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A B S T R A C T

We extend the model-free data-driven paradigm for rate-independent fracture mechanics pro-
posed in Carrara et al. (2020), to rate-dependent fracture and sub-critical fatigue. The problem is
formulated by combining the balance governing equations stemming from variational principles
with a set of data points that encodes the fracture constitutive behavior of the material. The
solution is found as the data point that best satisfies the meta-stability condition as given by the
variational procedure and following a distance minimization approach based on closest-point-
projection. The approach is tested on different setups adopting different types of rate-dependent
fracture and fatigue models affected or not by white noise.

. Introduction

Model-free data-driven computational mechanics has been recently proposed in Kirchdoerfer and Ortiz (2016) and Conti et al.
2018). It aims at retaining the epistemic and certain conservation laws governing a mechanics problem, while avoiding the
ntroduction of uncertain constitutive relationships. The uncertainty of the latter stems from the attempt to distillate a postulated
nd empirical constitutive relation from a set of material observations (Lopez et al., 2018; Carrara et al., 2020). This introduces
pproximations, heuristics and an implicit interpretation of the material data mediated by the specific form of the relationship
hosen, introducing a subjective bias (Carrara et al., 2020). While in the past analytical constitutive models have been used to
eneralize few observations, today this concept can be overcome since the modern world is data-rich. Hence, the main idea is to
ntroduce the raw material data directly into the solution stream of the mechanics boundary value problem (Kirchdoerfer and Ortiz,
016, 2017, 2018; Ibañez et al., 2017).

In general, a model-free data-driven solver seeks, within the material data set, the point to be associated to a specific state
hat best fulfills the basic epistemic conservation laws (Kirchdoerfer and Ortiz, 2016; Conti et al., 2018). The identification of the
olution is done by minimizing the distance induced by a metric defined in the so-called phase-space between the material data
et and the subspace of states that are compatible and in equilibrium. Further developments of this basic approach encompass a
aximum entropy strategy to increase the robustness with respect to noisy material data sets (Kirchdoerfer and Ortiz, 2017), the

eformulation of the problem as a mixed-integer optimization scheme (Kanno, 2019) and the introduction of local manifold learning
chemes that tessellate the material space with linear embeddings (Eggersmann et al., 2021; Kanno, 2020). Most of the numerical
tudies available in the literature deal with conservative systems, namely under the assumption of linear elasticity (Kirchdoerfer
nd Ortiz, 2016, 2017; Conti et al., 2018), geometrically non-linear elasticity (Conti et al., 2020; Nguyen and Keip, 2018) and
lastodynamics (Kirchdoerfer and Ortiz, 2018).

Data-driven computational mechanics can be also adopted in the context of inverse problems such as in Leygue et al. (2018) and
tainier et al. (2019) where distance minimization is used to identify material parameters from experimental tests. Also, in Ibañez
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et al. (2017) and Lopez et al. (2018) a machine learning technique is devised able to identify numerical constitutive manifolds from
experimental data, while in Flaschel et al. (2020) interpretable hyperelastic constitutive models are discovered from synthetic data
sets.

The extension of the data-driven paradigm to dissipative materials is, to date, a largely open question (Carrara et al., 2020). Here,
he main issue is how to ensure data representability when the material behavior becomes history dependent without introducing
odeling hypotheses such as a priori defined dependencies from postulated internal/history variables. In this context, Eggersmann

et al. (2019) consider specific representational paradigms governing the evolution of the material data set, while in Ladevèze et al.
(2019) the solution of the data-driven problem is conditioned by the accumulated plastic strain-rate. In Carrara et al. (2020), a
model-free data-driven approach to variational fracture mechanics is proposed. Here, the natural choice for the history variable is
the crack length, which is an experimentally measurable quantity. Solutions stemming from both local and global stability principles
are compared and different distances to be minimized are defined.

In Carrara et al. (2020) the analysis is limited to quasi-static rate-independent conditions. Rate-dependent crack propagation
is typical of many common materials, such as soft materials for biomechanics applications and composite materials for the civil
and aerospace industry (Lefranc and Bouchaud, 2014; Hauch and Marder, 1998). Moreover, although being exhaustive for smooth
evolutions, the rate-independent framework is not representative of discontinuous processes, namely in case of crack jumps. Negri
(2010b) demonstrated that, while for smooth crack evolutions the rate-independent quasi-static problem coincides with the rate-
dependent one for vanishing loading rates, this no longer hold when dealing with discontinuous evolutions. This stems from the fact
that the discontinuities in the crack propagation evolution can be physically understood as an indirect manifestation of dynamic
processes. Another issue related to discontinuous crack evolution is the possible competition between different locally stable states
occurring in case of non-convex free-energy potentials (Negri, 2010a,b; Carrara et al., 2020). Within the classical analytical solution
process, one can select the correct solution invoking the causality or Onsager’s principle (Negri, 2010a) but in the model-free data-
driven paradigm such considerations cannot play any role. As illustrated in Carrara et al. (2020), this might lead the data-driven
search procedure to favor the solution associated with the maximum dissipation, regardless of whether initial and final states are
separated by energetic barriers. This issue is prevented in a rate-dependent framework thanks to viscous regularizing effects (Negri,
2010b; Toader and Zanini, 2009; Knees et al., 2008). Another limitation of the rate-independent framework is that it inhibits crack
propagation below a certain energetic threshold, which excludes the occurrence of sub-critical cyclic crack growth. Instead, this can
be accounted for in analogy with the rate-dependent framework upon the adoption of some appropriate precautions (Larsen et al.,
2009).

In this paper we extend the model-free data-driven approach proposed in Carrara et al. (2020) to the case of rate-dependent
and fatigue fracture propagation. To this end, we adopt the phenomenological approach of Negri (2010b) and Larsen et al. (2009),
where a rate-dependent energy dissipation is assumed to account for the effects of non-negligible crack tip velocities. These are
mainly due to crack micro-branching taking place at length scales that cannot be resolved within a macroscopic description of
the phenomenon (Fineberg et al., 1999; Sharon and Fineberg, 1999; Lefranc and Bouchaud, 2014; Hauch and Marder, 1998; Ravi-
Chandar, 2004). Although including this effect needs a dynamic description of the cracking process, it is not directly governed by
inertial forces that can thus be neglected, at least as long as the crack tip velocity is much lower than the Rayleigh wave speed (Negri,
2010b; Fineberg et al., 1999; Sharon and Fineberg, 1999; Lefranc and Bouchaud, 2014).

To focus our attention on the data-driven formulation and allow a comparison with standard analytical or semi-analytical results
we consider the simplest case of a crack propagating along a known direction in a linear elastic body with known compliance
function. A limited non-linear zone ahead of the crack tip is allowed as long as the small-scale-yielding hypothesis holds. Under these
assumptions the linear fracture mechanics theory applies and the crack size and propagation velocity are expressed by two scalar
quantities. Following Kirchdoerfer and Ortiz (2016) and Carrara et al. (2020), we remove any fracture modeling hypothesis and we
let the fracture constitutive behavior be embodied by a set of data points. The constraint set encoding the epistemic conservation laws
is derived following variational principles and the data-driven solution is found through a local or meta-stability principle (Negri,
2010b). Note that, being the rate-dependent problem generally convex, in principle globally and locally stable solutions coincide.
However, as illustrated in Carrara et al. (2020), the adoption of a meta-stability approach mitigates the over-sensitivity of the
global minimization approach to the noise possibly present in the data set. Also, the distance minimization procedure is based on
the closest-point-projection strategy which was shown in Carrara et al. (2020) to outperforms the other investigated strategies.

The paper is structured as follows. The variational formulation of rate-dependent fracture is summarized along with its adaptation
to sub-critical fatigue conditions in Section 2. Section 3 illustrates the proposed data-driven procedures along with the details of
the numerical implementation. Section 4 compares standard and data-driven results under both rate-independent and -dependent
conditions and for sub-critical fatigue crack growth, adopting material data sets with and without noise. For rate-dependent fracture,
cases featuring dependence on the crack tip velocity only or on both crack size and velocity are considered and the ability of the
proposed approach to reproduce and extend the rate-independent case is demonstrated. Concluding remarks are drawn in Section 5.

2. Rate-dependent fracture mechanics

Aim of this section is to characterize the equilibrium of a cracked body showing a rate-dependent fracture propagation behavior.
We also show that the same framework can be adapted to the study of sub-critical fatigue crack growth along the same lines as
in Negri (2010b) and Larsen et al. (2009).

The formulation aims at a phenomenological description of the crack propagation when its velocity affects the macroscopic
2

behavior, while remaining much lower than the Rayleigh wave speed. This condition allows to neglect inertial forces and to lump
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the microscopic rate-dependent effects in the dissipation potential. This permits to study crack propagation under static equilibrium
conditions, where, however, the energy dissipated by the moving crack tip depends on its velocity. Although approximate, this
approach was proven to be reliable for low propagation velocities and when the crack tip does not interact significantly with the
material boundaries (Fineberg et al., 1999; Sharon and Fineberg, 1999; Lefranc and Bouchaud, 2014; Hauch and Marder, 1998;
Negri, 2010b).

2.1. Preliminary definitions and problem statement

We assume a straight and planar crack propagating under pure mode-I conditions in an otherwise linear elastic body. Under
hese conditions the load is described by an effective force 𝑃 , the deformation by an effective conjugate displacement 𝛥 and the

crack extension by its length 𝑎, which is the result of the propagation history described by the (scalar) crack tip velocity 𝑣. The
relation between 𝑎 and 𝑣 reads

𝑎̇(𝑡) =
𝑑𝑎(𝑡)
𝑑𝑡

= 𝑣 (𝑡) ≥ 0 . (1)

where 𝑡 is the time. We postulate 𝑣 ≥ 0 to enforce crack irreversibility. The crack length at a given instant 𝑡 is obtained as

𝑎
(

𝑎0, 𝑣, [0, 𝑡]
)

= 𝑎0 + ∫

𝑡

0
𝑣 (𝑠) 𝑑𝑠 . (2)

where 𝑎0 is the initial crack extension, while we assume without loss of generality that 𝑣0 = 𝑣(0) = 0. Note that the crack length at
a given instant 𝑡 depends on the whole crack tip velocity history 𝑣 ∈ [0, 𝑡].

To simplify the notation, the evolving quantities are endowed with a subscript indicating the time variable, for instance 𝑣(𝑡) = 𝑣𝑡,
𝑎(𝑎0, 𝑣, [0, 𝑡]) = 𝑎𝑡, 𝛥(𝑡) = 𝛥𝑡 and 𝑃 (𝑡) = 𝑃𝑡.

Assuming now a displacement-controlled process, the time-continuous evolution problem can be formulated as

Problem 2.1 (Time-continuous Evolution). Given an initial crack length 𝑎0 and the imposed displacement history 𝛥𝑡, determine the
evolution of the crack tip velocity 𝑣𝑡, the crack length 𝑎𝑡 and the load 𝑃𝑡.

2.2. Incremental loading procedure

When dealing with an incremental loading procedure it is more convenient to formulate the evolution problem in terms of the
finite crack length increment 𝜟𝑎.1 Hence, Problem 2.1 can be reformulated as

Problem 2.2 (Discrete Evolution). Let 𝜟𝑡 ≥ 0 be a time interval and 𝑡𝑘 = 𝑘𝜟𝑡 be a uniform time discretization with 𝑘 the (positive
nteger) time step. At the load step 𝑘+1, given 𝑣𝑘 and 𝑎𝑘 at time 𝑡𝑘 and 𝛥𝑘+1 at time 𝑡𝑘+1, determine the crack tip velocity 𝑣𝑘+1 ≥ 0,
he (finite) increment of the crack length 𝜟𝑎𝑘+1 so that 𝑎𝑘+1 = 𝑎𝑘 + 𝜟𝑎𝑘+1, and the load 𝑃𝑘+1.

In this case a time integration strategy should be adopted to obtain the crack size increment 𝜟𝑎𝑘+1. This point is particularly
elevant for the numerical solution of the problem; it is illustrated in detail in the following Section 3.2.

.3. Energetic quantities and variational approach

The evolution problem can be formulated variationally. Let us first introduce the relevant energetic quantities. The free energy
f the system is written as

𝐹 (𝛥, 𝑎) = 𝐸(𝛥, 𝑎) + 𝐹𝑅(𝑎, [0, 𝑡]) with 𝑎 given by (2) , (3)

here 𝐸(𝛥, 𝑎) is the elastic strain energy and 𝐹𝑅(𝑎, [0, 𝑡]) is the energy dissipated to create new fracture surfaces. The latter is defined
tarting from a dissipation potential (𝑎, 𝑣) such that

𝐹𝑅(𝑎, [0, 𝑡]) = ∫

𝑡

0
(𝑎𝑠, 𝑣𝑠) 𝑑𝑠 . (4)

ote that the dissipation potential depends on the current values of crack size and tip velocity, while the resistance term 𝐹𝑅 is a
unction of the whole crack evolution history. Also, the energy dissipated per unit crack length or critical energy release rate 𝐺𝑅(𝑎, 𝑣)
s defined starting from the dissipation potential as (Negri, 2010b)

𝐺𝑅(𝑎, 𝑣) =
𝑑𝐹𝑅
𝑑𝑎

(𝑎, [0, 𝑡]) = 1
𝑣
𝑑𝐹𝑅
𝑑𝑡

(𝑎, [0, 𝑡]) = 
𝑣
(𝑎, 𝑣) , (5)

where (1) is used.

1 The bold-face symbol 𝜟∙ stands here for a range of values or an increment of the quantity ∙ and not for a displacement that is conversely indicated with
3

a light-face 𝛥.
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Also, inspired by a large number of experimental studies, the following properties are usually assumed to hold

lim
𝑣→0

𝐺𝑅(𝑎, 𝑣) = 𝐺𝑄𝑆
𝑅 (𝑎), lim

𝑣→+∞
𝐺𝑅(𝑎, 𝑣) = +∞ and

𝜕𝐺𝑅
𝜕𝑣

(𝑎, 𝑣) ≥ 0 ∀𝑎 ≥ 𝑎0 , (6)

where 𝐺𝑄𝑆
𝑅 (𝑎) is the critical quasi-static rate-independent energy release rate, which reduces to the Griffith critical energy release

rate if 𝐺𝑄𝑆
𝑅 (𝑎) = 𝐺𝑐 = constant. Evidently, if the resistance energy release rate function is independent from the crack length,

i.e. 𝐺𝑅(𝑎, 𝑣) = 𝐺𝑅(𝑣), the property (6)a delivers an implicit Griffith-like quasi-static resistance model. It is also worth noting here
that (6)c renders the problem associated with the rate-dependent fracture propagation convex (Negri, 2010b), so that global and
local minimization approaches became equivalent (Carrara et al., 2020).

The elastic strain energy 𝐸 is written in term of the compliance function as follows

𝐸(𝛥, 𝑎) = 𝛥2

2𝐶(𝑎)
, (7)

where 𝐶(𝑎) is the (known) compliance function of the body. The elastic strain energy has the following properties

𝑃 = 𝜕𝐸
𝜕𝛥

(𝛥, 𝑎) = 𝛥
𝐶(𝑎)

and 𝐺 = − 𝜕𝐸
𝜕𝑎

(𝛥, 𝑎) = 𝛥2

2𝐶2(𝑎)
𝑑𝐶
𝑑𝑎

, (8)

here 𝐺 is termed energy release rate.
The solution to Problem 2.1 is based on the minimization of the free energy (4). As in Negri (2010b), we consider the time-discrete

roblem 2.2 where the crack tip velocity at the step 𝑘 + 1 is approximated as

𝑣̄𝑘+1 =
𝑎𝑘+1 − 𝑎𝑘

𝜟𝑡
. (9)

Also the dissipated energy is decomposed as follows

𝐹𝑅(𝑎𝑘+1, [0, 𝑡𝑘+1]) = 𝐹𝑅(𝑎𝑘, [0, 𝑡𝑘]) + 𝜟𝐹𝑅(𝑎𝑘+1, [𝑡𝑘, 𝑡𝑘+1]) = 𝐹𝑅(𝑎𝑘, [0, 𝑡𝑘]) + ∫

𝑡𝑘+1

𝑡𝑘
(𝑎𝑠, 𝑣𝑠) 𝑑𝑠 . (10)

The free energy 𝐹 (𝛥𝑘+1, 𝑎𝑘+1) at time 𝑡𝑘+1 can be approximated as

𝐹 (𝛥𝑘+1, 𝑎𝑘+1) ≃ 𝐹 (𝛥𝑘+1, 𝑎𝑘+1) = 𝐸(𝛥𝑘+1, 𝑎𝑘+1) + 𝐹𝑅(𝑎𝑘, [0, 𝑡𝑘]) +
(

𝑎𝑘+1,
𝑎𝑘+1 − 𝑎𝑘

𝜟𝑡

)

𝜟𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≃𝜟𝐹𝑅(𝑎𝑘+1 , [𝑡𝑘 , 𝑡𝑘+1])

. (11)

The solution 𝑎∗𝑘+1 given the load 𝛥𝑘+1 and the solution at the previous time step 𝑎∗𝑘 is then found as

𝑎∗𝑘+1 → arg min
𝑎𝑘+1≥𝑎∗𝑘

{

𝐹 (𝛥𝑘+1, 𝑎𝑘+1)
}

. (12)

Adopting a local minimization strategy, we aim thus at finding the crack size 𝑎∗𝑘+1 such that

∃ℎ > 0 ∶ 𝐹 (𝛥𝑘+1, 𝑎
∗
𝑘+1) ≤ 𝐹 (𝛥𝑘+1, 𝑎

∗
𝑘+1 + 𝛿𝑎) , ∀ |𝛿𝑎| ≤ ℎ such that 𝑎∗𝑘+1 + 𝛿𝑎 ≥ 𝑎∗𝑘 . (13)

Expanding (13) in Taylor series up to the first order we can write

∃ℎ > 0 ∶ 𝜕𝐹
𝜕𝑎

|

|

|

|𝑎∗𝑘+1

𝛿𝑎 ≥ 0 , ∀ |𝛿𝑎| ≤ ℎ such that 𝑎∗𝑘+1 + 𝛿𝑎 ≥ 𝑎∗𝑘 . (14)

Introducing (5) and (8)b we obtain
[

−𝐺(𝛥𝑘+1, 𝑎
∗
𝑘+1) + 𝐺𝑅

(

𝑎∗𝑘+1,
𝑎∗𝑘+1 − 𝑎∗𝑘

𝜟𝑡

)]

𝛿𝑎 ≥ 0 , ∀ |𝛿𝑎| ≤ ℎ such that 𝑎∗𝑘+1 + 𝛿𝑎 ≥ 𝑎∗𝑘 . (15)

The fulfillment of (15) gives the following activation and propagation criteria

if 𝑎∗𝑘+1 = 𝑎∗𝑘, (𝑣̄∗𝑘+1 = 0) ⇒ 𝛿𝑎 ≥ 0 then 𝐺(𝛥𝑘+1, 𝑎
∗
𝑘+1) − 𝐺𝑄𝑆

𝑅
(

𝑎∗𝑘+1
)

≤ 0 ; (16)

if 𝑎∗𝑘+1 > 𝑎∗𝑘, (𝑣̄∗𝑘+1 > 0) ⇒ 𝛿𝑎 ⋚ 0 then 𝐺(𝛥𝑘+1, 𝑎
∗
𝑘+1) − 𝐺𝑅

(

𝑎∗𝑘+1,
𝑎∗𝑘+1 − 𝑎∗𝑘

𝜟𝑡

)

= 0 . (17)

he conditions (16)–(17) define by induction the series 𝑎̃𝜟𝑡 = {𝑎∗𝑘, 𝑘 = 1,… , 𝑁} and 𝑣̃𝜟𝑡 = {𝑣̄𝑘 given by (9), 𝑘 = 1,… , 𝑁} as the
solution of the incremental minimization problem (12) and, hence, of Problem 2.2. As proven in Negri (2010b), the series minimizing
(11) converge uniformly to the solution of Problem 2.1 when 𝜟𝑡 → 0, namely 𝑎̃𝜟𝑡 → 𝑎𝑡 and 𝑣̃𝜟𝑡 → 𝑣𝑡. In the time-continuous case
(16)–(17) can be rewritten as

if 𝑣 = 0 ⇒ 𝐺(𝛥 , 𝑎 ) − 𝐺𝑄𝑆 (

𝑎
)

≤ 0 ; (18)
4

𝑡 𝑡 𝑡 𝑅 𝑡
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if 𝑣𝑡 > 0 ⇒ 𝐺(𝛥𝑡, 𝑎𝑡) − 𝐺𝑅
(

𝑎𝑡, 𝑣𝑡
)

= 0 . (19)

The criteria (18)–(19) can be recast as a set of Kuhn–Tucker conditions as follows

𝑣𝑡 ≥ 0 ,

𝐺(𝛥𝑡, 𝑎𝑡) − 𝐺𝑅(𝑎𝑡, 𝑣𝑡) ≤ 0 ,
[

𝐺(𝛥𝑡, 𝑎𝑡) − 𝐺𝑅(𝑎𝑡, 𝑣𝑡)
]

𝑣𝑡 = 0 .

(20)

Under some regularity conditions, (20) can be converted to the following ordinary differential equation (Negri, 2010b)

𝑣𝑡 =
𝑑𝑎𝑡
𝑑𝑡

= 𝐺̃−1
𝑅

(

𝐺(𝛥𝑡, 𝑎𝑡)
)

, (21)

where 𝐺̃−1
𝑅

(

𝐺(𝛥𝑡, 𝑎𝑡)
)

is defined as

𝐺̃−1
𝑅

(

𝐺(𝛥𝑡, 𝑎𝑡)
)

=

{

𝐺−1
𝑅

(

𝐺(𝛥𝑡, 𝑎𝑡)
)

, if 𝐺(𝛥𝑡, 𝑎𝑡) > 𝐺𝑄𝑆
𝑅 (𝑎𝑡)

0 , otherwise .
(22)

2.4. Body connected to a loading device

In case the body is loaded through a simple linear device of known compliance 𝐶𝑀 and the test is driven controlling the device
displacement 𝛥𝑇 , the opening displacement 𝛥 and the load 𝑃 are related by

𝛥𝑇 = 𝛥 + 𝐶𝑀𝑃 . (23)

Substituting (8)a into (23) provides the following relation between crack opening and device displacement

𝛥 =
𝐶(𝑎)

𝐶(𝑎) + 𝐶𝑀
𝛥𝑇 . (24)

In this case, the variational procedure requires the definition of the following function (Carrara et al., 2020)

𝛷(𝛥, 𝑃 , 𝑎) = 𝐸(𝛥, 𝑎) + 𝐹𝑅(𝑎, [0, 𝑡]) −
𝐶𝑀
2

𝑃 2 − 𝑃 (𝛥 − 𝛥𝑇 ) . (25)

Combining (7), (8)a and (24) into (25) permits to eliminate 𝑃 and 𝛥 and gives the following modified free energy function

𝐹𝑀 (𝛥𝑇 , 𝑎) = 𝐸𝑀 (𝛥𝑇 , 𝑎) + 𝐹𝑅(𝑎, [0, 𝑡]) , (26)

with

𝐸𝑀 (𝛥𝑇 , 𝑎) =
1
2

𝛥2
𝑇

𝐶(𝑎) + 𝐶𝑀
and 𝐺(𝛥𝑇 , 𝑎) =

𝛥2
𝑇

2(𝐶(𝑎) + 𝐶𝑀 )2
𝑑𝐶
𝑑𝑎

. (27)

Imposing a load ramp 𝛥𝑇 , 𝑡 the energy (26) can be minimized as in Section 2.3, ultimately giving activation and propagation
riteria similar to (18)–(19). In this case, the loading history 𝛥𝑡 should be replaced with 𝛥𝑇 , 𝑡 and the energy release rate with (27)b.

.5. Sub-critical crack growth and fatigue

The activation criterion (18) states that when the energy release rate at the crack tip is below the critical quasi-static rate-
ndependent limit 𝐺𝑄𝑆

𝑅 (𝑎) the crack propagation is inhibited. However, the experimental evidence shows that the crack might still
e able to propagate even below 𝐺𝑄𝑆

𝑅 (𝑎) but its growth rate is so low that it becomes measurable only after the application of several
oad cycles.

This observation allows us to describe the cyclic or fatigue behavior within the same framework presented in Sections 2.3–2.2.
n this case, the role of time is played by the number of load cycles 𝑁 and the sub-critical crack tip velocity 𝑣𝑁 must be intended
s

𝑣𝑁 = 𝑑𝑎
𝑑𝑁

, (28)

and takes the name of sub-critical or fatigue crack growth rate. Concerning the resistance curve, the experimental evidence suggests
that the front growth rate is related to the energy release rate through a power law, possibly with a (fatigue) driving force threshold.
The first and most widespread relation of this type is proposed by Paris and Erdogan in Paris and Erdogan (1963) and, since then, has
evolved until reaching today the form of the well-known NASGRO equation (Rabold et al., 2013). This type of fatigue constitutive
laws usually give the crack growth rate as a function of 𝜟𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛, where 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 are the maximum and minimum
alues of the stress intensity factor reached in one cycle. The latter quantities can be converted, for mode-I plane states, into energy
elease rates by means of the relationship 𝐺 = 𝐾2∕𝑌 ′, where 𝑌 ′ is the Young’s modulus under either plane stress or strain state,
iving

𝑣 = 𝜑(𝜟𝐺) with 𝜟𝐺 = 𝜟𝐾2
, (29)
5
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where 𝜑 is a known function dependent on the chosen model. Considering that the fatigue behavior in brittle materials depends
only on the range of load applied at the crack tip rather than on its absolute value, the energy release range in (29) can be replaced
by an equivalent absolute value. Thus, once the applied energy release rate is specified using, e. g., (8)b, Eq. (29) can be considered
the sub-critical version of (21) and its inverse can be understood, similarly to (5), as an equivalent sub-critical energy release rate
curve 𝐺𝑓 (𝑣𝑁 ),2 i.e.

𝐺𝑓 (𝑣𝑁 ) = 𝜑−1(𝑣𝑁 ) . (30)

A little care has to be paid when dealing with Paris–Erdogan-type laws, whose aim is a phenomenological description of the
rocess. In this case the pseudo-time variable 𝑁 takes only positive integer values and is thus discrete. Also, these laws give the
verage crack tip advancement within one cycle when a certain nominal 𝜟𝐾 or 𝜟𝐺 is applied at the crack tip. Hence, the evolution of
he system must be quantized cycle-by-cycle and the applied range of stress intensity factor or energy release rate must be computed
t the crack tip at the beginning of each cycle. In other words, the evolution of the system within a single cycle must be neglected
ecause it is lumped in the definition of the law.

In this case we only have a discrete evolution problem, which can be formulated as follows

roblem 2.3 (Sub-critical Crack Growth). For cycle 𝑘+1, given the crack length 𝑎𝑘 at the end of cycle 𝑘 and the applied range of energy
elease rate 𝜟𝐺𝑘+1, determine the crack growth rate 𝑣𝑘+1 ≥ 0 and the crack length at the end of the cycle 𝑎𝑘+1 = 𝑎𝑘 + 𝑣𝑘+1 ⋅ 1 cycle.

Note that, since the fatigue crack propagation process is intended here as a sequence of rate-independent steps, Problem 2.3 does
not need the definition of an integration scheme, unlike Problem 2.2.

3. Data-driven approach

3.1. Data representation

The first problem to face is how to characterize a rate-dependent or cyclic fracture process by means of data. To this end we
first revisit the classical solution of the evolution problem, where the functions characterizing the elastic energy 𝐸(𝛥, 𝑎) and the
dissipation potential (𝑎, 𝑣) are completely known.

Similarly to Carrara et al. (2020), one possibility is to define the solution of the propagation problem illustrated in Section 2 in
terms of pairs (𝛥𝑡, 𝑃𝑡) lying in the corresponding phase space  that are both in the constraint set defined by (23) and in the material
data set. The latter is defined as the set of points in  that, given 𝑎0, satisfies simultaneously (2), (8)a and (21) at every instant 𝑡.
However, this might results in a non-trivial task because of the history dependence of the crack length.

Rather, we consider the solution being represented by the crack size 𝑎𝑡 and corresponding tip velocity 𝑣𝑡 that minimizes the free
energy (3) or (26). Taking as paradigmatic example the case of a specimen connected to a loading device, given 𝛥𝑇 , 𝑡 and 𝑎0, the
solution of the ordinary differential equation (21) delivers the crack evolution 𝑎𝑡 along with the related crack tip velocity 𝑣𝑡 that
at every instant 𝑡 fulfills (20). Note that (20) identifies, in case of crack propagation, the state corresponding to the intersection
between the functions 𝐺(𝛥𝑡, 𝑎𝑡) and 𝐺𝑅(𝑎𝑡, 𝑣𝑡) as solution.

We remove now the hypothesis that the resistance quantities are analytically known, rather they are introduced as a discrete
resistance data set 𝑅. Also, we retain the assumption that the elastic strain energy is exactly known and characterized in terms of
the compliance function of the specimen 𝐶(𝑎). Within the experimental practice it is customary to provide the resistance quantities
as the critical energy release rate 𝐺𝑅. Under these premises, (12) entails, at every instant 𝑡, a discrete minimization over the points
included into 𝑅.

3.2. Data-driven computational procedure

Although the data-driven procedure that we propose is unique and based on closest-point projection proposed in Carrara et al.
(2020), as follows we distinguish between different cases.

3.2.1. Implicit quasi-static Griffith model
Many experimental results in the literature involve resistance data that are independent on the crack length (Lefranc and

Bouchaud, 2014; Hauch and Marder, 1998; Fineberg et al., 1999; Sharon and Fineberg, 1999). Hence, 𝑅 is composed of pairs
(𝑣̂𝑖, 𝐺̂𝑅,𝑖), implicitly involving a Griffith-like rate-independent limit.

In this case, we first define the quasi-static rate-independent critical energy release rate 𝐺̂𝑄𝑆
𝑅 as the value 𝐺̂𝑅,𝑖 corresponding to

𝑣̂𝑖 = 0. This value remains constant throughout the computation for any value of crack size 𝑎, which conversely varies assuming

2 Although here the energy release rate resistance curve is given as a function of 𝑣𝑁 only, the proposed approach is general and can also encompass the
case of dependence upon both 𝑣𝑁 and 𝑎. However, the latter case does not find any support in the literature, where, typically, the fatigue constitutive laws are
6

given in the form (29).
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thus the role of a history variable. Then, the activation criterion (18) at every instant 𝑡 must be verified and, if the condition for
the crack propagation is satisfied, the crack tip velocity must be defined so as to best approximate (19), namely 𝑣𝑡 = 𝑣̂𝑖∗𝑡 where

𝑖∗𝑡 = arg min
𝑖

{

𝓁
(

𝐺(𝛥𝑇 , 𝑡, 𝑎(𝑣𝑡)) − 𝐺̂𝑅,𝑖
)}

, (31)

where 𝓁 is a normalization parameter with the unit of a length. Also, in the spirit of data-driven mechanics, the term in the curly
brackets can be regarded as a generalized energy distance between the constraint set and the material data set.

As mentioned in Section 2.2, within an incremental loading process a suitable time integration procedure is needed and here we
adopt a Crank–Nicholson implicit scheme. Hence, with 𝑣𝑘 and 𝑣𝑘+1 denoting respectively the initial and final (unknown) crack tip
velocities, the crack length increment can be approximated as

𝜟𝑎𝑘+1 =
𝑣𝑘 + 𝑣𝑘+1

2
𝜟𝑡 . (32)

e adopt a solution procedure using a predictor–corrector scheme. At the load step 𝑘 + 1, given 𝑎𝑘 and 𝑣𝑘 at 𝑡𝑘 along with 𝛥𝑇 ,𝑘+1
t 𝑡𝑘+1, we define the trial crack length increment as

𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 =
𝑣𝑘
2
𝜟𝑡 . (33)

Then, we check if 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘+𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 )− 𝐺̂𝑄𝑆
𝑅 ≤ 0. If this is the case, then the solution 𝜟𝑎𝑘+1 = 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 and the crack at 𝑡𝑘+1 is at

quilibrium, namely 𝑣𝑘+1 = 0. Conversely if 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘 +𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 ) −𝐺𝑄𝑆
𝑅 > 0, the evolution of the crack during the load step must

comply with (19). At 𝑡𝑘+1 we are thus looking for the best discrete approximation of 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘 +𝜟𝑎𝑘+1) −𝐺𝑅(𝑣𝑘+1) = 0. However,
nlike in the time-continuous evolution, now the evolution of the crack length within the finite time increment must be accounted
or.

To address this point, for each pair (𝑣̂𝑖, 𝐺̂𝑅,𝑖) ∈ 𝑅 we compute the distance

𝑑𝑖, 𝑘+1 = min
𝑎≥𝑎𝑘

⎧

⎪

⎨

⎪

⎩

√

𝛤 2
(

𝑣𝑘 + 𝑣̂𝑖
2

𝜟𝑡 + 𝑎𝑘 − 𝑎
)2

+ 𝓁2
(

𝐺̂𝑅,𝑖 − 𝐺
(

𝛥𝑇 ,𝑘+1, 𝑎
))2

⎫

⎪

⎬

⎪

⎭

, (34)

where 𝛤 is a normalization parameter with units of energy per unit area and we find the solution as 𝑣𝑘+1 = 𝑣̂𝑖∗𝑘+1 , with

𝑖∗𝑘+1 = arg min
𝑖

{

𝑑𝑖, 𝑘+1 ∶ (𝑣̂𝑖, 𝐺̂𝑅,𝑖) ∈ 𝑅
}

. (35)

3.2.2. Complete model
In the most general case the resistance data set may be composed of triplets (𝑣̂𝑖, 𝑎̂𝑖, 𝐺̂𝑅,𝑖) and hence the closest-point-projection

must take place in the 3D space (𝑣, 𝑎, 𝐺). In this case, the quasi-static rate-independent critical energy release rate is no longer
a constant parameter as in Section 3.2.1, rather it can be defined as a subset 𝑄𝑆

𝑅 ⊂ 𝑅 of points characterized by a crack tip
velocity 𝑣̂𝑖 below a certain threshold related to the instrumental accuracy. Differently than the implicit Griffith model, here the
history variable is vectorial and constituted by the couple (𝑎𝑡, 𝐺̂

𝑄𝑆
𝑅, 𝑡 ).

For the time-continuous evolution, we define the current value of the quasi-static critical energy release rate 𝐺̂𝑄𝑆
𝑅, 𝑡 as the value

𝐺̂𝑅,𝑖 corresponding to 𝑎̂𝑖 = 𝑎𝑡. Then, we proceed to check the activation criterion (18) and, if the crack fulfills the propagation
condition, the solution is found as 𝑣𝑡 = 𝑣̂𝑖∗ with

𝑖∗𝑡 = arg min
𝑖

{√

𝛤 2
(

𝑎̂𝑖 − 𝑎𝑡
)2 + 𝓁2

(

𝐺̂𝑅,𝑖 − 𝐺
(

𝛥𝑇 , 𝑡, 𝑎𝑡
))2 ∶ 𝑎̂𝑖 ≥ 𝑎𝑡

}

. (36)

Again, the term into brackets can be regarded as a generalized distance.
Compared to the implicit Griffith case, the incremental loading case requires a little more care. At the step 𝑘 + 1, given 𝑎𝑘 and

𝑣𝑘 at 𝑡𝑘 along with 𝛥𝑇 ,𝑘+1 at 𝑡𝑘+1, we first determine the trial crack length increment as in (33) and 𝐺̂𝑄𝑆
𝑅,𝑘+1 as the value 𝐺̂𝑅,𝑖 ∈ 𝑄𝑆

𝑅
corresponding to 𝑎̂𝑖 = 𝑎𝑘+𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 . Then, if 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘+𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 )−𝐺𝑄𝑆

𝑅,𝑘+1 ≤ 0 we have 𝜟𝑎𝑘+1 = 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 and 𝑣𝑘+1 = 0. Conversely,
if 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘+𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 )−𝐺𝑄𝑆

𝑅,𝑘+1 > 0, to be able to compute the projection of the points in 𝑅 onto the energy release rate function,
we parametrize the latter as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺 = 𝐺(𝛥𝑇 ,𝑘+1, 𝑎(𝑣)) ,

𝑎(𝑣) = 𝑎𝑘 +
𝑣𝑘 + 𝑣

2
𝜟𝑡 ,

𝑣 .

(37)

which corresponds to projecting 𝐺(𝛥𝑇 ,𝑘+1, 𝑎) onto the plane (𝐺, 𝑎(𝑣)). We can thus define for each triplet (𝑣̂𝑖, 𝑎̂𝑖, 𝐺̂𝑅,𝑖) ∈ 𝑅, the
distance

𝑑𝑖, 𝑘+1 = min
{ √

𝛤 2𝜅2
(

𝑣̂𝑖 − 𝑣
)2 + 𝛤 2

(

𝑎̂𝑖 − 𝑎(𝑣)
)2 + 𝓁2

(

𝐺̂𝑅,𝑖 − 𝐺
(

𝛥𝑇 ,𝑘+1, 𝑎(𝑣)
))2

}

, (38)
7
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where 𝜅 is a normalization parameter with units of time. The solution is then found as 𝑣𝑘+1 = 𝑣̂𝑖∗ , with

𝑖∗𝑘+1 = arg min
𝑖

{

𝑑𝑖, 𝑘+1 ∶ (𝑣̂𝑖, 𝑎̂𝑖, 𝐺̂𝑅,𝑖) ∈ 𝑅, 𝑎̂𝑖 ≥ 𝑎𝑘
}

. (39)

Note that the crack size is here used as a history variable that conditions the choice of the crack tip velocity.
The advantage in using the complete approach is twofold. On one hand, it makes it possible to reproduce situations where

the fracture energy is dependent also on the crack length, as in case of an R-curve rate-independent limit. On the other hand, it
might include also the rate-independent case provided that the resistance data set is endowed with observations made in conditions
fulfilling the rate-independent assumptions. In this case, the solution is then defined as

(𝑣𝑘+1, 𝜟𝑎𝑘+1) =
⎧

⎪

⎨

⎪

⎩

(0, 𝑎̂𝑖∗ − 𝑎𝑘) if 𝑣̂𝑖∗ ∈ 𝑄𝑆
𝑅 (𝖱𝖺𝗍𝖾 − 𝗂𝗇𝖽𝖾𝗉. 𝗉𝗋𝗈𝖼𝖾𝗌𝗌)

(

𝑣̂𝑖∗ ,
𝑣𝑘 + 𝑣𝑖∗

2
𝜟𝑡
)

Otherwise (𝖱𝖺𝗍𝖾 − 𝖽𝖾𝗉. 𝗉𝗋𝗈𝖼𝖾𝗌𝗌) .
(40)

The procedure is thus able to recognize when the crack tip velocity is so low that a rate-independent quasi-static state is a good
approximation of the solution. In this sense it encompasses and extends the rate-independent approach proposed in Carrara et al.
(2020).

3.2.3. Sub-critical crack growth and fatigue
For the sub-critical crack growth, the resistance data set 𝑅,𝑓 is composed of pairs (𝑣̂𝑖, 𝐺̂𝑓,𝑖), where 𝐺̂𝑓,𝑖 has to be intended as

the nominal range of energy release rate spanned during a cycle that triggers a crack growth equal to 𝑣̂𝑖 per cycle.
The procedure to solve the sub-critical crack growth problem is very similar to what illustrated in Section 3.2.1 with few

fundamental modifications.
Similarly to the implicit quasi-static Griffith model (Section 3.3.1), the limit value for the arrest of the crack propagation 𝐺̂𝑇

𝑓 ,
termed fatigue threshold, is a constant parameter. It can be defined as the value 𝐺̂𝑓,𝑖 corresponding to 𝑣̂𝑖 = 0 in 𝑅,𝑓 , i.e. to a
negligible crack propagation after a virtually unlimited number of cycles. It is conventionally assumed that a component has an
infinite fatigue life if it can survive 2-5⋅106 cycles.

Consider a specimen with a crack that, at the end of the 𝑘th cycle, has a length 𝑎𝑘 and during the cycle 𝑘 + 1 experiences the
application of a cyclic action 𝜟∙ = ∙𝑚𝑎𝑥−∙𝑚𝑖𝑛 where ∙ stands either for 𝛥, 𝛥𝑇 or 𝑃 in case respectively of a crack opening displacement-
(COD-), machine displacement- or load-driven test and the subscript 𝑚𝑎𝑥 and 𝑚𝑖𝑛 refer respectively to the maximum and minimum
value reached. The nominal energy release rate range experienced at the crack tip 𝜟𝐺𝑘+1 can be thus computed using (8)b or (27)b
as

𝜟𝐺𝑘+1(𝜟∙, 𝑎𝑘) = 𝐺(∙𝑚𝑎𝑥, 𝑎𝑘) − 𝐺(∙𝑚𝑖𝑛, 𝑎𝑘) . (41)

Considering the nature of the data included into 𝑅,𝑓 (Section 2.5), the solution is found as 𝑣𝑁 = 𝑣̂𝑖∗𝑘+1 where

𝑖∗𝑘+1 = arg min
𝑖

{

𝓁
(

𝜟𝐺𝑘+1(𝜟∙, 𝑎𝑘) − 𝐺̂𝑓,𝑖
)

∶ 𝐺̂𝑅,𝑖 ∈ 𝑅,𝑓
}

. (42)

In this case, the distance (34) reduces to 𝓁
(

𝜟𝐺𝑘+1(𝜟∙, 𝑎𝑘) − 𝐺̂𝑓,𝑖
)

.

3.3. Numerical implementation

This section provides more details on the algorithms adopted to implement the numerical procedures illustrated in Section 3.2
for the incremental loading procedure.

We first note that the primary variable to solve for is the crack tip velocity 𝑣𝑘+1, which is always positive, hence, the irreversibility
condition is automatically satisfied and encoded into the material data set. The same applies to the properties of the critical energy
release rate (6), that do not have to be enforced.

For coherence with the irreversibility postulate, we account only for the active part of the energy release rate function while
computing the closest-point-projection distance, i.e. we account only for the portion of 𝐺(𝛥𝑇 , 𝑎) accessible for 𝑣 ≥ 0 (or 𝑎 ≥ 𝑎𝑘).
In the following algorithms, we introduce also the variable 𝐺𝐷𝐷,𝑘+1 that stores at every load step the energy release rate of the
identified solution point.

For all three procedures the computed distance 𝑑𝑖 can be seen as a measure of the error committed in fulfilling the basic laws
(20). Hence, a tolerance for the distance can be set to reject the solutions that are affected by an excessive error. However, in the
following it is assumed that the adopted data set contains enough information to cover the propagation process from the initial
crack length 𝑎0 to the boundary of the domain.

3.3.1. Implicit quasi-static Griffith model
In Appendix A.1 the procedure to obtain the data-driven solution in case of implicit quasi-static Griffith model is presented. It

might be often the case that no point in the data set corresponds to 𝑣̂𝑖 = 0, thus the value to be assigned to 𝐺̂𝑄𝑆
𝑅 is 𝐺̂𝑖 ∈ 𝑅 related
8

to the minimum value of 𝑣̂𝑖.
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Fig. 1. Geometry of the double cantilever beam test.

.3.2. Complete model
The implementation of the complete model is detailed in Appendix A.2. If no points in 𝑄𝑆

𝑅 corresponds to the initial 𝑎0 or to
he trial crack length 𝑎𝑘 + 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 , the initialization and further updates of 𝐺̂𝑄𝑆

𝑅 are performed as

𝐺̂𝑄𝑆
𝑅,𝑘+1 =

⟨

𝐺̂𝑄𝑆
𝑅,𝑖𝐿

, 𝐺̂𝑄𝑆
𝑅,𝑖𝑆

⟩

, (43)

where ⟨∙⟩ is the mean value operator and the subscripts 𝑖𝐿 and 𝑖𝑆 are the indexes of the points in 𝑄𝑆
𝑅 with 𝑎̂𝑖 immediately larger

and smaller than 𝑎0 or 𝑎𝑘 + 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 .

3.3.3. Sub-critical crack growth and fatigue
The data-driven solution of the sub-critical fatigue crack propagation problem is illustrated in Appendix A.3. The data-driven

fatigue threshold 𝐺̂𝑇
𝑓 can be initialized as the value of 𝐺̂𝑓,𝑖 ∈ 𝑅,𝑓 related to the minimum value of 𝑣̂𝑖.

Note that in Algorithm 3 (Appendix A.3) the parameter 𝜟𝑁 is introduced multiplying the obtained crack growth rate at each step.
By setting 𝜟𝑁 = 1 the effect of each cycle on the crack size is accounted for, obtaining thus an explicit cycle-by-cycle computation.
However, when low load levels are applied the crack growth rate is usually very low, leading to a long fatigue life characterized by
a high number of cycles, e. g. 𝑁 ≥ 105 cycles. This regime takes the name of high cycle fatigue and is the most interesting for design
purposes but also computationally time consuming. To reduce the computational time 𝜟𝑁 can be set to an integer value greater
than unity leading to a so-called cycle-jump approach (Cojocaru and Karlsson, 2006). Although a rule for this simple approach cannot
be stated, the value to assign to 𝜟𝑁 usually decreases increasing the applied load range and, in general, it depends on the precision
needed during the computation. More sophisticated approaches based on adaptive definition of 𝜟𝑁 can be however found in the
literature (Cojocaru and Karlsson, 2006; Oskay and Fish, 2004; Bhattacharyya et al., 2019).

4. Numerical examples

To test the capabilities of the proposed approach let us consider the double cantilever beam (DCB) specimen sketched in Fig. 1
having dimensions 𝐿 × 2ℎ × 𝑏 and initial crack length 𝑎0. The test is driven imposing the displacement 𝛥𝑇 , 𝑡 of a loading device
connected to the specimen and with known compliance 𝐶𝑀 . We assume that the arms of the DCB can be considered subjected to
pure bending.

The following dimensionless quantities are used

𝐿̄ = 𝐿
𝐿

= 1 , ℎ̄ = ℎ
𝐿

, 𝑎̄ = 𝑎
𝐿

, 𝑏̄ = 𝑏
𝐿

, 𝐶̄𝑀 = 𝐶𝑀 𝛾 ,

𝑌 = 𝑌 𝐿
𝛾

, 𝛥𝑇 =
𝛥𝑇
𝐿

, 𝑣̄ = 𝑣𝑇
𝐿

, 𝐺̄ = 𝐺
𝛾
, 𝐸̄ = 𝐸

𝛾𝐿2
,

𝐺̄𝑅 =
𝐺𝑅
𝛾

, 𝑡 = 𝑡
𝑇

𝓁 = 𝓁
𝐿

, 𝛤 = 𝛤
𝛾
, 𝜅̄ = 𝜅

𝑇
.

(44)

where the Griffith critical energy release rate 𝛾 and the time frame 𝑇 should be intended as reference values. For the geometry
reported in Fig. 1, the dimensionless energy release rate is

𝐺̄(𝛥𝑇 , 𝑡, 𝑎̄) = 12𝑎̄2𝑌 ℎ̄3
[

𝛥𝑇 , 𝑡
3 ̄ ̄ ̄ ̄ 3

]2

, (45)
9

8𝑎̄ + 𝐶𝑀𝑌 𝑏ℎ
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Table 1
Parameters used for the computations.
Young’s modulus 𝑌 = 70 GPa
Height ℎ = 3 mm
Length 𝐿 = 30 mm
Thickness 𝑏 = 1 mm
Initial crack length 𝑎0 = 3 mm
Displacement ramp 𝛥𝑇 , 𝑡 = 3 ⋅ 10−2

√

𝜀𝑡 mm
Rescaled time increment 𝜟𝜏 = 0.1 s
Machine compliance 𝐶𝑀 = 2 ⋅ 10−3 mm/N

Griffith fracture toughness
𝛾 = 0.06 N/mm(Reference)

Reference time frame 𝑇 = 1 s

for a displacement-driven process, and

𝐺̄(𝑃𝑡, 𝑎̄) =
12𝑎̄2

𝑌 𝑏̄2ℎ̄3
𝑃 2 . (46)

or a load-driven process (Hutchinson, 1979). Also, the dimensionless compliance 𝐶̄(𝑎̄) and applied load 𝑃 (𝛥𝑇 (𝑡), 𝑎̄) are

𝐶̄(𝑎̄) = 8𝑎̄3

𝑌 𝑏̄ℎ̄3
, 𝑃𝑡 =

𝛥𝑇 , 𝑡

𝐶̄(𝑎̄) + 𝐶̄𝑀
. (47)

he dimensionless form of the loading ramp is taken as

𝛥𝑇 , 𝑡 = 10−3
√

𝜀𝑡 , (48)

here the dimensionless parameter 𝜀 rules the loading rate (Negri, 2010b). This allows to define a rescaled time variable 𝜏 as

𝜏 = 𝜀𝑡 . (49)

ote that the rate-independent case can be heuristically obtained for 𝜀 →0, namely for vanishing loading rates.
Although the present approach allows for any loading ramp, the specific choice of (48) renders the energy release rate function

45) linearly dependent on the time variable, which facilitate the comparison of the results.
If not otherwise specified all the results presented in the following sections are obtained using the parameters summarized in

able 1 and the normalization parameters 𝓁 = 𝐿, 𝛤 = 𝛾 and 𝜅 = 𝑇 (i.e., 𝓁 = 𝛤 = 𝜅̄ = 1). Note, that imposing the same time increment
n terms of rescaled time variable 𝜏 = 𝜀 𝑡 allows a fair comparison of the results since it ensures that the solution is computed for
he same energy release rate independently on the loading rate.

The reference solution in terms of crack length 𝑎̄ for the rate-dependent case is obtained numerically integrating (21) with the
atlab algorithm ode15s using a logarithmically spaced time discretization composed of 1000 points and a tolerance of 3 ⋅ 10−14.
he crack tip velocity is computed from the crack size vs. time evolution by means of central finite differences. When relevant,
he rate-independent reference solution is obtained analytically by solving the related problem as detailed in Carrara et al. (2020).
he data-driven solutions are obtained using artificially generated data sets created by random sampling of different underlying
nalytical relationships. Concerning the latter, in the rate-dependent fracture mechanics literature it is customary to consider the
ollowing additive decomposition of the resistance energy release rate curve 𝐺𝑅(𝑎, 𝑣) (Fineberg et al., 1999; Lefranc and Bouchaud,
014)

𝐺𝑅(𝑎, 𝑣) = 𝐺𝑅𝐷
𝑅 (𝑎, 𝑣) + 𝐺𝑄𝑆

𝑅 (𝑎) , (50)

here 𝐺𝑅𝐷
𝑅 (𝑎, 𝑣) is the rate-dependent non-decreasing contribution that vanishes for vanishing crack tip velocities. The range of the

xplored fracture constitutive space is selected to capture the transition between rate-independent and -dependent processes and to
over the crack propagation from the initial crack length 𝑎0 to the maximum extension allowed, 𝐿.

.1. Implicit Griffith-like model

Discussed in this section are the results obtained using Algorithm 1 (Appendix A.1) and the following model featuring an implicit
riffith-like rate-independent limit

𝐺̄𝑅(𝑣̄) = 1 + 2𝑣̄2 , (51)

where 𝐺̄𝑄𝑆
𝑅 (𝑎̄) = 𝐺𝑐 = 1 and 𝐺̄𝑅𝐷

𝑅 (𝑣̄) = 2𝑣̄2. The data sets used for the data-driven solution are obtained through a sampling of (51)
with 100 points randomly distributed along the interval 𝑣̄ = [0, 4].

4.1.1. Noiseless database
Fig. 2a,b show the comparison between the reference and data-driven (DD in the figures) solution in terms of crack size and
10

load evolution obtained with a noiseless database for different loading rate parameters 𝜀 = 1, 10, 100 and 1000.
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Fig. 2. Comparison between reference and data-driven prediction for the implicit Griffith-like model for varying loading rate: results for the noiseless database
n terms of crack length vs. displacement curves (a) and load vs. displacement curves (b); results for the noisy database in terms of crack length vs. displacement
urves (c) and load vs. displacement curves (d).

Considering the limited number of points in the data set, the agreement between reference and data-driven solution is excellent
nd, remarkably, the latter is able to reproduce the characteristic features of the rate-dependent fracture propagation. As expected,
he evolutions of both crack size and load are drastically different for different loading rates (Negri, 2010b). In particular, the
ltimate displacement increases with increasing loading rates (Fig. 2a) and the same applies to the peak force (Fig. 2b). Also, both
eference and data-driven results converge toward the rate-independent result for sufficiently slow loading (Fig. 2a,b). In the present
ase for 𝜀 = 1 the rate-dependent solution is almost overlapped to the rate-independent limit. This is confirmed by Fig. 3a where
he crack tip velocity profiles along the crack path are shown. Here we can see that the crack tip velocity for 𝜀 = 1 is close to zero
or most of the test, while non negligible values are predicted only within the crack length range corresponding to the crack jump
n the rate-independent case. Within such range and unlike in the rate-independent case, the rate-dependent framework and the
roposed approach are able to continuously track the evolution of the system that is characterized by a rapidly evolving crack, a
ast but smooth increase of the DCB compliance and, the drop of the applied load (Fig. 2a,b). Afterwards, the system recovers the
mooth and slow evolution of the rate-independent case. From Fig. 3a we can also see how the crack tip velocity steadily increases
ncreasing the loading rate parameter. Starting from 𝜀 = 100 the rate-independent trend is no longer recovered even for very low
alues of the load (Fig. 2a,b).

.1.2. Noisy database
To determine the sensitivity of the proposed method to noise in the input data, a random white noise with amplitude ± 2.5%

n terms of difference between the observed and expected value of resistance energy release rate is applied to the material data set
sed in Section 4.1.1.
11



Journal of the Mechanics and Physics of Solids 155 (2021) 104559P. Carrara et al.

s

a
1
s
c

o
a
o
f
A
u

p

Fig. 3. Comparison between reference and data-driven crack tip velocity profiles for the implicit Griffith-like model using a noiseless (a) and a noisy (b) database
for varying loading rate.

Fig. 4. Data-driven search procedure at a device displacement 𝛥𝑇 = 2.32⋅10−3: (a) comparison between the energy release rate function and the adopted data
et, (b) detail of the area 𝖠.

The obtained results and the comparison with the reference rate-dependent and -independent solutions are illustrated in Figs. 2c,d
nd 3b in terms of crack size, load evolution and crack tip velocity profiles for the loading rate parameters 𝜀 = 1, 10, 100 and
000. Although the mismatch between data-driven and reference results is not as low as for the noiseless case, the agreement is
till remarkable within the whole loading rate range tested and the observations of Section 4.1.1 apply. This confirms that the
losest-point-projection strategy is a noise-wise robust approach to the data-driven fracture mechanics problem.

Although remaining satisfactory, the agreement between data-driven and reference results slightly degrades toward the final part
f the test especially in case of low loading rates (Fig. 3b). Within such region, the crack front velocity becomes almost constant
nd, since the data-driven solution must be selected among the discrete points of the data set, the solver alternates under- and
ver-estimation of the velocity depending on the distribution of the material points. Note however, that the data-driven solution
luctuates closely around the reference values (Fig. 3b). This discrepancy is averaged out when the velocity changes rapidly (Fig. 3b).

similar behavior is also present using a noiseless data set (Fig. 3a), however it is less visible there because the noise does not add
p to the effect as in Fig. 3b.

Fig. 4 shows the data-driven search procedure for a device displacement 𝛥𝑇 = 2.32⋅10−3 for the loading rate 𝜀 = 1, 10. In
articular, Fig. 4b illustrate how the current solution is selected as the point in the data set closest to the energy release rate function.
12
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Fig. 5. Comparison between reference and data-driven results for non-proportional loading with change of loading rate: (a) loading procedure, (b) crack length
s. displacement and load vs. displacement curves and (c) velocity profile.

he data are presented in the (𝐺̄ − 𝜟𝑎̄) plane and, although the resistance database is always the same, the set of points used for
the closest-point-projection procedure changes depending on the loading rate parameter 𝜀. This happens because the computations
are performed keeping constant the rescaled time increment 𝜟𝜏 and, thus the crack increments 𝜟𝑎̂ that can be reached at a certain
time step change as well depending on 𝜀 and 𝑣̄𝑘 following

𝜟𝑎̂(𝑣̂𝑖, 𝜀) =
𝑣̄𝑘 + 𝑣̂𝑖

2
𝜟𝜏
𝜀

. (52)

In particular, we observe that decreasing the load rate parameter, the crack extensions that can be attained increase and that,
ollowing (52), for 𝜀 →0 a horizontal distribution of the points of the data set would be reached, corresponding to a rate-independent
riffith resistance curve. In this case, the proposed approach reduces to the local minimization strategy based on closest-point-
rojection in Carrara et al. (2020). Also, following (52), the minimum crack extension that can be reached in general does not
anish for vanishing crack tip velocities if the initial velocity 𝑣̄𝑘 ≠ 0.

.1.3. Non-proportional loading
Aim of this section is to demonstrate the capability of the proposed approach to correctly reproduce the reference results also

n case of non-proportional loading. The noisy material database adopted is the same used in Section 4.1.2.
13
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p

Fig. 6. Comparison between reference and data-driven results for non-proportional loading with change of loading rate and complete unloading: (a) loading
rocedure, (b) crack length vs. displacement and load vs. displacement curves and (c) velocity profile.

The first test involves the loading ramp depicted in Fig. 5a characterized by an initial fast loading with 𝜀 = 100 until reaching
a device displacement 𝛥𝑇 = 5⋅10−3 followed by a constant displacement branch up to 𝜏 = 200 (i.e., 𝑡 = 2) and then a slow loading
with 𝜀 = 1 until failure. Fig. 5b,c show again an excellent agreement between reference and data-driven results. During the initial
phase of the loading the system evolution significantly deviates from the rate-independent limit, then, upon stopping the loading
increment (point A), the crack keeps evolving until finding its quasi-static equilibrium state at 𝜏 ≃150 (point B, Fig. 5b). At this
point the crack arrests its evolution and the crack tip velocity remains zero until resuming the load increments (point C, Fig. 5c).
Right after this phase the crack tip velocity oscillates because of the discrete nature of the material data set along with the effect
of the noise, that lead to the alternation of over- and under-estimations of the crack tip velocity.

The second test involves a slow initial loading with 𝜀 = 1 (until point A, Fig. 6a), followed by a constant displacement branch
(segment A-C, Fig. 6a), a complete unloading (segment C-D, Fig. 6a) and then a fast loading with 𝜀 = 100 until failure. The
comparison between data-driven and reference results is again excellent (Fig. 6b,c). In particular, the solution initially follows closely
the rate-independent results and this is confirmed also by the relatively limited time needed by the crack to arrest its evolution
(point C in Fig. 6b,c). Upon unloading and reloading, the system behaves as expected linear-elastically (Fig. 6b), until resuming
crack propagation after point E. This phase is followed by a second load sub-peak (point F) due to the higher loading rate effect
that induces a relatively high crack tip velocity (Fig. 6c). Since the value of 𝐺̂ related to the minimum value of 𝑣̂ that is used to
14

𝑅,𝑖 𝑖



Journal of the Mechanics and Physics of Solids 155 (2021) 104559P. Carrara et al.

t

m
w

N
p

Fig. 7. Constant displacement cracking test: (a) comparison between complete data-driven solution and reference energy release rate curve and (b) load and
crack tip velocity profiles.

Fig. 8. Constant load cracking test: (a) comparison between complete data-driven solution and reference energy release rate curve and (b) load and crack tip
velocity profiles.

initialize 𝐺̂𝑄𝑆
𝑅 is affected by a negative noise, in Fig. 6c we can observe that the initial crack propagation is slightly anticipated in

he data-driven results.
Another common test featuring a non-proportional loading is used to characterize the rate-dependent behavior of, e. g., soft

aterials (Lefranc and Bouchaud, 2014). The test procedure involves the application of a certain displacement or load to a specimen
ithout any initial pre-crack. Then, a sharp notch of length 𝑎0 is created in the specimen while keeping the applied load or

displacement constant and the system is let free to either relax until crack arrest or evolve until failure.
Fig. 7 shows the results obtained for the constant displacement cracking test with an imposed displacement of 𝛥𝑇 = 5⋅10−3.

We can see that the data-driven solution follows closely the energy release rate function obtained for the applied displacement
until reaching an equilibrium crack size 𝑎̄𝑒𝑞 for which 𝐺̄(5 ⋅ 10−3, 𝑎̄𝑒𝑞) ≤ 𝐺̂𝑄𝑆

𝑅 (Fig. 7a). The agreement with the reference results is
very good in terms of both velocity and load (Fig. 7b). Notably, the initial crack length 𝑎̄0 lies within the unstable branch of the
energy release rate function and this leads to an initial increase of the crack tip velocity, that afterwards decreases until vanishing
for 𝑎̄ = 𝑎̄𝑒𝑞 (Fig. 7b). This evolution is also accompanied by a gradual relaxation of the load that reaches the equilibrium value
following (47)b for (𝛥𝑇 , 𝑎̄) = (5⋅10−3, 𝑎̄𝑒𝑞 . Note that before the crack arrest and for low crack tip velocities, the data-driven solution
shows oscillations similar to what highlighted in Section 4.1.2 due to the discrete nature of the material data set (Fig. 7b).

The results for a constant load cracking test with 𝑃 = 20 are presented in Fig. 8. In this case the energy release function is
unstable for any value of 𝑎̄ (Fig. 8a) and this leads to a monotonic increase of the crack tip velocity until complete failure (Fig. 8b).

ote that, also in this case the data-driven approach proposed is able to correctly reproduce the reference results also in the final
hases of the test where the crack tip velocity tends to diverge (Fig. 8b).
15
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Fig. 9. Data-driven search procedure for the complete model.

4.2. Complete model

In this section we present the results for the complete model obtained following Algorithm 2 (Appendix A.2) and we compare
the results with the rate-independent and the implicit Griffith-like model. All the examples involve a material data set composed
of 300 and 50 points respectively for the rate-dependent and -independent material states, randomly sampled within the interval
(𝑣̄, 𝑎̄) = ([0, 1.2], [0, 1.1]). Also, for the remainder of the paper a randomly assigned white noise with amplitude ± 2.5% is applied
similarly to Section 4.1.2.

4.2.1. Comparison with the implicit Griffith-like model
The first example aims at reproducing the results of the implicit Griffith-like model and, hence, adopts as underlying analytical

model equation (51). Fig. 9 shows the data-driven search procedure related to the first dissipative step and for loading rate parameter
𝜀 = 1 and 10.

Since the value of 𝛥𝜏 is kept constant for all the computations, the plane over which the energy release rate function is projected
depends on the value of 𝜀 and its trace on the 𝛥𝑎̄ − 𝑣̄ plane identifies, at the load step 𝑘 + 1, the line

𝛥𝑎̄ (𝑣̄, 𝜀) =
𝑣̄𝑘 + 𝑣̄ 𝛥𝜏 . (53)
16
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Fig. 10. Comparison between reference results, implicit Griffith-like rate-independent limit model and complete model with a Griffith-like rate-independent limit:
(a) crack size vs. displacement curve and (b) crack tip velocity profile.

If 𝜀 → 0, (53) coincides with the 𝛥𝑎̄ axis, favoring the rate-independent solutions over the rate-dependent ones. Conversely, increasing
𝜀 the lines become closer to the 𝑣̄ axis, penalizing thus the rate-independent solutions (Fig. 9).

Fig. 10 presents the comparison between the reference solution and the data-driven results coming either from Algorithm 1
or 2 (Appendix A.1 and Appendix A.2). The agreement is excellent, considering that for the complete model data set there are
wide unsampled areas (Fig. 9). The rate-independent solution is retrieved for sufficiently slow loading procedures (Fig. 10a) and
the reference crack tip velocity profile is well reproduced (Fig. 10b), although in the final part of the test some oscillations are
observable. This is again due to the presence of noise as well as to the discrete nature of the material data, leading to the alternation
of dissipative steps with crack tip velocity higher than the reference one and elastic steps. This effect must not be confused with
the intermittent or stick–slip crack propagation (Ravi-Chandar and Balzano, 1988), which cannot be reproduced by the proposed
approach since it is closely related to the presence of non-negligible inertial forces. Although taking place around the reference
value, the magnitude of the oscillations in this case is higher than in the implicit Griffith-like case (Section 4.1.2, Fig. 3) especially
for 𝜀 = 10. This happens since, in this case, the density of the material points is lower. Note also that, since the material data set is
composed of rate-independent and -dependent states, in this case points with vanishing crack tip velocities are also present in the
later stage of the test.

4.2.2. R-curve rate-independent limit
Aim of this section is to show that Algorithm 2 (Appendix A.2) allows to reproduce generic behaviors depending also on the

crack size and characterized by an R-curve quasi-static rate-independent limit. Here the following reference model is adopted

𝐺̄𝑅(𝑎̄, 𝑣̄) = 1 +
(𝑎̄ − 0.1)2

(𝑎̄ − 0.1)2 + 0.2(𝑎̄ − 0.1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐺̄𝑄𝑆
𝑅 (𝑎̄)

+ 2𝑣̄2

⏟⏟⏟
𝐺̄𝑅𝐷
𝑅 (𝑣̄)

, (54)

where the terms 𝐺̄𝑄𝑆
𝑅 (𝑎̄) and 𝐺̄𝑅𝐷

𝑅 (𝑣̄) follow from (50).
Fig. 11a,b presents the comparison between reference and data-driven results for 𝜀 = 1 and 10. The agreement is remarkable

and similar to what highlighted in Section 4.2.1. Also in this case oscillations in the crack tip velocity profile are visible in the
final part of the test (Fig. 11b) that are wider for 𝜀 = 10. Fig. 11c, which illustrates the complete data-driven solution evolutions,
confirms that within the region affected by crack tip velocity oscillation is characterized by the alternation of dissipative and linear
elastic states. This means that, lacking a better solution, the data-driven procedure identifies as solution a crack tip velocity higher
than the expected (reference) one. Hence, in the following steps the crack stops because the propagation condition is no longer
satisfied although the applied displacement keeps increasing. The propagation then resumes when, after a few steps, the propagation
condition is again satisfied.

Fig. 11c shows also that the proposed approach is able to let the fracture evolve either as a rate-dependent or -independent
process. This is particularly evident for the case with 𝜀 = 1 for a crack size 𝑎̄ ≥ 0.4 where the data-driven search algorithm mostly
identifies material states that lie in the quasi-static rate-independent set, namely belonging to the plane (𝛥𝑎̄ − 𝐺̄).

Fig. 12 shows the profile of identified values of 𝐺̂𝑄𝑆
𝑅 following (43) and, for comparison, the set of rate-independent states 𝑄𝑆

𝑅
and the analytical 𝐺̄𝑄𝑆

𝑅 (𝑎̄) curve of (54). Here we can see that the proposed approach is able to closely follow the reference curve
despite the limited amount of points and the noise. Note that, contrarily to the pure rate-independent case (Carrara et al., 2020),
during crack propagation the reference value for the critical energy release rate is not always identified with a point in 𝑄𝑆

𝑅 but it
17

usually takes values of energy release rate between separate material states.
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Fig. 11. Comparison between reference and data-driven results using the complete model and a R-curve rate-independent limit for different loading rates: (a)
crack size vs. displacement curve, (b) crack tip velocity profile and (c) complete data-driven solution.

4.3. Regularization of the rate-independent problem

This section demonstrates how the algorithms described in Section 3.3 can be conveniently adopted to regularize some
pathological behaviors arising when adopting the rate-independent approach as shown in Carrara et al. (2020). Two cases will be
analyzed, namely the unstable tapered and bimaterial DCB tests. The rate-independent solutions of these setups are characterized
by a non-convex free energy that includes multiple snap-back branches and the presence of multiple competing meta-stable states.
Among these, the data-driven rate-independent solution selects the one closest to the energy release rate function, regardless of
whether energetic barriers separate the initial and final states.
18
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Fig. 12. Comparison between reference and data-driven values of the rate-independent R-curve limit.

Fig. 13. Scheme and geometry of the tapered double cantilever beam test.

Since the introduction of realistic rate-dependent resistance models convexifies the free energy function, this approach is a good
candidate to amend the aforementioned issues. Thus, the rate-dependent model can be seen as a viscous regularization of the non-
convex minimization problem and, in this sense, goes in the direction of the vanishing viscosity approaches adopted, e. g., by Alessi
et al. (2018), Toader and Zanini (2009) and Knees et al. (2008). The assumptions on 𝐺𝑅(𝑎, 𝑣) that render the problem convex are
inspired from the available experimental data, hence, upon substitution of the analytical constitutive laws with the discrete raw
data, they are encoded into the data set.

4.3.1. Unstable tapered DCB
The geometry of the setup adopted here is sketched in Fig. 13. The parameters adopted are the same of the unstable case labeled

case 3 in Carrara et al. (2020), which are summarized in Table 2. The analytical compliance function is given in Carrara et al.
(2020). The same noisy material database used in Section 4.1.2 stemming from (51) is adopted.

Fig. 14a,b compares the results obtained for a loading rate parameter 𝜀 = 1 and 10 with those obtained for the rate-independent
case in Carrara et al. (2020) and the corresponding reference curves. The agreement between reference and data-driven results in
the rate-dependent case is similar to what highlighted in Section 4.1 and the same observations apply. Comparing the data-driven
rate-dependent and -independent results it is possible to see that, unlike in the latter case, in the former the results for 𝜀 = 1
closely approximate the rate-independent reference curves (Fig. 14a,b). In particular, the proposed approach predicts, without the
19
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Table 2
Geometric parameters for the case 3 tapered DCB in Carrara et al. (2020).
ℎ̄1 ℎ̄2 𝐿̄1 𝐿̄𝑇 𝐿̄2 𝑚 (◦)

0.10 0.04 0.45 0.10 0.45 −3/5 (−30.96◦)

Fig. 14. Comparison between data-driven results for the unstable tapered DCB specimen in case of rate-independent (Carrara et al., 2020) and rate-dependent
racture propagation for different loading rates: (a) crack length vs. displacement curves, (b) load vs. displacement curves and (c) data-driven search procedure
t the load step where the rate-independent model fails in detecting the local minimum.

ntroduction of any ad-hoc criterion, a steep but smooth crack (and hence load) evolution in correspondence of both rate-independent
crack jumps, while before and after them it follows a gradual and stable crack evolution. As observed for the simple DCB test, the
system evolution for 𝜀 = 10 is smoother with a slightly higher load peak compared to the other case.

Fig. 14c shows the comparison between closest point projection rate-dependent and -independent data-driven search procedure
at 𝛥𝑇 = 2.4⋅10−3. As observable, the proposed approach amends the issues highlighted in Carrara et al. (2020) concerning the
competition between different meta-stable states and it allows to identify a solution in close agreement with the reference one
(Fig. 14c). Of course, this is not guaranteed if an inappropriate very large time step is selected, so that the crack size increments
become very large even for very low values of the crack tip velocity. In fact, the higher the time step, the more the material data
set flattens, resembling, in the limit for 𝛥𝑡 → ∞ (i.e., for 𝜀 → 0), the rate-independent one.
20
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Table 3
Adopted parameters for the NASGRO equation.
𝐶𝑓 10−7 MPa mm1-m/2 cycles−1

𝑚 3.5
𝑝 0.5
𝑞 1.0
𝐾𝑐 =

√

𝑌 𝛾 64.8 MPa
√

mm
𝐾𝑇 = 0.1𝐾𝑐 6.5 MPa

√

mm

Fig. 15. Scheme and geometry of the bimaterial double cantilever beam test.

4.3.2. Unstable bimaterial DCB
We consider now the setup illustrated in Fig. 15, where the DCB specimen is composed of two different material connected by

a perfect interface. As in Carrara et al. (2020), the extensions of the two sections of the specimen are 𝐿̄1 = 𝐿̄2 = 0.5, while the
nderlying unstable energy release rate resistance model is written following (50) with

𝐺̄𝑅𝐷
𝑅 (𝑣̄) = 2𝑣̄2 and 𝐺̄𝑄𝑆

𝑅 (𝑎̄) =

{

5 for 0.0 < 𝑎̄ ≤ 0.5
1 for 0.5 < 𝑎̄ ≤ 1.0 .

(55)

Since in this case the rate-independent quasi-static resistance model depends on the crack extension 𝑎̄ the complete model must
be adopted. The obtained results for 𝜀 = 1 are illustrated and compared to the reference and rate-independent results from Carrara
et al. (2020) in Fig. 16. A noisy material database 𝑅 is obtained by random sampling of (55)a and (55)b within the range
(𝑎̄, 𝑣̄) = ([0, 1.1], [0, 2]) respectively with 700 and 100 points (Fig. 16c).

Also in this case the proposed approach is able to overcome the issues related to the adoption of the rate-independent model
(Fig. 16a,b). In particular, the first snap back branch is correctly reproduced along with the second one, which takes place when
the crack meets the interface between the two materials. At this point, the crack tip velocity experiences a sudden increase and is
thus forced to rapidly evolve inside the weaker portion of the specimen (Fig. 16c). Then the crack tip velocity gradually decreases
reaching again values close to zero. On the contrary, the rate-independent solution involves a single long crack jump that starts as
soon as the propagation conditions are met at 𝑎̄ = 𝑎̄0 and it immediately jumps inside the weaker material up to 𝑎̄ ≃ 0.65 (Fig. 16a,b).

4.4. Fatigue

Within this section we explore the capability of the proposed approach to reproduce also the fatigue and sub-critical crack
21

propagation behavior by adopting Algorithm 3 (Appendix A.3). As underlying fatigue constitutive law we adopt the NASGRO law
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Fig. 16. Comparison between data-driven results for the unstable bimaterial DCB specimen in case of rate-independent (Carrara et al., 2020) and rate-dependent
fracture propagation: (a) crack length vs. displacement curves, (b) load vs. displacement curves and (c) complete data-driven solution for the rate-dependent
case.

in the form (Rabold et al., 2013)

𝑑𝑎
𝑑𝑁

= 𝑣𝑓 = 𝐶𝑓𝜟𝐾𝑚

(

1 −
𝐾𝑇
𝜟𝐾

)𝑝

(

1 − 𝜟𝐾
𝐾𝑐

)𝑞 = 𝐶𝑓 (𝑌 ′𝜟𝐺)𝑚∕2

(

1 −
√

𝐺𝑇
𝜟𝐺

)𝑝

(

1 −

√

𝜟𝐺
𝐺𝑐

)𝑞 , (56)
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Fig. 17. Sub-critical and fatigue crack growth: (a) noisy database adopted and (b) comparison between reference results and the data-driven predictions using
a cycle-by-cycle simulation with a noiseless and noisy databases and a cycle-jump simulation with 𝜟𝑁 = 10 and a noisy database.

where the relation 𝜟𝐾 =
√

𝑌 ′ 𝜟𝐺 is used and 𝐶𝑓 , 𝑚, 𝑝 and 𝑞 are material parameters defining the shape of the law, while 𝐾𝑐
(𝐺𝑐 = 𝐾2

𝑐 ∕𝑌
′) and 𝐾𝑇 (𝐺𝑇 = 𝐾2

𝑇 ∕𝑌
′) are the critical and fatigue-threshold stress intensity factors (energy release rates) respectively.

he material parameters adopted are summarized in Table 3. The dimensionless curve obtained using (44) and

𝐾̄ = 𝐾
√

𝑌 ′𝛾
, 𝐶̄𝑓 =

𝐶𝑓 𝛾𝑚

𝐿(1+0.5𝑚)
. (57)

is shown in Fig. 17a along with the noisy material data set adopted, which is composed of 300 points randomly selected within the
range 𝐺̄𝑓 = [𝐺𝑡∕𝛾, 𝐺𝑐∕𝛾] = [10−2, 1]. The same sampling of the energy release rate is used to obtain also a noiseless data set (not
shown here).

The adopted geometry is the same presented in Fig. 1, however the fatigue tests are usually performed controlling the load
instead of the displacement. Hence, the energy release rate function (46) is adopted hereafter to obtain the applied 𝜟𝐺̄. Constant
amplitude load cycles featuring complete unloading are assumed for simplicity and, to ensure a pure opening mode, only tensile
(i.e., positive) values of the load are applied.3 Further assuming that the compliance of the specimen remains constant during a
single cycle, the energy release rate excursion within the cycle 𝑁𝑘+1 can be obtained as

𝜟𝐺̄𝑘+1 = 𝐺̄(𝑎̄𝑘, 𝑃 ) =
12𝑎̄2𝑘
𝑌 𝑏̄2ℎ̄3

𝑃 2 , (58)

where 𝑃 coincides with the maximum load applied.
Fig. 17b presents the comparison between reference and data-driven results in terms of crack growth curves for the noiseless

and noisy data set for a maximum applied load 𝑃 = 3.00, 2.50, 2.00 and 1.81. The value 𝑃 = 1.81 is used since it is slightly higher
than the theoretical fatigue-threshold load 𝑃𝑇 = 1.80 obtained from (58) for 𝑎̄ = 𝑎̄0 and 𝜟𝐺̄ = 𝐺̄𝑇 . Apart for the tests with 𝑃 = 1.81,
the data-driven results are always in excellent agreement with the reference curves regardless of the presence or not of noise.

Conversely, the presence of noise for 𝑃 = 1.81 seems to affect the results, leading to an overestimation of the fatigue life by less
than 15%. This is due to the fact that for load levels close to the threshold value, the fatigue life is dominated by the sub-horizontal
low crack-growth rate regime (sometimes referred to as nucleation or short-crack regime (Newman, 1998), Fig. 17a). In this phase
the crack size and, hence, the applied energy release rate range grows very slowly leading to an initial sub horizontal branch of the
crack growth curve characterized by a very low and almost constant crack-growth rate (Fig. 17b). Since for the fatigue sub-critical
crack growth the data-driven search procedure aims at minimizing the difference between applied and resistant energy release rate,
in this phase a relatively small perturbation in 𝐺̄𝑅 might induce a significant variation in the initial crack growth rate that randomly
leads to an over- or under-estimation of the fatigue life depending on the energy release rate applied and on the characteristics of

3 Under the assumption of perfectly brittle behavior, the extension to variable amplitude cycles and partial unloading is possible and straightforward. For
aterials whose fatigue behavior is sensitive to compression states, to the mean load value or to the presence of over- or under-loading events (i.e., for small

cale plasticity) (56) might be unrealistic. Rather, the introduction of plasticity and a data set dependent on ad-hoc history variable are recommended as, e. g.,
in Eggersmann et al. (2019). However, the extensions to these behavior would substantially modify the derivation of the governing equations in Section 2 and
23

is out of the scope of the present paper.
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Fig. 18. Comparison between reference and data-driven solutions in terms of modified Wöhler curve.

the data set. However, it is well known and accepted in the fatigue community that experimental results performed in the short-
crack regime are extremely subjected to the aleatory presence of imperfections at the microscale, that generate deviations from the
expected crack evolution similar to what observed here (Newman, 1998).

Fig. 17b shows also the results obtained with the noisy database of Fig. 17a adopting the cycle-jump technique illustrated in
Section 3.3.3 with 𝜟𝑁 = 10. Although very simple, such approach allows to drastically reduce the computational time needed while
reserving a good agreement with the reference results. Also in this case the test with 𝑃 = 1.81 overestimates the fatigue life of

about 15%, further confirming that the highlighted mismatch is mainly due to the presence of noise.
Another important curve used to illustrate the effects of the fatigue loading is the 𝑆 − 𝑁 or Wöhler curve, which relates the

applied load amplitude with the fatigue life in terms of maximum number of cycles that a specimen can sustain before failure.
Fig. 18 shows the comparison between the reference and the data-driven modified Wöhler curves obtained. The agreement is again
excellent along the whole range of load from the fatigue-threshold value to the static strength of the specimen 𝑃𝑢, i.e. the maximum
oad attainable in a monotonic quasi-static rate-independent test (Fig. 2b,d). In particular, when such load is applied, the specimen
ails as expected in a single cycle, thus bridging the critical and sub-critical crack growth. Also, the obtained curve has the typical
hape of the Wöhler curve that is obtained experimentally for brittle materials, with a tail that tends to flatten, further confirming
he validity of the proposed approach.

. Summary and concluding remarks

We have extended the data-driven fracture mechanics approach to the case of rate-dependent and sub-critical fatigue processes.
s in Carrara et al. (2020), the governing equations are derived from epistemic conservation laws in a variationally consistent way
hile we remove from the solution procedure any material modeling assumption characterizing the crack propagation. Rather, the

racture constitutive behavior is completely encoded into a discrete material data set. The solution of the crack propagation problem
s determined as the point of the material data set that best fulfills a metastable or local stability principle. The latter condition is
nforced by identifying the point in the material data set whose distance from the (analytically known) energy release rate function
s minimum, following a closest-point-projection strategy.

For rate-dependent crack propagation two approaches are devised. The first deals with material data sets independent on the
rack size, reproducing a fracture model with an implicit Griffith-type rate-independent limit. The second approach encompasses
he more general case of material points dependent also on the crack size, enabling to reproduce also R-curve type rate-independent
imit behaviors. The sub-critical fatigue crack growth process is tackled from the standpoint of the crack growth rate constitutive
aw, where the number of cycles plays the role of a pseudo-time and the crack growth is driven by the range of stress intensity
actor or energy release rate spanned at the crack tip in a single cycle. A simple cycle jump approach is also presented to limit the
omputational time for high-cycle fatigue.

The proposed approaches have been tested on double-cantilever-beam specimens with different geometries and using different
rtificially generated randomized material data sets, with and without noise, reproducing fatigue, Griffith and R-curve type rate-
ndependent limit behaviors in brittle materials. After comparing the results with reference analytical solutions and with those
btained adopting the rate-independent approach (Carrara et al., 2020), the following conclusions can be drawn:

– the proposed approaches delivers results in excellent agreement with those obtained solving the related fracture mechanics
24

problems along classical analytical lines. In particular, the effect of the crack tip propagation velocity on the global response of



Journal of the Mechanics and Physics of Solids 155 (2021) 104559P. Carrara et al.

a
–

D

t

A

C

A

A

the specimen is correctly reproduced and, for sufficiently low loading rates, the rate-dependent approach correctly reproduces
the rate-independent results;

– the fatigue crack growth is correctly reproduced in terms of both crack growth and Wöhler curves for both high- and low-cycle
fatigue regimes. When the adopted database is affected by noise and the behavior is dominated by the short-crack regime (i.e.,
for applied loads close to the fatigue threshold) the procedure may over- or under-estimate the fatigue life, which however is
consistent with what is typically observed experimentally;

– the robustness with respect to noisy data sets of the closest-point-projection strategy is confirmed;
– the rate-dependent approach allows to follow and study the fast evolution of the system taking place in correspondence of

the crack jumps in a rate-independent setting. This amends some pathological behaviors arising when adopting the rate-
independent approach and multiple competing meta-stable states are present. In particular, it prevent the system from
overcoming energetic barriers. In this sense, the proposed approach encompasses and extends the rate-independent data-driven
fracture mechanics approach of (Carrara et al., 2020);

– the adoption of a data-driven rate-dependent fracture mechanics approach makes the introduction of some assumptions on the
analytical evolutive relationships redundant, since they are implicitly encoded into the material data set. This happens, e. g.,
with the irreversibility and the properties that the fracture constitutive law must have to render the problem convex.
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ppendix. Data-driven search algorithms

The pseudo-code for the implementation of the data-driven search procedures are detailed in the following.

.1. Implicit quasi-static Griffith model

The data-driven search algorithm for the implicit quasi-static Griffith model is presented in Algorithm 1.
25



Journal of the Mechanics and Physics of Solids 155 (2021) 104559P. Carrara et al.
Algorithm 1: Data-driven fracture mechanics algorithm - Implicit quasi-static Griffith model. Given: 𝐺(𝛥𝑇 , 𝑎), 𝐶(𝑎), 𝑅, 𝛥𝑇 , 𝑡.

1 𝑺𝒕𝒆𝒑 ∶ 𝑘 + 1
Input: 𝛥𝑇 ,𝑘+1 = 𝛥𝑇 , 𝑡𝑘+𝜟𝑡, 𝑎𝑘 , 𝑣𝑘, 𝐺̂

𝑄𝑆
𝑅

Output: 𝑣𝑘+1, 𝑎𝑘+1, 𝐺𝑅 𝑘+1, 𝛥𝑘+1, 𝑃𝑘+1, 𝐺𝐷𝐷,𝑘+1

/* BEGINNING OF THE COMPUTATION */

2 Define: 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 =
𝑣𝑘
2
𝜟𝑡

/* Compute the solution */

3 if 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘 + 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 ) − 𝐺̂𝑄𝑆
𝑅 < 0 then // Crack arrest

4 Assign: 𝑣𝑘+1 = 0

𝜟𝑎𝑘+1 = 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1
𝐺𝐷𝐷,𝑘+1 = 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘 + 𝜟𝑎𝑘+1)

5 else // Crack propagation

6 Compute:

𝑑𝑖, 𝑘+1 = min
𝑎≥𝑎𝑘

⎧

⎪

⎨

⎪

⎩

√

𝛤 2
(

𝑣𝑘 + 𝑣̂𝑖
2

𝜟𝑡 + 𝑎𝑘 − 𝑎
)2

+ 𝓁2
(

𝐺̂𝑅,𝑖 − 𝐺(𝛥𝑇 ,𝑘+1, 𝑎)
)2
⎫

⎪

⎬

⎪

⎭

𝑖∗𝑘+1 = argmin
𝑖

{

𝑑𝑖, 𝑘+1 ∶ (𝑣̂𝑖, 𝐺̂𝑅,𝑖) ∈ 𝑅
}

7 Assign: 𝑣𝑘+1 = 𝑣̂𝑖∗𝑘+1

𝜟𝑎𝑘+1 =
𝑣𝑘 + 𝑣̂𝑖∗𝑘+1

2
𝜟𝑡

𝐺𝐷𝐷,𝑘+1 = 𝐺̂𝑅,𝑖∗𝑘+1

8 end
9 Compute: 𝑎𝑘+1 = 𝑎𝑘 + 𝜟𝑎𝑘+1

(

𝛥𝑘+1, 𝑃𝑘+1
)

=

(

𝐶
(

𝑎𝑘+1
)

𝐶
(

𝑎𝑘+1
)

+ 𝐶𝑀
𝛥𝑇 ,𝑘+1,

𝛥𝑇 ,𝑘+1

𝐶
(

𝑎𝑘+1
)

+ 𝐶𝑀

)
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A.2. Complete model

The data-driven search algorithm for the complete model is presented in Algorithm 2.

Algorithm 2: Data-driven fracture mechanics algorithm — Complete model. Given: 𝐺(𝛥𝑇 , 𝑎), 𝐶(𝑎), 𝑅, 𝛥𝑇 , 𝑡.

1 𝑺𝒕𝒆𝒑 ∶ 𝑘 + 1
Input: 𝛥𝑇 𝑘+1 = 𝛥𝑇 𝑡𝑘+𝜟𝑡, 𝑎𝑘 , 𝑣𝑘, 𝐺̂

𝑄𝑆
𝑅

Output: 𝑣𝑘+1, 𝑎𝑘+1, 𝐺𝑅 𝑘+1, 𝛥𝑘+1, 𝑃𝑘+1, 𝐺𝐷𝐷,𝑘+1

/* BEGINNING OF THE COMPUTATION */

2 Set: 𝜟𝑎(𝑣) =
𝑣𝑘 + 𝑣

2
𝜟𝑡

3 Define: 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 =
𝑣𝑘
2
𝜟𝑡

4 Compute: 𝐺̂𝑄𝑆
𝑅,𝑘+1 =

⟨

𝐺̂𝑄𝑆
𝑅,𝑖𝐿

, 𝐺̂𝑄𝑆
𝑅,𝑖𝑆

⟩

/* Compute the solution */

5 if 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘 + 𝛥𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1 ) − 𝐺̂𝑄𝑆
𝑅,𝑘+1 < 0 then // Crack arrest

6 Assign: 𝑣𝑘+1 = 0

𝜟𝑎𝑘+1 = 𝜟𝑎𝑇𝑅𝐼𝐴𝐿𝑘+1
𝐺𝐷𝐷,𝑘+1 = 𝐺(𝛥𝑇 ,𝑘+1, 𝑎𝑘 + 𝜟𝑎𝑘+1)

7 else // Crack propagation

8 Compute:

𝑑𝑖, 𝑘+1 = min
𝑣≥0

{
√

𝛤 2𝜅2
(

𝑣̂𝑖 − 𝑣
)2 + 𝛤 2

(

𝑎̂𝑖 − 𝑎𝑘 − 𝜟𝑎(𝑣)
)2 + 𝓁2

(

𝐺̂𝑅,𝑖 − 𝐺
(

𝛥𝑇 ,𝑘+1, 𝑎𝑘 + 𝜟𝑎(𝑣)
))2

}

𝑖∗𝑘+1 = argmin
𝑖

{

𝑑𝑖, 𝑘+1 ∶ (𝑣̂𝑖, 𝑎̂𝑖, 𝐺̂𝑅,𝑖) ∈ 𝑅
}

9 if 𝑣̂𝑖∗ ∉ 𝑄𝑆
𝑅 then // Rate-dep. propagation

10 Assign: 𝑣𝑘+1 = 𝑣̂𝑖∗𝑘+1

11 𝜟𝑎𝑘+1 =
𝑣𝑘 + 𝑣𝑖∗𝑘+1

2
𝜟𝑡

12 𝐺𝐷𝐷,𝑘+1 = 𝐺̂𝑅,𝑖∗𝑘+1

13 else // Quasi-static propagation

14 Assign: 𝑣𝑘+1 = 0
15 𝜟𝑎𝑘+1 = 𝑎̂𝑖∗𝑘+1 − 𝑎𝑘
16 𝐺𝐷𝐷,𝑘+1 = 𝐺̂𝑅,𝑖∗𝑘+1

17 end
18 end
19 Compute: 𝑎𝑘+1 = 𝑎𝑘 + 𝜟𝑎𝑘+1

(

𝛥𝑘+1, 𝑃𝑘+1
)

=

(

𝐶
(

𝑎𝑘+1
)

𝐶
(

𝑎𝑘+1
)

+ 𝐶𝑀
𝛥𝑇 ,𝑘+1,

𝛥𝑇 ,𝑘+1

𝐶
(

𝑎𝑘+1
)

+ 𝐶𝑀

)

A.3. Sub-critical crack growth and fatigue

The data-driven search algorithm for the sub-critical and fatigue crack growth is presented in Algorithm 3.
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∙

Algorithm 3: Data-driven fracture mechanics algorithm — Sub-critical fatigue crack growth. Given: 𝐺(∙, 𝑎), 𝐶(𝑎), 𝑅,𝑓 , ∙𝑚𝑎𝑥,

𝑚𝑖𝑛.

1 𝑺𝒕𝒆𝒑 ∶ 𝑘 + 1
Input: 𝑎𝑘 , 𝑁𝑘, 𝐺̂𝑇

𝑓 , 𝜟𝑁
Output: 𝑣𝑘+1, 𝑎𝑘+1, 𝐺𝐷𝐷,𝑘+1, 𝜟𝛥𝑘+1 and/or 𝜟𝑃𝑘+1, 𝑁𝑘+1

/* BEGINNING OF THE COMPUTATION */

Define: 𝜟𝐺𝑘+1 = 𝐺(∙𝑚𝑎𝑥, 𝑎𝑘) − 𝐺(∙𝑚𝑖𝑛, 𝑎𝑘)

/* Compute the solution */

2 if 𝜟𝐺𝑘+1 − 𝐺̂𝑇
𝑓 < 0 then // Infinite fatigue life

3 No propagation → EXIT
4 else

// Crack propagation

5 Compute:

𝑖∗𝑘+1 = argmin
𝑖

{

𝓁
(

𝜟𝐺𝑘+1 − 𝐺̂𝑓,𝑖
)

∶ 𝐺̂𝑓,𝑖 ∈ 𝑅,𝑓
}

6 Assign: 𝑣𝑘+1 = 𝑣̂𝑖∗

𝜟𝑎𝑘+1 = 𝜟𝑁 ⋅ 𝑣̂𝑖∗
𝜟𝐺𝐷𝐷,𝑘+1 = 𝐺̂𝑓,𝑖∗

7 end
8 Compute: 𝑎𝑘+1 = 𝑎𝑘 + 𝜟𝑎𝑘+1

𝑁𝑘+1 = 𝑁𝑘 + 𝜟𝑁

𝜟𝑃𝑘+1 =
𝛥𝑚𝑎𝑥 − 𝛥𝑚𝑖𝑛
𝐶(𝑎𝑘+1)

(𝛥-control)

𝜟𝛥𝑘+1 =
(

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
)

𝐶(𝑎𝑘+1) (𝑃 -control)

(

𝜟𝛥𝑘+1, 𝜟𝑃𝑘+1
)

=

(

𝐶
(

𝑎𝑘+1
)

𝐶
(

𝑎𝑘+1
)

+ 𝐶𝑀
(𝛥𝑇 ,𝑚𝑎𝑥 − 𝛥𝑇 ,𝑚𝑖𝑛) ,

𝛥𝑇 ,𝑚𝑎𝑥 − 𝛥𝑇 ,𝑚𝑖𝑛

𝐶
(

𝑎𝑘+1
)

+ 𝐶𝑀

)

(𝛥𝑇 -control)
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