A Caltech Library Service

Cauliflower fractal forms arise from perturbations of floral gene networks

Azpeitia, Eugenio and Tichtinsky, Gabrielle and Le Masson, Marie and Serrano-Mislata, Antonio and Lucas, Jérémy and Gregis, Veronica and Gimenez, Carlos and Prunet, Nathanaël and Farcot, Etienne and Kater, Martin M. and Bradley, Desmond and Madueño, Francisco and Godin, Christophe and Parcy, Francois (2021) Cauliflower fractal forms arise from perturbations of floral gene networks. Science, 373 (6551). pp. 192-197. ISSN 0036-8075. doi:10.1126/science.abg5999.

[img] PDF (Materials and Methods; Modeling Methods; Figs. S1 to S6; Tables S1 to S3; References) - Supplemental Material
See Usage Policy.

[img] Archive (ZIP) (Archive with Source Code for the Model) - Supplemental Material
See Usage Policy.

[img] PDF (MDAR Reproducibility Checklist) - Supplemental Material
See Usage Policy.

[img] Video (QuickTime) (Movie S1) - Supplemental Material
See Usage Policy.

[img] Video (QuickTime) (Movie S2) - Supplemental Material
See Usage Policy.

[img] Video (QuickTime) (Movie S3) - Supplemental Material
See Usage Policy.


Use this Persistent URL to link to this item:


Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the “memory” of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.

Item Type:Article
Related URLs:
URLURL TypeDescription Materials ItemData
Azpeitia, Eugenio0000-0001-7841-5933
Tichtinsky, Gabrielle0000-0002-3006-2566
Le Masson, Marie0000-0003-0673-8068
Serrano-Mislata, Antonio0000-0002-8828-1809
Lucas, Jérémy0000-0002-2252-4732
Gregis, Veronica0000-0003-1876-9849
Gimenez, Carlos0000-0002-5211-5155
Prunet, Nathanaël0000-0002-8939-5920
Farcot, Etienne0000-0002-0742-3028
Kater, Martin M.0000-0003-1155-2575
Bradley, Desmond0000-0003-2300-6707
Godin, Christophe0000-0002-1202-8460
Parcy, Francois0000-0003-2191-500X
Additional Information:© 2021 American Association for the Advancement of Science. This is an article distributed under the terms of the Science Journals Default License. Received 15 January 2021; accepted 3 June 2021. We thank A.-M. Chèvre, R. Immink, R. Simon, L. Ostergaard, and M. Benitez for advice; T. Vernoux, C. Zubieta, and H. Chahtane for proofreading and useful feedback on the manuscript; D. Tardy, E. Giraud, R. Dumas, and V. Martin (OBS, France) for providing cauliflower samples; L. Bousset Vaslin for images and branch counting; F. Boudon for help with L-Py; R. Immink (Wageningen, Netherlands), C. Ferrándiz (IBMCP; Spain), G. Coupland (MPIPZ, Germany), M. Ángel Blázquez (IBMCP, Spain), R. Amasino (UWM, USA), and the European Arabidopsis Stock Centre for providing seeds; V. Berger (CEA/DRF) for financing the Keyence microscope; and C. Lancelon-Pin (Plateau de microscopie électronique - ICMG. CERMAV-CNRS) for help with SEM experiments. This work was supported by the INRAE Caulimodel project (to F.P. and C.Go.); Inria Project Lab Morphogenetics (to C.Go., E.A., and F.P.); the ANR BBSRC Flower model project (to F.P. and C.Go.); the GRAL LabEX (ANR-10-LABX-49-01) within the framework of the CBH-EUR-GS (ANR-17-EURE-0003) (to F.P., G.T., M.L.M., and J.L.); the EU H2020 773875 ROMI project (to C.Go.); and the Spanish Ministerio de Ciencia Innovación and FEDER (grant no. PGC2018-099232-B-I00 to F.M.). Author contributions: C.Go. and F.P. conceived the study. C.Go., E.A., and E.F. performed the modeling. A.S.-M., C.Gi., D.B., F.M., F.P., G.T., M.M.K., M.L.M., and V.G. designed and performed the plant experiments. N.P. performed the confocal imaging experiment. J.L. analyzed the RNA-seq and genomic data. C.Go., F.P., and E.A. wrote the paper with contributions from all authors. The authors declare no competing interests. Data and materials availability: All data are available in the main paper or the supplementary materials. All plant materials are available upon request. Raw and processed RNA-seq data are available at GEO under accession no. GSE150627. All source codes to run the simulations are available as a supplementary archive file (descriptions of installation and execution are available as README.txt).
Funding AgencyGrant Number
Institut national de recherche en informatique et en automatique (INRIA)UNSPECIFIED
Institut national de la recherche agronomique (INRA)UNSPECIFIED
Agence Nationale de la Recherche (ANR)ANR-10-LABX-49-01
Agence Nationale de la Recherche (ANR)ANR-17-EURE-0003
European Research Council (ERC)773875
Ministerio de Ciencia e Innovación (MCINN)PGC2018-099232-B-I00
Issue or Number:6551
Record Number:CaltechAUTHORS:20210709-170210283
Persistent URL:
Official Citation:Cauliflower fractal forms arise from perturbations of floral gene networks. Eugenio Azpeitia, Gabrielle Tichtinsky, Marie Le Masson, Antonio Serrano-Mislata, Jérémy Lucas, Veronica Gregis, Carlos Gimenez, Nathanaël Prunet, Etienne Farcot, Martin M. Kater, Desmond Bradley, Francisco Madueño, Christophe Godin and Francois Parcy. Science 373 (6551), 192-197; DOI: 10.1126/science.abg5999
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:109758
Deposited By: Tony Diaz
Deposited On:09 Jul 2021 17:24
Last Modified:09 Jul 2021 17:24

Repository Staff Only: item control page