, while the other scalar
remains massless, then the theory flows to SO(3) gauge theory with θ = 2π coupled to a scalar
in the vector representation. The theory also has the spacetime two-group symmetry.

34The background B for the U(1) magnetic one-form symmetry satisfies

dB = πw1w2 mod 2πZ . (83)
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3.7 Comparison with other topological phases

Table 1: Comparisons of different phases and their boundary properties. The thermal
Hall conductance κx y is given in the unit of π2k2

B T/(3h)where T is the temperature.
We also include examples of possible surface theories for the bulk SPT phases. The
time-reversal T and one-form symmetry Z(1)2 in the iELTO row are embedded in the

two-group symmetry Z(1)2 ×w1w2
O(4)(0), while the time-reversal symmetry ZT

2 and
fermion parity 0-form symmetry ZF

2 in the middle three rows satisfy T ′2 = (−1)F

with T ′ the generator of the time-reversal symmetry. We remark that the expression
of the effective action for the iELTO phase is valid only on orientable manifold, and in
particular on closed manifold the gravitational part becomes trivial, just as the grav-
itational part of the effective action for topological superconductor with even ν on
spin manifolds. Thus we cannot make comparison between the iELTO and the topo-
logical superconductor using the gravitational part in the above effective actions. In
the last row, B is the background for the Z2 one-form symmetry. P is the Pontraygin
square operation. The boundary theory of the m = 3 Z(1)2 SPT phase should break
the ordinary time reversal symmetry and should at least include an anti-semion to
account for the anomaly of the one-form symmetry. A double-semion boundary the-
ory (with broken time-reversal symmetry) is constructed in [38] for the m = 3 Z(1)2
SPT phase. In the last column from the left, the particles in SO(3)3 = SU(2)6/Z2
topological order can be labelled by the SU(2) isospin j = 0, 1,2, 3 with topological
spins 0, 1

4 , 3
4 , 1

2 mod 1, denoted by 1, s, s̃, f . The notation s stands for semions, while
s̃, s̄′ stands for anti-semions, and f denotes the local fermion. Note that here we refer
to some of these particles as semions and anti-semions purely based on their topo-
logical spins 1

4 and 3
4 . However, the semion s and anti-semion s̃ in the SO(3)3 TQFT

are non-Abelian anyons while the semions s in the semion TO and the anti-semion s̄′

in the anti-semion TO are Abelian anyons.

Bulk Phase Symmetry Effective action Class Boundary theories

iELTO Z(1)2 ×w1w2
O(4)(0)

1
96π

∫

Tr R∧ R
−π2

∫

P(ρ2)
Z8

anti-semion
(time-reversal invariant)

ν= 1 TSC ZF
2 ,ZT

2
1/4
96π

∫

Tr R∧ R Z16

Bdy I: gapless, κx y =
1
4 [44,56]

Bdy II: SO(3)3 × U(1)−2 TO
= {1, s, s̃, f } × {1, s̄′}

ν= 2 TSC ZF
2 ,ZT

2
1/2
96π

∫

Tr R∧ R Z8 ⊂ Z16

Bdy I: gapless, κx y =
1
2

Bdy II: semion-fermion TO
={1, s} ⊗ {1, f }

ν= 3 TSC ZF
2 ,ZT

2
3/4
96π

∫

Tr R∧ R Z16
Bdy I: gapless, κx y =

3
4

Bdy II: SO(3)3 TO= {1, s, s̃, f }
m= 3
Z(1)2 SPT

Z(1)2 −π2
∫

P(B) Z4
at least an anti-semion

(not time-reversal invariant)

As discussed in Section 3.1.5, with additional fermion parity symmetry, the spacetime two-
group symmetry in the iELTO phase is extended to be the direct product of Z2 one-form sym-
metry and Pin+(4) (it is the extension of O(4) by the fermion parity symmetry such that the
time-reversal symmetry squares to (−1)F i.e. class DIII). This implies that the iELTO phase,
when stacked with additional transparent fermion (a decoupled sector representing a trivial
class fermionic SPT phase with trivial effective action), becomes the product of a one-form
symmetry SPT phase and a topological superconductor (TSc) in class DIII. Such phases have
Z16 × Z4 classification [57]. We will investigate which phase that the iELTO becomes after
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stacking with trivial fermionic SPT phase.
Let us compare the invertible exotic loop topological order and other 3 + 1-dimensional

SPT phases with relevant symmetries: topological superconductors with fermion parity 0-form
symmetry and time-reversal symmetry (DIII class, such as the Helium 3B phase) and SPT phase
with Z2 one-form symmetry. Their effective actions and examples of boundary states are listed
in Table 1. We also include the classification these phases generate, for instanceZ8 means eight
copies of the phase results in a trivial phase.

Since a boundary state of the iELTO phase is the anti-semion theory, in the presence of
transparent fermion particle on the boundary it becomes a boundary state for the ν= ±2 TSc,
where ± depends on the choice of pin+ structure. Moreover, the line that creates an anti-
semion generates a Z2 one-form symmetry with the anomaly described by m = −1 one-form
symmetry SPT. Thus we find35

iELTO× (class ν TSc) ←→ (class (ν+ 2) TSc)× (m= −1 one-form symmetry SPT) . (85)

More precisely, the one-form symmetry SPT phase on the right hand side is the −1 element in
the Z4 part of the classification Ω4

pin+(B
2Z2) = Z16 ×Z4 [57].

More generally, by taking ν′ copies of the iELTO phase we obtain Z8 classification of the
SPT phase with the two-group symmetry.

(iELTO)ν
′
× (class ν TSc) ←→ (class (ν+ 2ν′) TSc)× (m= −ν′ one-form symmetry SPT) .

(86)
This is also consistent with the discussion in Section 3.3 that four copies of the iELTO phase
is a bosonic SPT phase with time-reversal symmetry, which has partition function −1 on RP4,
the latter is also the difference between class ν and class ν+ 8 TSc.

4 Higher dimension generalization

In this section, we comment on the generalization of the discussions in previous sections to any
even spacetime dimension 2n. This gives an invertible phase with exotic (n − 1)-membrane
excitation that is charged under a Z2 (n− 1)-form symmetry, and we call it invertible exotic
higher topological order (iETO). The discussion is exactly parallel to the previous sections and
we will not give a detailed discussion here.

The n-group symmetry can be understood as a non-trivial extension of the Lorentz sym-
metry O(d) for d = 2n spacetime dimension by the (n− 1)-form symmetry

1→ Z2→G(n)→ O(d)→ 1 . (87)

The n-group extension is specified by the Postnikov class, and for the n-group discussed here
it is given by ωn+1 = vn+1 ∈ Hn+1(BO(d),Z2), where vn+1 ∈ Hn+1(BO(d),Z2) is the (n+ 1)th
Wu class. . We can denote the n-group by

G(n)[vn+1] = Z
(n−1)
2 ×vn+1

O(d)(0) . (88)

35The background ρ2 can be expressed as ρ2 = w1 ∪ η + B for pin+ structure η that satisfies w2 = δη, and
δB = 0. Then changing the pin+ structure by η → η + w1 changes ρ2 by ρ2 → ρ2 + w2

1, and the action of the
two-form gauge theory describing iELTO changes as, π2 qρ2

(b), changes as

π

2
qρ2
(b)→

π

2
qρ2
(b) +πb ∪w2

1 =
π

2
qρ2
(b) +πb ∪ b = −

π

2
qρ2
(b) mod 2πZ , (84)

where we used the Wu formula b ∪ (w2 + w2
1) = b ∪ b, and w2 = δη is trivial on pin+ manifolds. Thus we can

choose a convention of pin+ structure such that the right hand side of (85) to be ν+ 2.

29

https://scipost.org
https://scipost.org/SciPostPhys.12.2.052


SciPost Phys. 12, 052 (2022)

The associativity of the O(d) spacetime symmetry transformations is modified: different ways
of performing n+ 1 symmetry actions h1, · · · , hn+1 of O(d) differ by an action of Z(n−1)

2 -form
symmetry if vn+1(h1, · · · , hn+1) is non-trivial. When n is even, the Wu class vn+1 becomes trivial
when the time-reversal symmetry is not present i.e. when the O(d) symmetry is replaced by
SO(d) symmetry. In such a case, the n-group symmetry factorizes into the product ofZ2 (n−1)-
form symmetry and the SO(d) symmetry. In contrast, when n is odd, the n-group symmetry is
non-trivial even in the absence of time-reversal symmetry.

The background of the n-group symmetry satisfies

dρn = vn+1 , (89)

where ρn is the background for the (n − 1)-form symmetry, and vn+1 is the pullback of the
(n + 1)th Wu class vn+1 ∈ Hn+1(BO(d),Z2) to the manifold. Equation (89) implies that the
manifold is equipped with an n-group bundle, and ρn plays the role of the vn+1 Wu structure,
i.e. Wu structure of degree n+ 1.

4.1 Invertible exotic higher topological order

An invertible phase with n-group symmetry is described by the following n-form Z2 gauge
theory with the action

π

2

∫

qρn
(b) , (90)

where b is a dynamical n-form Z2 gauge field. q is the quadratic function whose properties
we summarize in Appendix B. For the action to be well-defined, ρn is a n-form Z2 background
that satisfies (89), and thus the theory has n-group symmetry. The theory is gapped and has a
unique ground state on any space manifold by a similar argument as in (7), and it describes an
invertible topological order with the n-group symmetry. The theory has (n− 1)-dimensional
membranes described by the holonomy of the n-form gauge field b, and it transforms under
the (n − 1)-form symmetry. When the worldvolume of the (n − 1)-membrane intersects in
spacetime, it contributes a sign to the correlation function.

The invertible phase described by the n-form gauge theory (90) has order 8, i.e. 8 copies
of the theory gives the trivial phase, similar to the discussion in Section 3.3. Four copies of
the theory differs from the trivial class by a bosonic SPT phase, the latter has effective action
π
∫

v2
n with degree-n Wu class vn.

5 More exotic phases from “fermionization”

In fact, we could always obtain a phase with an exotic (n − 1)-dimensional excitation in 2n
spacetime dimensions, protected by the spacetime n-group, starting with a bosonic theory in
2n spacetime dimensions that has a non-anomalous (n−1)-form Z2 symmetry, where for even
n we require the theory also has time-reversal symmetry that does not mix with the (n−1)-form
symmetry i.e. the time-reversal symmetry does not transform the background of the (n− 1)-
form symmetry. We will show this by deriving the partition function of the exotic phase. To
begin with, consider such a bosonic theory T with a Z2 (n−1)-form symmetry in 2n spacetime
dimensions. In the presence of a background Z2 n-form gauge field b associated with the Z2
(n− 1)-form symmetry, the bosonic theory T has a partition function denoted as ZT [b]. We
could gauge the Z2 (n − 1)-form symmetry and obtain another bosonic theory T/Z2 whose
partition function is given by

ZT/Z2
[x] =

1
|Hn(M ,Z2)|1/2

∑

b∈Hn(M ,Z2)

ZT [b]e
πi
∫

b∪x , (91)
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where b, x are the n-form Z2 gauge fields on 2n-dimensional manifold M , with the gauge
transformations b → b + dλb, x → x + dλx .36 Note that the gauged bosonic theory T/Z2
has a dual (n − 1)-form Z2 symmetry. We’ve made the dependence of its partition function
ZT/Z2

[x] on the background n-form Z2 gauge field x explicitly.
Beginning with either bosonic theory, we can obtain a new class of theories with the space-

time n-group symmetry, by coupling it to the invertible exotic higher topological order de-
scribed by (90). We first couple the theory to a background Z2 n-form gauge field B using
the (n−1)-form symmetry. Then we can associate the gauge field to a quadratic form qρn

(B),
couple the bosonic theory with a term defined via the quadratic form, and gauge the whole
theory by making B dynamical. Since the quadratic term depends on a n-form ρn determined
only by the spacetime manifold, the gauged theory depends on ρn as well. In the case n = 1,
this procedure is the fermionization [58], and it produces a fermionic theory from a bosonic
theory. Let us continue to call this recipe “fermionization” for general n, even though this
recipe constructs exotic phases with higher-dimensional excitations instead of fermionic par-
ticles. In this recipe, we couple the bosonic theory to the Z2 n-form gauge theory (90) that
describes the invertible exotic higher topological order with n-group symmetry. The partition
function of the new theory F[T] obtained from fermionizing the theory T is 37

ZF[T][ρn] =
1

|Hn(M ,Z2)|1/2
∑

b∈Hn(M ,Z2)

ZT [b]e
πi
2

∫

qρn (b) , (92)

where b is a Z2 n-form gauge field with the gauge transformation b → b + dλ, and the left
hand side depends on ρn.38 The new theory F[T] has a new (n−1)-form Z2 symmetry, which
is now part of the n-group symmetry, since the theory depends on the background ρn of the
symmetry through the weight e

πi
2

∫

qρn (b) in the summation (92), which is the effective action of
the invertible exotic higher topological order. The background for the (n− 1)-form symmetry
is denoted by ρn. When n= 1, the extra weight makes the theory depend on the spin structure
ρ1, and thus the name “fermionic”, and we will continue to adopt the terminology for higher n.
If we change the background by ρn→ ρn+ x , then the sum changes by extra weight (−1)

∫

b∪x .
We remark that when the theory T has time-reversal symmetry that does not transforms the
background gauge field for the (n − 1)-form symmetry, it acts on the partition function as
complex conjugation ZT [b]∗ = ZT [b], and (92) implies that the theory F[T] has time-reversal
symmetry that participates in n-group for even n. Note that the n-group for even n is a non-
trivial product between the Lorentz group and the Z2 (n−1)-form symmetry when the Lorentz
symmetry includes time-reversal symmetry, namely when the Lorentz group is given by O(d)
(with d = 2n). When we reduce the Lorentz symmetry to SO(d) by excluding the time-reversal
symmetry, the n-group reduces to a trivial product between the Lorentz symmetry SO(d) and
the Z2 (n− 1)-form symmetry.

The theory F[T] we end up with now has a Z2 (n−1)-form symmetry whose combination
with the spacetime O(2n) Lorentz symmetry requires a vn+1 Wu structure. Here, vn+1 is the
(n + 1)th Wu class. The existence of the vn+1 Wu structure requires vn+1 to be exact on the
2n-dimensional spacetime manifold M. The n-form ρn such that vn+1 = dρn specifies the
vn+1 Wu structure on M as discussed before.

In the following we will discuss the relation between the fermionization of T and T/Z2
i.e. the theory obtained from T by gauging non-anomalous Z2 (n − 1)-form symmetry. The
relation is summarized in Figure 4.

36Here,
∮

dλb,x = 0 mod 2, leaving the n-holonomy of b and x unchanged. Equivalently saying,
b, x ∈ Hn(M ,Z2).

37We remark that while the procedure can be defined for any theory T , if T does not have time-reversal symmetry,
then the fermionization procedure in general does not produce a time-reversal invariant theory. Thus if the n-group
symmetry requires time-reversal symmetry, we will restrict to the theories T that has time-reversal symmetry.

38In 1+1d we can identify qρ1
(b)/2= Arf(ρ1 + b)−Arf(ρ1), and it can be compared with (3.3) in [58].
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“Fermionization”

“Fermionization”

Figure 4: The interplay between fermionization and gauging Z2 symmetry. The
downward arrow on the left denotes gauging the Z2 (n − 1)-form symmetry in T ,
while the upward arrow on the left denotes gauging the dual Z2 (n− 1)-form sym-
metry in F[T]. On the right, the downward arrow and upward arrow denotes stack-
ing with the invertible phase in Section 4 or its complex conjugate, together with a
change in the symmetry fractionalization as discussed in (96).

Let us compare the partition functions of F[T] and F[T/Z2], the latter is the “fermioniza-
tion” of the bosonic theory T/Z2. The partition function of F[T/Z2] is

ZF[T/Z2][ρn] =
1

|Hn(M ,Z2)|

∑

x ,b

ZT [b]exp

�

πi

∫

b ∪ x

�

exp

�

πi
2

∫

qρn
(x)

�

=
1

|Hn(M ,Z2)|

∑

x ,b

ZT [b]e
πi
2

∫

(qρn (x+b)−qρn (b))

=

�

1
|Hn(M ,Z2)|1/2

∑

b

ZT [b]e
−πi

2

∫

qρn (b)

�

·

�

1
|Hn(M ,Z2)|1/2

∑

x ′
e
πi
2

∫

qρn (x
′)

�

with x ′ = x + b

=

�

1
|Hn(M ,Z2)|1/2

∑

b

ZT [b]e
−πi

2

∫

qρn (b)

�

Z iETO[ρn] , (93)

where we used the quadratic property (B.1) to complete the square
qρn
(x) + 2x ∪ b = qρn

(b + x) − qρn
(b), and we use the change of variable x ′ = b + x . And

Z iETO[ρn] is the partition function for the invertible Z2 n-form gauge theory (90).
The expression in (93) is not quite proportional to ZF[T][ρn] since it has −πi

2 qρn
(b)

instead of πi
2

∫

qρn
(b). This can be remedied as follows: their difference is

π
∫

qρn
(b) = π

∫

b2 = π
∫

b ∪ vn, so it can be expressed as F[T] coupled to a background
vn for the dual Z2 (n− 1) form symmetry,39

ZF[T][ρn; X ] =
1

|Hn(M ,Z2)|1/2
∑

b

ZT [b]e
πi
2

∫

qρn (b)eπi
∫

b∪X

=
1

|Hn(M ,Z2)|1/2
∑

b

ZT [b]e
πi
2

∫

(qρn (b+X )−qρn (X )) , X = vn . (94)

The coupling to background vn has the effect of changing the symmetry fractionlization for
Lorentz symmetry on the (n−1)-membrane that transforms under the (n−1)-form symmetry: it

39This is (3.4) of [58], where on the left hand side the dependence on X ,ρn is combined into X+ρn (so changing
the spin structure ρn→ ρn + z is equivalent to changing X → X + z).
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carries additional ’t Hooft anomaly for Lorentz symmetry, as specified by
(−1)vn ∈ Hn(BO(2n), U(1)).

Then we can rewrite the bracket in the last line of (93) as

1
|Hn(M ,Z2)|1/2

∑

b

ZT [b]e
−πi

2

∫

qρn (b) =
1

|Hn(M ,Z2)|1/2
∑

b

ZT [b]e
πi
2

∫

qρn (b)−πi
∫

b∪b

=
1

|Hn(M ,Z2)|1/2
∑

b

ZT [b]e
πi
2

∫

qρn (b)+πi
∫

b∪vn = ZF[T][ρn; vn] , (95)

where we used π
∫

b2 = π
∫

b ∪ vn mod 2π by Wu formula. Then we find

ZF[T/Z2][ρn] = ZF[T][ρn; vn] Z iETO[ρn] . (96)

In the case of 1+1d, n= 1, when the manifold has a spin structure, it is also orientable and so
v1 = w1 is trivial, then the above equation implies that the fermionization of T and T/Z2 differs
simply by stacking the partition function of the Kitaev’s chain invertible fermionic topological
order in 1+1d. This reproduces the result in [58,59].

Applying (96) twice leaves the theory invariant:

ZF[T/Z2/Z2][ρn] = ZF[T/Z2][ρ; vn] Z iETO[ρn] = ZF[T/Z2][ρ + vn] Z iETO[ρn]

=
�

ZF[T][ρn + vn + vn] Z iETO[ρn + vn]
�

Z iETO[ρn] = ZF[T][ρn]Z
iETO[ρn + vn]Z

iETO[ρn]

= ZF[T][ρn] , (97)

where we used ZF[T/Z][ρn; X ] = ZF[T/Z][ρn + X ; 0] and Z iETO[ρn + vn]Z iETO[ρn] = 1.40

6 Outlook

In this work, we present exotic invertible phases protected by higher-group symmetry that
extends the spacetime Lorentz group by higher-form Z2 symmetries. It would be interesting
to find explicit lattice models for these phases.41 In particular, it is an intriguing question how
the exotic time-reversal symmetry and the higher form symmetries that are embedded in the
spacetime n-group can be realized in the microscopic lattice models.

It would also be interesting to explore phase transitions protected by the higher group
symmetries, such as bulk phase transitions between different invertible phases as discussed
in Section 3.6.4 for the transition between iELTO and the trivial phase, or boundary phase
transitions protected by anomalous higher-group symmetry.

Moreover, in this work, we have considered a specific type of spacetime n-group which
involves time-reversal symmetry and higher-form Z2 symmetry. The construction of the n-
group relies on the Wu class. One direction for future research is to explore other higher group
extensions of the Lorentz group. For example, one can generalize the higher-form symmetry

40The latter comes from

Z iETO[ρn + vn] =
1

|H2(M ,Z2)|1/2
∑

b

e
πi
2

∫

qρn (b)+πi
∫

b∪vn

=
1

|H2(M ,Z2)|1/2
∑

b

e
πi
2

∫

qρn (b)+πi
∫

b2
=

�

1
|H2(M ,Z2)|1/2

∑

b

e
πi
2

∫

qρn (b)

�∗

=
�

Z iETO[ρn]
�∗

, (98)

where we’ve used qρn+X (b) = qρn
(b) + 2b ∪ X and the Wu formula b ∪ vn = b ∪ b mod 2.

41After the appearance of this work, such lattice model is constructed in [60].
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part of the group to other Abelian groups. One can also change the Postnikov class that controls
the mixing of the higher-form symmetry and the Lorentz symmetry in the higher spacetime
group. It is interesting to study the properties of the topological phases of matter protected by
such generalized higher spacetime group and find their microscopic realizations.

Another direction is to explore the SPT phases with spacetime higher-group symmetry and
other internal symmetries. Just as the presence of fermion particles can change the possible
symmetry protected topological phases for internal symmetry, one can also explore how the
presence of exotic excitations and higher-group spacetime symmetry can modify the classifi-
cations of topological phases. For instance, there can be new phases in the presence of exotic
excitations,42 or some phases can become trivial.
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A Review of higher-group symmetry

Here we summarized some properties of n-group symmetry that combines 0-form symmetry
K and (n− 1)-form Z2 symmetry. For an introduction of higher-group symmetry from physics
perspective, see e.g. [21,30,62,63].

The n-group symmetry can be described by the extension

1→ Z2→G→ K → 1 . (A.1)

The extensionG is specified byωn+1 ∈ Hn+1(BK ,Z2), called the Postnikov class of the n-group
symmetry. It is a Z2 valued function that depends on (n+1) elements in K , and it satisfies the
cocycle condition

dωn+1(k1, k2, · · · , kn+2) =
n+2
∑

i=1

(−1)i+1ωn+1(k1, · · · k̂i , · · · , kn+2) = 0 mod 2 . (A.2)

We will explain its physical meaning and implications in the following.

A one-group symmetry Let us begin with n = 1, where G is an ordinary group. The ex-
tension modifies the algebra obeyed by the symmetry generators: the action of symmetry K is
projective up to an action of the Z2 symmetry:

RkRk′ =ω2(k, k′)Rkk′ , (A.3)

where Rk for k ∈ K is the action of symmetry K , and ω2(k, k′) is the symmetry action of
Z2 that depends on k, k′. In other words, if the Z2 symmetry acts trivially then R is a linear
representation of K , while if the Z2 symmetry acts non-trivially R is a projective representation.

42Examples are discussed in [61].

34

https://scipost.org
https://scipost.org/SciPostPhys.12.2.052


SciPost Phys. 12, 052 (2022)

The group cocycleω2 determines a 1+1d invertible phase (it can be embedded in a higher
dimensional space) protected by the symmetry K [1,64]. In the presence of background gauge
field of the group K the effective action is43

π

∫

Σ

ω2 . (A.4)

On the 0+1d boundary of the invertible phase, there is a particle carrying the projective repre-
sentation (−1)ω2 of the group K . The relation (A.3) implies that such particle also transforms
non-trivially under the Z2 symmetry.

If we turn on background gauge field ρ1 for the Z2 symmetry and background A for the K
symmetry, the algebra of the generators implies that

dρ1 =ω2(A) . (A.5)

The way to understand this relation is that the particle carries unit charge under the Z2 sym-
metry needs to attach with the Wilson line eπi

∫

ρ1 on the world history to be gauge invariant,
and the dependence on the surface (A.4) implies the relation (A.5) by Stokes’ theorem.

The relation (A.5) also implies that a background gauge transformation of A, which changes
ω2(A) by an exact term, also transforms the background ρ1. This is related to the algebra
relation (A.3). We remark that this transformation does not imply the symmetry is anomalous.
The transformation of K symmetry changes the background gauge field ρ1 and thus produces
additional symmetry defect of the Z2 symmetry, i.e. the theory is not invariant but changes
by the symmetry defect, as opposite to changed by a number as in the conventional ’t Hooft
anomaly. In particular, this non-invariance does not need to match between the UV and the IR
in the renormalization group flow.

A two-group symmetry For n= 2, where G is a two-group, the extension modifies the alge-
bra obeyed by the symmetry generators: the action of symmetry K has non-trivial “operator-
valued” F-symbol that is the Z2 one-form symmetry action,

hh′h′′

h h′′h′

↔

hh′h′′

h h′′h′

ω3(h, h′, h′′)

, (A.6)

where the blue dot is a generator of the Z2 one-form symmetry given by ω3(h, h′, h′′).
The equation (A.6) can be phrased as the one-form object transforming under G in the

following way,
Rh,h′Rhh′,h′′ = ε

ω3(h,h′,h′′)Rh′,h′′Rh,h′h′′ , h, h′, h′′ ∈ K , (A.7)

where ε is the representation of the Z2 one-form symmetry. A way to understand this equa-
tion is given in the discussion of (16). Another way to it is to view Rh,h′ as the action of the
junction of three 0-form symmetry defects labelled by h, h′ and hh′ [65].44 In the above equa-
tion, εω3(h,h′,h′′) = 1,ε for ω3(h, h′, h′′) = 0, 1 is an action of the Z2 one-form symmetry. In

43If we triangulate the surface Σ, then the effective action is the sum of ω2(k1, k2) over each triangle with K
elements k1, k2 on the independent edges.

44We note that the action can be modified by projective phase, Rh,h′ → Rh,h′ω2(h, h′) for ω2(h, h′) obeys the
cocycle condition ω2(h, h′)ω2(hh′, h′′) =ω2(h′, h′′)ω2(h, h′h′′), without changing the property (A.7).
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other words, for loops neutral under the Z2 one-form symmetry (ε = +1), the K symmetry is
associative; for loops that transform non-trivially under the Z2 one-form symmetry (ε = −1),
the K symmetry action has a non-trivial associator (−1)ω3 .

The group cocycle ω3, when viewed as an element in H3(K , U(1)), determines a 2+1d
invertible phase (embedded in a higher dimensional space)45 protected by the symmetry K
[1,64]. In the presence of background gauge field of the group K the effective action is

π

∫

ω3 . (A.9)

On the 1+1d boundary of the invertible phase, there can be a theory that describes loops
that transform non-trivially under the Z2 one-form symmetry. The K symmetry action on the
boundary has non-trivial associator (−1)ω3 .

If we turn on background gauge field ρ2 for the Z2 one-form symmetry and background A
for the K symmetry, the algebra of the generators implies that

dρ2 =ω3(A) . (A.10)

Another way to understand this relation is to consider the loop that carries unit charge under
the Z2 one-form symmetry. Since it transforms under K as in (A.7), its world-history by itself
is not invariant under the gauge transformation of A, instead it changes by the boundary trans-
formation of the bulk term eiπ

∫

V ω3 . Since the loop carries one-form charge, gauge-invariance
under the one-form symmetry requires its world-history to attach with the Wilson surface
e−πi

∫

ρ2 of the gauge field of Z2 one-form symmetry. And the dependence on the volume
(A.9) implies the relation (A.10) by Stokes’ theorem.

The relation (A.10) also implies that a background gauge transformation of A, which
changes ω3(A) by an exact term, also transforms the background ρ2. This is related to the
algebra relation (A.7). We remark that this transformation does not imply the symmetry is
anomalous. The transformation of K symmetry changes the background gauge field ρ2 and
thus produces additional symmetry defect of the Z2 one-form symmetry, i.e. the theory is not
invariant, but changed by the symmetry defect, as opposite to changed by a number as in
the conventional ’t Hooft anomaly. In particular, this non-invariance does not need to match
between the UV and the IR in the renormalization group flow [30].

An n-group symmetry Likewise, for general n, the extension is a n-group G. The symmetry
action has generalized F-symbolωn+1 that is the leading “obstruction” to fusing (n+1) elements
in K , and it takes value in the Z2 one-form symmetry action. For instance, the case n = 3 is
shown in Figure 6 of [21], withω(g,h,k, l) replaced by elements in Z2 one-form symmetry. We
stress that the generalized F-symbol indicates a modification of symmetry algebra and does not
mean the entire theory has an ’t Hooft anomaly [21, 30]. The extension modifies the algebra
of symmetry generators This implies that the (n−1)-membrane that carries unit charge under
the Z2 (n − 1)-form symmetry carries an anomaly described by the K symmetry action with
the generalized F-symbol (−1)ωn+1 (which is now a number instead of symmetry generator),
and it lives on the boundary of an (n+ 1)-dimensional SPT phase with the effective action

π

∫

ωn+1 . (A.11)

45For instance, when K is the Z2 time-reversal symmetry, the non-trivial ω3 ∈ H3(BZT
2 ,Z2) corresponds to the

effective action

π

∫

V
w1(T M)3 , (A.8)

where M is the higher-dimensional space where the loops live, and w1(T M) is the restriction of w1(T M) to V ,
which decomposes into w1(T M)|V = w1(TV)+w1(NV) that involves both the tangent bundle of V and the normal
bundle of V embedded in M . On the other hand, the effective action π

∫

V w1(TV)3 is trivial.
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The SPT phase is specified by (−1)ωn+1 ∈ Hn+1(BK , U(1)), and if K is an internal symmetry it
is a group cohomology SPT phase [1,64].

If we turn on the background gauge field ρn for the Z2 (n− 1)-form symmetry and back-
ground A for the K symmetry, the algebra of the generators implies that

dρn =ωn+1(A) . (A.12)

Another way to understand this relation is that the (n−1)-membrane carries unit charge under
the Z2 (n− 1)-form symmetry needs to attach with the Wilson n-volume eπi

∫

ρn on the world
history to be gauge invariant, and the dependence on the (n+ 1)-volume (A.11) implies the
relation (A.12) by Stokes’ theorem.

B Properties of quadratic function for intersection form

In this appendix we summarize some mathematical properties of quadratic function which
refines the intersection pairing on Hn(M ,Z2) on 2n-dimensional manifold M [35,66].

Denote B to be Z2 value n-form gauge field. The quadratic function satisfies

q(B + B′) = q(B) + q(B′) + 2B ∪ B′ mod 4 , (B.1)

where the multiplication by 2 in 2B ∪ B′ using the inclusion of Z2 as the even elements in Z4.
In particular, q(2B) = q(0) = 0= 2q(B) + 2B2 mod 4 i.e. q(B) mod 2 = B2.

We will use the convention

q(B) mod 2= B ∪ B = B2 , 2q(B) = 2B ∪ B = 2B2 mod 4 . (B.2)

Two solutions for the quadratic function q differ by a linear function B → 2
∫

M B ∪ X for
some X ∈ Hn(M ,Z2), so different quadratic functions on a given manifold M are in one-to-one
correspondence with elements in Hn(M ,Z2), but not in a canonical way [35].46

The solutions of the quadratic function are labelled by different ρn that can appear in
dρn = vn+1 where vn+1 is the (n + 1)th Wu class, where different ρn’s form an Hn(M ,Z2)
torsor [35, 66] (see e.g. Corollary 1.17 of [35]).47 We will denote the quadratic function by
qρn

. For manifold with dimension less or equal to 2n+1, the Wu class vn+1 is exact. Therefore,
there always exists such ρn that dρn = vn+1 [32]. Changing the Wu structure ρn → ρn + zn
by z ∈ Hn(M ,Z2) changes the quadratic function by

qρn+zn
(b) = qρn

(b) + 2b ∪ zn . (B.3)

The Brown-Kervaire invariant is the partition function

Z[ρn] =
1

|Hn(M ,Z2)|1/2
∑

b∈Hn(M ,Z2)

e
πi
2

∫

qρn (b) . (B.4)

The partition function is an eighth root of unity. It depends on the Wu structure ρn. Change
the Wu structure ρn→ ρn + zn leads to the following change of the partition function:

Z[ρn]/Z[ρn + z] = e
πi
2

∫

qρn (z) . (B.5)
46We note that the manifolds with even n have canonical Pontryagin square operation P(B), but on unorientable

manifolds it does not give a well-defined numerical quadratic function, since e
2πi
4

∫

P(B) is not invariant under a local
orientation reversal.

47In the special case that n= 1 and on an orientable closed surface, v2 = w2. If the second Stiefel-Whitney class
w2 is not only exact, but also 0 ∈ H2(M ,Z2), ρ1 is a 1-cocycle representing a choice of spin structure. If the second
Stiefel-Whitney class w2 does not vanish, ρ1 is a 1-cochain representing a choice of spin structure that cannot be
trivial. The trivial spin structure is that the fermion has anti-periodic (Neveu-Schwarz) boundary condition along
any S1 on M .
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We remark that in the case of n= 2, one way to see that the v3 Wu structure gives a well-
defined quadratic function is as follows. Let us start with the Pontryagin square π2P(B). It is not
invariant under the time-reversal transformation but changes by πB∪B = π

2P(B)−(−
π
2P(B)),

and thus it cannot be integrated over on unorientable manifolds. As we discussed in (80), this
non-invariance can be compensated by introducing the Wu structureρ2 that couples asπB∪ρ2,
with dρ2 = v3. The quadratic function on orientable manifolds is given by the combination
π
2

∫

P(B) +π
∫

B ∪ ρ2, which is invariant under the time-reversal transformation, and it can
be extended to unorientable manifolds. (For the correspondence between the Wu structure
and the quadratic function, see [35]).

C Partition function of iELTO on simple manifolds

Let us compute the partition function (44) on some simple manifolds and investigate how it
depends on the background ρ2. To simplify the notation, in this appendix we will omit the
subscript 2 that implies the background is a two-form. Since the correlation function of the
worldsheet depends on ρ2 as discussed in Section 3.4.2, it can also be interpreted as some
kind of boundary condition for the exotic loop.

On S2 × S2 spacetime. The spacetime is S2 in t, x direction, and S2 in the y, z direction.
There are four possible values of background ρ, specified by its value on different spheres:

(ρ01,ρ23) , ρ01,ρ23 = 0,1 . (C.1)

The action (34) evaluates to (omitting an overall factor π/2)
∫

S2×S2

q(B) = 2ρ01B(S2
01) + 2ρ23B(S2

23) + 2B(S2
01)B(S

2
23) , (C.2)

where B(S2
i j) is two-holonomy in the ith and jth dimensions. Since different B corresponds

different holonomies on the two closed surfaces, summing over possible B is the same as
summing over the possible holonomies on S2×S2 spacetime. Therefore, the partition function
is

Z iELTO[ρ01,ρ23] =
1

|H2(S2 × S2,Z2)|1/2
∑

B(S2
i j)=0,1

ei π2
∫

S2×S2 q(B)

=
1
2

�

1+ (−1)ρ01 + (−1)ρ23 − (−1)ρ01+ρ23
�

, (C.3)

where we used |H2(S2 × S2,Z2)| = 22. It is 1 for (ρ01,ρ23) = (0, 0), (0, 1), (1, 0) and −1 for
(ρ01,ρ23) = (1,1).48

We can ask how are the partition functions with different background ρ are related by
SL(2,Z) transformation on S2 × S2 49. The transformation on S2 × S2 is the analogue of the
modular group of S1 × S1.

Consider the transformation, τ→ τ+ 1, S2
23 is wrapped over once more by S2

01.

Z iELTO[0,1]→ Z iELTO[1,1] = −Z iELTO[0,1] . (C.4)
48We remark that this is similar to the partition function of 1+1d Kitaev’s chain fermionic invertible topological

order on S1 × S1, where the partition function equals −1 for odd spin structure and +1 for even spin structure.

49The transformation associated with
�

a b
c d

�

∈ SL(2,Z) is given by mapping the first S2 to S2 × S2 with

degree (a, b) (where the degree of the map S2 → S2 equals the number of times the sphere is wrapped) and the
second S2 to S2 × S2 with degree (c, d). For general a, b, c, d it is not a diffeomorphism, since it does not preserve
the intersection form. The true mapping class group is the diheral group of order 8 (see e.g. [67]). The same
applies to the modular group action on S1 × S1, where SL(2,Z) is the mapping class group.
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On S1× S1× S2 spacetime. The spacetime is S1 in each of the 0 and 1 directions, and S2 in
the 2, 3 directions. There are four components of the background ρ, specified by

ρ = (ρ01,ρ23) , ρ01,ρ23 = 0,1 . (C.5)

The action is
∫

S1×S1×S2

q(B) = 2ρ01B(S1 × S1) + 2ρ23B(S2) + 2B(S1 × S1)B(S2) , (C.6)

where B(S1×S1) and B(S2) are 2-holonomy in S1
0 ×S1

1 and S2
23, respectively. Since different B

corresponds different holonomies on the two closed surfaces, summing over possible B is the
same as summing over the possible holonomies. Therefore, the partition function is

Z iELTO =
1

|H2(S1 × S1 × S2,Z2)|1/2
∑

B(S1
i )=0,1

ei π2
∫

S1×S1×S2 q(B)

=
1
2

�

1+ (−1)ρ01 + (−1)ρ23 − (−1)ρ01+ρ23
�

, (C.7)

where we used |H2(S1 × S1 × S2,Z2)| = 22. It is 1 for (ρ01,ρ23) = (0,0), (0,1), (1,0) and −1
for (ρ01,ρ23) = (1,1).

On T4 = S1 × S1 × S1 × S1 spacetime. There are 26 kinds of boundary conditions, specified
by possible Z2 2-holonomy for each torus on T4, there are

�4
2

�

= 6 of them, labelled by ρi j
with 0≤ i < j ≤ 3.

To compute the partition function, we need to specify the quadratic function. Let us first
find a quadratic function on T4 = S1

0 ×S1
1 ×S1

2 ×S1
3 . The intersection happens between S1

i ×S1
j

and S1
k × S1

l with distinct i, j, k, l. A quadratic function for zero background with ρi j = 0 for
all ρi j is given by50

q0(B)(T
4) = 2B(S1

0 × S1
1)B(S

1
2 × S1

3)

+ 2B(S1
0 × S2

2)B(S
1
1 × S1

3) + 2B(S1
0 × S1

3)B(S
1
1 × S1

2) . (C.9)

For a general background ρi j , the quadratic function is51

qρ(B)(T
4) = q0(B)(T

4) + 2
∑

i< j

ρi jB(S
1
i × S1

j ) . (C.10)

The partition function for the quadractic function action π
2

∫

qρ(B)with background ρ that
only has nonzero ρ01,ρ23 components, equals

Z[ρ] =
1
2

�

1+ (−1)ρ01 + (−1)ρ23 − (−1)ρ01+ρ23
�

, (C.11)

where ρi j is the holonomy of the background ρ on S1
i ×S1

j . The above partition function only

depends on ρ through ρ′ = ρ01ρ23 ∈ Z2, and it equals Z = (−1)ρ
′
.

50One can verify it satisfies (B.1):

q0(B + B′)− q0(B)− q0(B
′)

= 2
�

B(S1
0 × S1

1)B
′(S1

2 × S1
3) + B(S1

0 × S1
2)B

′(S1
1 × S1

3) + B(S1
0 × S1

3)B
′(S1

1 × S1
2)
�

+ 2
�

B′(S1
0 × S1

1)B(S
1
2 × S1

3) + B′(S1
0 × S1

2)B(S
1
1 × S1

3) + B′(S1
0 × S1

3)B(S
1
1 × S1

2)
�

. (C.8)

51The factor 2 in front of 2ρB ensures that q(B) = q(B+2) mod 4, since B is Z2 valued, while q(B) is Z4 valued.
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D Continuum description of iELTO

In this appendix we discuss the continuum description of the iELTO phase using U(1) gauge
fields, and apply the method to discuss states on the surface of iELTO phase.

D.1 Continuum description for the iELTO 2-form gauge theory

On orientable manifolds, the iELTO phase can be described by U(1) two-form gauge field b
and one-form U(1) gauge field a with the action [13,39]

2
4π

bb+
2

2π
bda . (D.1)

In the absence of boundary, the action is invariant under the one-form gauge transformation

b→ b+ dλ, a→ a−λ . (D.2)

After integrating out the gauge field a, we are left with two-form gauge theory with action
2

4π bb with the gauge field b constrained to have Z2 holonomy
∮

b ∈ πZ, and we recover the
iELTO theory with quadratic action for the two-form Z2 gauge field without background gauge
field ρ2.

D.2 Correlation function of loop excitation

Here we compute the correlation function of the loop excitation on S4 in the continuum nota-
tion. We insert loop operator

∮

γ
a+

∫

Σ
b where ∂Σ= γ,

∮

γ

a+

∫

Σ

b+

∫

1
2π

bb+
2

2π
bda =

∫

aδ(γ)⊥ + bδ(Σ)⊥ +

∫

1
2π

bb+
2

2π
bda , (D.3)

where δ(γ)⊥ is the delta function three-form that restricts the integral to γ, and similar for
δ(Σ)⊥. Integrating out a gives

d b = −πδ(γ)⊥ , (D.4)

which can be solved in S4 (or more generally, for homologically trivial γ) as

b = −πδ(Σ)⊥ . (D.5)

Thus the correlation function is

〈exp(

∮

γ

a+

∫

Σ

b)〉= exp

�

−
πi
2

∫

δ(Σ)⊥δ(Σ)⊥
�

. (D.6)

In particular, if we cut open the manifold, the loop on the boundary describes an anti-semion
of topological spin −i.

We remark that the correlation function requires a framing.

Figure-8 experiment One way to see the loop describes an anti-semion on the boundary is
using the following process. It represents an open surface in spacetime.

One way to argue that the anti-semion gives the correct exotic loop statistics is as follows.52

The exotic loop requires a framing and, hence can represented as a closed ribbon in the 3 spatial

52We are grateful to Cenke Xu and Xie Chen to help us make this explicit connection.
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dimensions. Take a closed ribbon and and make it self-intersect in the transverse direction
(passing through the intersecting point) as the shape of a “figure 8", depicted as follows:

Two ribbons differed by a 4π twist:

.

Then we can unwind the ribbon by 4π to recover the original ribbon. For an exotic loop
this produces a minus sign: in 3 + 1d spacetime, the surface operator interpolating the two
“figure 8” has a single intersection point, at which the “figure 8” passing through itself in the
transverse direction. This then implies that the ribbon is associated with a spin ±1

4 particle,
in agreement with the anti-semion on the boundary of the iELTO. This is consistent with the
correlation function for open surfaces in Figure 7 of [29].

We remark that the same minus sign also appears in the ground state wavefunction of
the semion Walker-Wang model in [68] and the model for the m = 1 one-form Z2 symmetry
SPT phase in [38]. These models do not have time-reversal symmetry, and this suggests upon
breaking the time-reversal symmetry in the iELTO phase it can be connected to the phases de-
scribed by these models. Indeed, the partition function of iELTO phase on orientable manifold
is given by

exp

�

i
96π

∫

Tr R∧ R−
2πi
4

∫

P(ρ2)

�

. (D.7)

Breaking the time-reversal symmetry allows us to separately define the two terms. In particu-
lar, without time-reversal symmetry one can continuously tune the coefficient of the Tr R∧ R
term to zero and the partition function reduces to that of the one-form symmetry SPT phase.
On orientable manifolds, the partition function is the same as the Walker -Wang model.

E “Fermionizations” of Z2 one-form SPTs.

In this appendix, we “fermionize” the Z2 one-from SPTs by working out the partition functions.
Consider the partition function of SPT phase with one-form symmetry [37,69]

ZT [B] = e
mπi

2

∫

P(B) , (E.1)

where m = 0, 2 preserve time-reversal symmetry while m = 1, 3 are related by time-reversal
symmetry. B is the background Z2 2-form gauge field associated to the Z2 one-from symmetry.

We can gauge the Z2 one-form symmetry and obtain the partition function

ZT/Z2
[B′] =

∑

b

e
mπi

2

∫

P(b)eπi
∫

b∪B′ , (E.2)

where B′ is the backgroundZ2 2-form gauge field associated to the dualZ2 one-from symmetry.
Now we compute the partition functions of the fermionizations of the bosonic theories T

and T/Z2, begining with the time reversal symmetric cases.

E.1 m= 0,2: bosonic time-reversal symmetric theories

We have summarized the results in Table 2. The details are as follows,
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Table 2: Z2 one-form SPT phases and the theories obtained by gauging the one-form
symmetry and “fermionizations”. Here, v2 is the second Wu class. In the table, the
partition functions δB′,0,δB′+v2,0 indicate a spontaneously broken one-form symme-
try. In fact, the two theories are the Z2 gauge theories with bosonic particle and
fermionic particle, respectively. We note that, the latter partition function indicates
the theory has additional symmetry fractionalziation compared to the former theory,
because the background B′ is shifted: in the latter theory, the particle created by the
line operator with one-form symmetry charge is a fermion and a Kramers singlet,
which is the projective representation specified by (−1)v2 ∈ H2(BO(4), U(1)) [26].

m ZT [B] ZT/Z2
[B′] ZF[T][ρ2] ZF[T/Z2][ρ2]

0 1 δB′,0 Z iELTO[ρ] 1

2 eiπ
∫

B2
δB′,v2

Z iELTO[ρ2]∗ Z iELTO[ρ2]2

Case m= 0 Consider T to be Z(1)2 SPT with m= 0, the partition function is

ZT [B] = 1. (E.3)

The theory T/Z2 has the partition function

ZT/Z2
[B′] =

1
|H2(M ,Z2)|1/2

∑

b

eπi
∫

b∪B′ = δB′,0 . (E.4)

The fermionic cousins are the following ones,

ZF[T][ρ2] =
1

|H2(M ,Z2)|1/2
∑

b

ei π2
∫

qρ2
(b) = Z iELTO[ρ2] ,

ZF[T/Z2][ρ2] =
1

|H2(M ,Z2)|

∑

b

ei π2
∫

�

qρ2
(b)+2b∪v2+qρ2

(b)
�

, =
1

|H2(M ,Z2)|

∑

b

eiπ
∫

qρ2
(b)+b∪v2

=
1

|H2(M ,Z2)|

∑

b

ei2π
∫

b∪v2 = 1 , (E.5)

where we have used that eiπ
∫

qρ2
(b) = eiπ

∫

b2
= eiπ

∫

b∪v2 .

Case m= 2 Consider the one-form symmetry SPT phase with the partition function

ZT [B] = eπi
∫

P(B) = eπi
∫

B2
, (E.6)

where we used P(B) mod 2 = B2 mod 2 = B ∪ B. It corresponds to N = 2, p = 2 in [37] and
n = 2, m = 2 in [38]. It happens that because of the Wu formula B2 = B ∪ v2 (mod 2), the
partition function is the same as

ZT [B] = eπi
∫

B∪v2 . (E.7)

The theory T/Z2 has the partition function

ZT/Z2
[B′] =

∑

b

eπi
∫

b2+b∪B′ =
∑

b

eπi
∫

b∪(v2+B′) = δB′,v2
. (E.8)

What are their fermionic cousins? The partition function of F[T] is

ZF[T][ρ2] =
∑

b

eπi
∫

b2+πi
2

∫

qρ2
(b) =

�

∑

b

e−
πi
2

∫

qρ2
(b)

�∗

= Z iELTO[ρ2]
∗ , (E.9)
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where we used qρ2
(b+ v2)−qρ2

(v2) = qρ2
(b)+2b∪ v2. The fermionic cousin F[T] is the time

reversal partner of iELTO.
Similarly, the partition function of F[T/Z2] is

ZF[T/Z2][x +ρ2] =
∑

b′
δb′,v2

eπi
∫

b′∪x e
πi
2 qρ2

(b′) = e
πi
2 qρ2

(v2)+πi
∫

x∪v2 ,

ZF[T/Z2][ρ2] = ZF[T][ρ2 + v2]Z
iELTO[ρ2] = Z iELTO[ρ2 + v2]

∗Z iELTO[ρ2] = (Z
iELTO[ρ2])

2 .

(E.10)

E.2 m= 1,3

These theories are not time-reversal symmetric and they are not in the class of bosonic theories
that we are considering. Nevertheless, we can formally perform the fermionization operation.
We summarize their partition functions together with those of their fermionizizations in Table
3. With only Z2 one-form symmetry, the Z(1)2 orbifold of the m class Z(1)2 non-trivial SPT phase
is the same phase as the m class SPT phase. As shown in Table 3, the phase factor eiθσ that
differs the partition function of the two theories can be continuously changed from 1 to ei π4σ,
at the price of breaking time reversal symmetry. Furthermore, we can see from the partition
functions that m = 1 and m = 3 bosonic SPT phases are time-reversal partners. The table is

Table 3: The Z2 one-form orbifold of Z2 one-form SPTs and their fermionizations.
Here, v2 is the second Wu class.

m ZT [B] ZT/Z2
[B′] ZF[T][ρ] ZF[T/Z2][ρ]

1 ei π2
∫

B2
eiπσ4 e−i π2

∫

B′2 δρ2,v2
δρ2,0Z iELTO[ρ2]

3 ei 3π
2

∫

B2
e−iπσ4 ei π2

∫

B′2 δρ2,0 δρ2,v2
Z iELTO[ρ2]

obtained from the following computations.

Case m= 1 The partition function for T/Z2 is

ZT/Z2
[B′] =

1
|H2(M ,Z2)|1/2

∑

b

e
πi
2

∫

q0(b)+πi
∫

b∪B′

=
1

|H2(M ,Z2)|1/2
∑

b

e
πi
2

∫

q0(b+B′)−πi
2

∫

q0(B′) = Z iELTO[0]e−
πi
2

∫

q0(B′) . (E.11)

The partition function for F[T] is

ZF[T][ρ2] =
∑

b

ei π2
∫

�

−3q0(b)+qρ2
(b)
�

=
∑

b

e
πi
2

∫

(−2q0(b)+2b∪ρ2) =
∑

b

eπi
∫

(q0(b)+b∪ρ2) =
∑

b

eπi
∫

(b2+b∪ρ2)

=δρ2,v2
. (E.12)

The partition function for F[T/Z] is

ZF[T/Z2][ρ2] =
∑

b,b′
e
πi
2

∫

q0(b)+πi
∫

b∪b′+πi
2

∫

qρ2
(b′) b′′=b+b′

==

�

∑

b′′
e
πi
2

∫

q0(b′′)

�

∑

b′
eπi

∫

b′∪ρ2 ,

=
�

Z iETO[0]
�

∑

b′
eπi

∫

b′∪ρ2 =
�

Z iETO[0]
�

δρ2,0 .

(E.13)
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Case m= 3 The partition function for T/Z2 is

ZT/Z2
[B′] =

1
|H2(M ,Z2)|1/2

∑

b

e−
πi
2

∫

q0(b)+πi
∫

b∪B′

=
1

|H2(M ,Z2)|1/2
∑

b

e−
πi
2

∫

q0(b+B′)+πi
2

∫

q0(B′) = Z iELTO[0]∗e
πi
2

∫

q0(B′) . (E.14)

ZT [B] = e−i π2
∫

P[B] , ZT/Z2
[B] = eiπσ4 e−i π2

∫

P[B] ,

ZF[T][ρ2] = δρ2,0 , ZF[T/Z2][ρ2]= δρ2,0eiπσ4 . (E.15)

The derivation is as follows.

ZT [B] =e−i 2π
4

∫

P[B] ,

ZT/Z2
[x] =

∑

b

e−i π2
∫

[P[b]−2b∪x] = e−i
θg
48

∫ Tr R∧R
(2π)2 e−i 2π

4

∫

P[x]eiπ
∫

x∪x

=

�

∑

b

e−
πi
2

∫

q0(b)

�

e
πi
2

∫

q0(x) , (E.16)

where we have used that
∑

b

e−i π2
∫

[P[b]−2b∪x] =
∑

b

e−i π2
∫

[q0(b)−2b∪x] =
∑

b

e−i π2
∫

[q0(b+x)−2b∪x−2x∪x]

=
∑

b

e−i π2
∫

[q0(b)+q0(x)−2x∪x]. (E.17)

The fermionized theory is

ZF[T][ρ2] =
∑

b

ei π2
∫

�

3q0(b)+qρ2
(b)
�

=
∑

b

e
πi
2

∫

(4q0(b)+2b∪ρ2) =
∑

b

eπi
∫

b∪ρ2 = δρ2,0 , (E.18)

where in the second equality we used qρ2
(b) = q0(b) + 2b ∪ρ2.

Similarly, the partition function for F[T/Z2] is

ZF[T/Z2][ρ2] =
∑

b,b′
e−

πi
2

∫

q0(b)+πi
∫

b∪b′+πi
2

∫

qρ2
(b′) =

∑

b′′=b−b′
e−

πi
2 q0(b′′)

∑

b′
eπi

∫

b′∪b′+πi
∫

b′∪ρ2

= Z iELTO[0]∗
∑

b′
eπi

∫

b′∪b′+πi
∫

b′∪ρ2 = Z iELTO[0]∗
∑

b′
eπi

∫

b′∪(−v2+ρ2) = Z iELTO[0]∗δρ2,v2
,

(E.19)

where the 4th equality used the Wu formula b′ ∪ b′ + b′ ∪ v2 = 0.
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