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Twin boundary (TB) engineering has been widely applied to enhance the strength and plasticity of metals and alloys, but is rarely
adopted in thermoelectric (TE) semiconductors. Our previous first-principles results showed that nanotwins can strengthen TE
Indium Antimony (InSb) through In-Sb covalent bond rearrangement at the TBs. Herein, we further show that shear-induced
deformation twinning enhances plasticity of InSb. We demonstrate this by employing large-scale molecular dynamics (MD) to
follow the shear stress response of flawless single-crystal InSb along various slip systems. We observed that the maximum shear
strain for the (111)[112] slip system can be up to 0.85 due to shear-induced deformation twinning. We attribute this deformation
twinning to the “catching bond” involving breaking and re-formation of In-Sb bond in InSb. This finding opens up a strategy to
increase the plasticity of TE InSb by deformation twinning, which is expected to be implemented in other isotypic llI-V

semiconductors with zinc blende structure.
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INTRODUCTION

Indium Antimony (InSb) is found to be one of the most potential
high-performance thermoelectric (TE) material in IlI-V semicon-
ductors'®. InSb is also widely used as infrared detectors because
of its narrow band gap (0.18 eV at 300 K) and the highest mobility
among Ill-V semiconductors (about 7.8x10*cm?V's™' at
300K)’""". However, as for TE materials, the cycling of thermal
stress under working conditions causes the crack opening, leading
to the deterioration of material performance and even the failure.
Although as for infrared detectors, its working temperature (at
77 K) is much lower than its storage temperature (at 300 K),
leading to the coefficient of thermal expansion mismatch that
causes the brittle cleavage'®'®. In recent year, some ductile
inorganic semiconductors with special intrinsic structure have
been found, such as a-Ag,5'”?° and InSe?!, which have out-
standing mechanical properties. However, for the other semi-
conductors without excellent intrinsic properties such as InSb,
these deficiencies in mechanical properties severely limit its
extended engineering applications. Therefore, the mechanical
properties of InSb need to be improved for its industrial
applications.

One effective way to enhance the material mechanical proper-
ties is via structural design. A specific two-dimensional structural
design, twin boundary (TB), has beneficial effects on structural
mechanical properties, which has attracted attention in recent
years. TBs provide low energy grain boundaries that can
strengthen the materials by minimizing effective grain size to
the nanoscale, while hindering dislocation movement, which is
well-known as the Hall-Petch effect???3. The dislocations change
from glissile dislocations to sessile dislocations while crossing TBs
and thus protect the structure from slip failure, which is called as
Basinski mechanism?. During deformation twinning, the increas-
ing proportion of twins may change the lattice orientation to a

hard direction, which is noted as texture hardening. Because of
the above effects of twins, introducing TBs to optimize materials
has been widely applied in metals and ceramics®>~%, yet its effects
on TE semiconductors remain less explored. Growth twins can be
produced in TE semiconductor InSb during preparation®°~3, with
a very low twin interfacial energy (20.7 mJm %3* making
introducing TBs appropriate to tune mechanical performance.

In our previous study, we used density functional theory (DFT)
to investigate the shear stress response of nanotwin InSb and
found that the directional covalent In-Sb bond rearrangements at
TBs strengthen structural stiffness, which improves the ideal shear
strength of InSb by 11%>*. However, the nucleation mechanism
for nanotwins and the mechanical properties of large-scale
nanotwinned InSb remain unexplored. In order to investigate
the mechanical properties of InSb under realistic conditions, we
employed molecular dynamics (MD) simulations to examine shear
stress response along various slip systems for flawless single-
crystal InSb. Interestingly, we found deformation twinning forms
easily along the (117)[112] slip system in InSb. Similar phenomena
have been observed in other materials that deformation may
improve plasticity with strain-induced dislocation®>=®. To investi-
gate this plastic behavior in TE semiconductors, we examined the
evolution of twinning in several stages. By identifying the
chemical bond change during twin nucleation, we explained
how the shear load along the (111)[112] direction induces the
deformation twinning, yet retains structural integrity. By calculat-
ing the energy of slipping and twinning, we explained why
deformation twinning, rather than slipping, is more plausible
under shear loading along the (111)[112] direction. These findings
help provide improved understanding of deformation twinning in
enhancing the plasticity of semiconductor with zinc blende
structure.
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Fig. 1 Structure of InSb and shear stress response. a The structure of InSb with sketch map of double face centered cubic (fcc) lattice, the
red atoms are In and the blue atoms are Sb. b The shear stress-strain curve of seven different slip systems. The shear stress-strain curve of the

(111)[112] slip system (the purple one) is partitioned into five stages: O-A: elastic stage; A-B: stress dropping stage; B-C-D: structural yielding
stage; D-E: structural strengthening stage; E-F: structural failure stage.
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Fig. 2 Structural deformation during stress dropping stage. a Deformation of whole structure at 0.2625 shear strain. d, g, j The cross-
sections of the first, second, and third stack in a. b Deformation of whole structure at 0.2645 shear strain. e, h, k The cross-sections of the first,
second, and third stack in b. ¢ Deformation of whole structure at 0.2690 shear strain. f, i, | The sections of the first, second, and third stack in c.
Atoms are colored coded by the atomic shear strain. The path of two perfect dislocations reacting into three partial dislocations is embedded
in e. The part in red rectangle in c is the area of Fig. 5.
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RESULTS
Mechanical properties of InSb along different slip systems

First, we investigated the mechanical properties of flawless single-
crystal InSb through calculating the shear response along seven
plausible slip systems. The structure of single-crystal InSb is shown
in Fig. 1a, it has the F43M space group, with In and Sb located in
the 4a (0, 0, 0) and 4c (0.25, 0.25, 0.25) sites, respectively. The
lattice parameter from MD simulations is a =6.479 A and In-Sb
bond length is 2.80 A at room temperature (300K), in agreement
with experiment (a = 6.476 A)*’. The shear stress—strain curves are
displayed in Fig. 1b, where the (111)[112] slip system and its
opposite slip system (111)[112] have the lowest mechanical
strength of 4.6 GPa at shear strain of 0.26, making them the most
plausible slip systems. Interestingly, beyond the maximum stress
point, we found that the (111)[112] slip system shows an obvious
plastic deformation, whereas the other six slip systems show
typical brittle failure (as shown in Supplementary Fig. 1). In the
following sections, we will focus on explaining the plastic
deformation under a shear load along the (111)[112] slip system
at three different stages as shown in Fig. 1b:
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® stress dropping stage (A-B),

® structural yielding stage (B—C-D),

® structural strengthening and failure stage (D-E-F).

Stress dropping stage

The structural deformation of the (111)[112] slip system during
the stress dropping stage is shown in Fig. 2. The atoms are colored
according to their atomic shear strain®°, so that the structure
clearly divided into two parts: undeformed blue area and
deformed green area. During the rapid stress drop from 4.6 to
1.5 GPa, an obvious three-layered stack gradually forms (stack is
judged by structure analysis of dislocation analysis (DXA)***! in
open visualization tool (OVITO)*?), as shown in Fig. 2a—c. The
atomic shear strain in the three-layered stacking increases rapidly
with the color changing from blue to green. In the first stack
evolution (Fig. 2d—f), as the shear strain increases from 0.2625 to
0.2690, the 1<112> partial dislocations gradually diffuse (the
dislocation type is judged by DXA***! in OVITO*). In the second
stack evolution (Fig. 2g-i), the é <112> partial dislocations nucleate
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Fig. 3 Structural deformation during the structural yielding stage. a—e Deformation of the whole structure at strain a 0.30, b 0.40, c 0.50,
d 0.60, and e 0.70. Atoms are colored coded by the atomic shear strain. The (111) planes in twins and matrix are represented by red and yellow
lines, respectively, which reflect the crystal rotation during the twinning.
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Fig.4 Structural deformation during the strengthening and failure stage. a-d Deformation of whole structure at strain a 0.73, b 0.76, ¢ 0.88,
and d 0.89. Atoms are color coded by the atomic shear strain. In b, there are slips along the (1 17)[112] direction in the matrix. In ¢, the slips
along the (117)[112] direction are hindered by TBs. In d, the breakage along (111)[112] direction initiates at TBs, leading to the structural

failure.

near the edge area of dislocation lines in the first stack (as shown
in Fig. 2d). In the third stack evolution (Fig. 2j-I), the %<112>
partial dislocations nucleate near the edge area of dislocation lines
in the second stack (as shown in Fig. 2h). The %<112> partial
dislocations occur from the dislocation reaction in the face
centered cubic (fcc) structure®:

1 1 1

310113 +5 101 143y = 3% £ [112] 54y M
The relationship of these dislocations is also shown in Fig. 2e.
Thus, the three-layered stacking evaluation under shear load
along the (111)[112] slip system leads to nucleation of deforma-
tion twinning, which suddenly reduces the shear stress.

Structural yielding stage

The structural deformation of (111)[112] slip system at structural
yielding stage is shown in Fig. 3. With shear strain increasing from
0.269 to 0.30 (from Fig. 2c to Fig. 3a), the stacking ratio (the volume
increment of the stacked area within unit strain increment) reduces
and the shear stress drop starts to slow down (point B in Fig. 1b).
As the shear strain increases from 0.30 to 0.70 (Fig. 3a—e), stacking-
induced deformation twins (green parts) gradually grow with
crystal rotation (according to the red and yellow lines), resulting in
the texture hardening, corresponding to the stage of C-D in Fig.
1b. Accompanied by the crystal rotation in the deformation
twinning, the structure exhibits the yielding stage.

Structural strengthening and failure stage
The structural deformation of (111)[112] slip system at structural
strengthening and failure stage is shown in Fig. 4. When the shear

strain increases to 0.73 (Fig. 4a), the system only contains two-
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layer matrix. At this moment, the matrix can hardly transform to
the deformation twins, but rather it will start to slip along the [112]
direction with the increasing shear strain, as shown in Fig. 4b. This
leads to a slight stress drop (point D in Fig. 1b). However, the slip
direction ([112]) is not parallel to the shear direction ([112]) and
the slip-induced dislocation movement is hindered at TBs, as
shown in Fig. 4c. Thus, the structure retains integrity, resulting in
structural strengthening (stage D-E in Fig. 1b). The contribution of
the dislocation hindering to the plastic deformation during the
stage of structural strengthening (stage D-E in Fig. 1b) is less than
that of the twining during the stage of structural yielding (stage
B-D in Fig. 1b); thus, the twinning is the dominant mechanism for
the plastic deformation in InSb. At 0.88 shear strain (Fig. 4c), the
structure starts to slip at TBs, whereas the matrix orientation
mainly changes to its symmetry orientation ((111)[112)), indicat-
ing that the (111)[112] slip system is more likely to slip than the
(111)[112] slip system. By changing the crystal orientation, the
deformation twinning contributes to the activation of slipping.
Then at 0.89 shear strain (Fig. 4d), the slippages rapidly propagate
along [112] direction (origin orientation) and cross the nanotwins,
leading to the structural failure (stage E-F in Fig. 1b).

Atomistic explanation of deformation twinning evaluation
To investigate the deformation twinning evaluation of InSb under

shear loading along the (111)[112] slip system, we extract the
local atomistic configurations in Fig. 2c to illustrate the chemical
bonding responses against shear strain, as shown in Fig. 5. As the
shear strain increases from 0.2698 to 0.2702 (Fig. 5a-d), In2 and
Sb2 move relatively along the (1171)[112] direction with In2-Sb2
bond rotating, which gradually changes the matrix orientation to

its symmetry orientation ((111)[112]). Under shear load along the

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences
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b Strain 0.270

Fig. 5 Local atomic configuration extracted from Fig. 2c during twin nucleation. a-d Atomic structure at strain a 0.2698, b 0.2700, c 0.2701,
and d 0.2702. The red atoms are In and the blue atoms are Sb. From a to d, In2 and Sb2 keep moving relatively along the (117)[112] direction.
Distance between In2 and Sb3 keeps increasing in b and ¢; new bond between In2 and Sb1 forms in d.

(111)[112] direction, In2 and Sb1 move along the (111)[112]
direction relatively with a decreased distance. Meanwhile, In2 and
Sb3 move along the (111)[112] direction relatively with increased
distance, until the In2-Sb3 bond breaks at 0.2701 shear strain (Fig.
5c). Beyond breaking the In2-Sb3 bond, Sb1 immediately attracts
its nearby atom In2 to form the In2-Sb1 bond at 0.2702 shear
strain (Fig. 5d), as they both lack one covalent bond to reach
covalent bond saturation. As the In2-Sb1 bond forms, the In2-Sb2
bond rotates to keep the neighbor structure of In2 intact. We refer
to this bond-breaking formation process between the neighboring
atom as “catching bond,” which has been observed in our
previous DFT calculations®®. However, shearing along the sym-
metry direction of the (111)[112], the (111)[112] direction cannot
cause such decreased distance between In2-Sb1 or In3-Sb2,
let alone the “catching bond.” The “catching bond” can maintain
the structural integrity during the extremely crystal rotation in the
twin nucleation (stage A-B in Fig. 1b) and further resulting in the
twin growth (stage B-C-D in Fig. 1b).

To further investigate the origin of deformation twinning
nucleation in InSb, we calculated the bond lengths and angles
during the elastic stage, as shown in Fig. 6. Three bond types and
three angle types are classified as shown in Fig. 6a. The elongation
of the bond 1 is less than that of bond 2 at the elastic stage, but
bond 1, rather than bond 2, breaks at the beginning of the twin
nucleation (point A), as shown in Fig. 6b. This indicates that the
bond stretching is not the main reason for breaking bond 1. The
bond angle 1, consisting of bond 1 and 2, is bent significantly at
the elastic stage from 109.4° to 124.4°. Similarly, the angle 3
consisting of bond 1 and 3 is remarkably bent as well, from 109.4°
to 100.5°, although the angle 2 consisting of bond 2 and 3 is
slightly bent from 109.4° to 106.6°. These angle changes are
shown in Fig. 6¢. This indicates that the directionality of covalent
bond 1 changes significantly against shear stress, which leads to
breaking bond 1 at point A. This data analysis explains the
breaking of the In2-Sb3 bond in Fig. 5. The breaking of bond 1
leads to twinning on the (117) glide-set plane, which is a non-
shear plane, as shown in Fig. 6a. Therefore, by breaking bond 1,
the shearing along the (111)[112] direction leads to twinning

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

along the (117)[112] non-shear direction. This atomic explanation
explains why the deformation twinning nucleates along the
(111)[112] direction, as shown in Fig. 2a.

Energy explanation of competition between twin and slip

The double fcc lattice structure has two different kinds of close-
packed (111) planes: glide-set plane (narrowly spaced atomic
layer) and shuffle-set plane (widely spaced atomic layer)*.
Slipping on these two different planes is induced by different
dislocations. On the shuffle-set plane, slipping can be induced by
a perfect dislocation along the {111}<170> direction, resulting in
cleavage, as observed in InSb under shear along different
direction (Supplementary Fig. 1). However, this slipping cannot
be induced by leading-trailing partial dislocations, because partial
dislocations on the shuffle-set plane are unstable. On the glide-set
plane, the slipping cannot be induced directly by a perfect
dislocation along the {111}<110> direction, because the density
of covalent bonds on the glide-set plane is much higher than that
on the shuffle-set plane, making it more likely to be induced by
the leading-trailing partial dislocations. The twinning can be
formed only on the glide-set plane, because the partial dislocation
exits only on the glide-set plane. These three kinds of shear
deformation modes (the slipping on the shuffle-set plane and the
glide-set plane, and the twinning on the glide-set plane) are
illustrated in Supplementary Fig. 2.

To discuss the competitive mechanism between these three
shear deformation modes, we employed DFT to calculate the
cleavage energy on the shuffle-set plane and the generalized
stacking fault energy (GSFE) on the glide-set plane, as shown in
Fig. 7a. The details of the DFT calculations are described in
“Methods.” We observed that the cleavage energy y. (1440.0 mJ
m™?) is higher than the unstable stacking energy yu (778.9m)J
m~?) (Fig. 7a), indicating that the slipping-induced cleavage on
the shuffle-set plane is more difficult to occur than the stacking on
the glide-set plane, as well as this stacking-induced slipping and
twinning. By further observing the structures of y,q points, the
atoms near the stack plane and its neighboring atoms form

npj Computational Materials (2021) 111
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Fig.6 Bond lengths and angles with increasing shear strain. a Schematic diagram of the bonds and angles, and the glide-set and shuffle-set
planes. b Bond lengths with increasing shear strain. ¢ Bond angles with increasing shear strain. The double fcc lattice has two different kinds
of slip planes on {111}: glide-set plane (narrowly spaced atomic layer) and shuffle-set plane (widely spaced atomic layer)*. In a, the glide-set
plane and shuffle-set plane are represented by the green line and the yellow line, respectively. In b and ¢, point A in Fig. 1b is represented by
black dashed lines to distinguish the elastic and plastic stage.
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Fig. 7 The cleavage energy and GSFE curves. a The cleavage energy and GSFE curves. b Optimized model at y ¢ points. In a, the maximum
energy of the stacking energy curve (black square), the twinning energy curve (red circle), and the cleavage energy curve (blue triangle) are
the unstable stacking energy y,s, the unstable twinning energy y,. and the cleavage energy y., respectively. The minimum energy in the
middle of stacking energy curve (black square) is the stacking fault energy y¢s and the minimum energy at the end of twinning energy curve
(red circle) is the extrinsic stacking fault energy 2y.*. These definitions are consistent with ref. 4. In b, the section of the atoms in the black
dashed rectangle is displayed on the right.

approximate equilateral triangles, whereas the distance of In1-Sb1
(2.76 A) is only 4.2% shorter than the In-Sb bond in single crystal
(2.88 A), as shown in Fig. 7b. This indicates that the structure
retains its integrity at this point. On the other hand, the unstable
twinning energy y.. (798.5mJm™2) is very close to the unstable
stacking energy Yy« (778.9 mJ m~2) (Fig. 7a), indicating that, after

npj Computational Materials (2021) 111

the stacking on the glide-set plane, twinning with a second layer
stack is easy to substitute the slipping with a trailing partial
dislocation®. In addition, both the stacking fault energy ys
(36.9 mJ m™2) and the extrinsic stacking fault energy 2y;* (37.5 mJ
m~2) are very low, indicating that the twinning transition
structures, both one-layer stack and two-layer microtwin, are very

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



stable®®. Therefore, the twinning on the glide-set plane can be
easily induced by suitable shear load, such as shear load along the
(111)[112] direction. This shear can lead to the “catching bond” in
case of the breakages, as we have explained before.

By analyzing the energy barrier of different shear processes,
under the shear load along the (111)[112] direction, the reason for
generating twinning, rather than slipping, can be summarized as:
at first, the slipping-induced cleavage on the shuffle-set plane is
difficult to occur due to the high y., whereas the stacking on the
glide-set plane may occur due to the low y,g. Then, due to the
twinning energy is close to the stacking energy, on the glide-set
plane, the second stacking along the [112] shear direction is more
likely to be activated than the trailing dislocation along the [211]
direction or [121] direction that causes the slipping. This finally
results in the deformation twinning on the glide-set plane.

DISCUSSION

In summary, we identified the deformation twinning formation in
TE InSb under shear loading along the (111)[112] direction at
300 K, which is rarely observed in TE semiconductors, but a typical
plastic deformation behavior in metal and alloy. By analyzing the
chemical bond response, we found that the shear load along the
(111)[112] direction can induce deformation twinning by breaking
the directionality of the In-Sb covalent bond to change its
neighboring structure. Meanwhile, to achieve saturation of
covalent bond under the new neighboring structure, the “catching
bond” occurs, which further maintains the structural integrity. By
analyzing the cleavage energy on the shuffle-set plane and GSFE
curves on the glide-set plane, we found that the energy barrier of
the slipping-induced cleavage on the shuffle-set plane is higher
than that of the twinning on the glide-set plane, making
deformation twinning is preferable. The deformation twinning
with the crystal re-orientation leads to a large yielding stage,
resulting in a maximum shear strain of ~0.85. These findings
should provide guidelines helpful to improve the plasticity of zinc
blende structure semiconductors through TBs engineering.

METHODS
MD simulations

For the MD simulations, we chose the Tersoff potential47 to describe the
interactions of atoms in InSb, whose format is shown below:

IS fm)liin) —

E= 2 2 iz

where fg(r;) is the attractive function, fa(rj) is the repulse function, b;
represents the many-body term, and fry) is the cutoff function. All
parameters used here are from ref. *®. The calculated elastic constants of
InSb from this potential are C;; =66.7 GPa, C;; =32.0GPa, and Cyy =
31.9GPa at ambient conditions, which agree well with the experimental
results (C;; = 66.69 GPa, C;, = 36.45 GPa, and C,, = 30.2 GPa)* and the
DFT results (Cyy =720GPa, Ci,=354GPa, and Cys=34.1GPa)*. The
elastic modulus were also derived from the elastic constants by means of
Voigt-Reuss-Hill approximation method with the results of Young's
modulus E=58.3 GPa, bulk modulus B=43.6 GPa, shear modulus G =
25.0 GPa, and Poisson’s ratio v=0.26, which correspond to the experi-
mental results (B =47.4GPa)’' and the DFT results (= 62.290 GPa, G =
25.499 GPa, v = 0.221)°%. The average lattice parameter a is ~6.48 A, which
also coincides with experimental results a=6.476 A*’. These verify the
feasibility of this force field.

Four structural models of InSb were built with size of ~140 A along all
three dimensions as shown in Supplementary Fig. 3 and seven kinds of slip
systems were considered for shear, which are listed in Supplementary
Table 1. All the shear MD simulations were performed using the Large-
scale Atomic Molecular Massively Parallel Simulator®®>>*. The equation of
motion was integrated with a time step of 1x 10~ ps. Periodic boundary
conditions were applied in all three directions to eliminate the surface
effects. All systems were relaxed under isothermal-isobaric ensemble with
isotropic barostat set to 0 Pa and Nose-Hoover thermostat® at 300K for

byfa(ry)] @
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100 ps to equilibrate the system before the shear load was imposed. Shear
load was applied every 0.1 ps with the shear strain rate of 1x 10°s~" using
canonical ensemble with Nose-Hoover thermostat®® at 300K, until the
structural failure. The atomic structures are displayed by using OVITO*
with atomic shear strain®®° and are analyzed by DXA***" in OVITO.

DFT calculations

DFT calculations were run on the Vienna Ab Initio Simulation Package
using the generalized gradient  approximation  with  the
Perdew-Burke—-Emzerhof*® exchange-correlation function. The energy toler—
ance and the force tolerance applied for the convergence were 1x 10 ¢eV
and 1x 1072eV A", respectively. An energy cutoff of 500 eV was applied for
the geometry optimization. A 7 x 7 x 7 Monkhorst-Pack® k-point was used
for the single-crystal InSb geometry optimization, whereas an 8x1x 14
Monkhorst-Pack grid was used for cleavage energy and GSFE calculations.
The lattice parameter from the DFT geometry optimization is a = 6.648 A. For
the other energy calculations, a single cell was created along the direction of
[112]x [111]x [170] with 12 atoms and expanded to a 1x4x 1 supercell
with 12 layers along the [111] direction. Periodic boundary conditions were
applied along all three dimensions. For cleavage energy calculation, a
vacuum buffer of 20 A was inserted in a shuffle-set plane near the y-direction
periodic boundary. The vacuum buffer is thick enough that the relative
energy change between the flawless structure and the cleavage structure is
independent of further increasing vacuum thickness. This relative energy
change divided by the separated plane area is the cleavage energy y.. For
GSFE calculations, the model with vacuum buffer of 20A was further
displaced rigidly on different glide-set plane. For stacking process, the model
was displaced rigidly on a glide-set plane in the middle of the model along
the (111)[112] direction. For twinning process, the one-layer stacked model
was further displaced rigidly on another nearby glide-set plane along the
(111)[112] direction. The structures for the GSFE calculations were optimized
only along the [111] direction. The relative energy change per unit area on
shear plane under different displacements constitute the GSFE curves.
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