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Materials and Methods

Cell Culture and Growth Conditions

Mouse E14 embryonic stem cells (male) were routinely cultured in feeder-free conditions on
gelatin-coated plates with ESGRO-2i medium (Millipore, cat:SF016-200) at 37°C, 5% CO2, in hu-
midified conditions (28). Jurkat T Lymphocytes (male) were cultured in RPMI-1640 medium (sup-
plemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin), at 37°C,
5% CO2, in humidified conditions at 0.1 × 106 to 1 × 106 cells/mL. Isoclonal Jurkat T Lympho-
cytes with lentivirally integrated EF1α-d2GFP construct were previously described (28). Human
immortalized myelogenous leukemia (K652, female) cells were cultured in RPMI-1640 medium
(supplemented with L-glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin), at
37°C, 5% CO2, in humidified conditions at 2 × 105 to 2 × 106 cells/mL. Isoclonal K562 cells with
lentivirally integrated EF1α-d2GFP and UBC- d2GFP constructs were previously described (28).
Human embryonic kidney (HEK293, female) cells were cultured in DMEM (supplemented with
10% fetal bovine serum, 1% penicillin-streptomycin, 25mM HEPES, and 2mM L-glutamine) at
37°C, 5% CO2, in humidified conditions at 30 to 90% confluency.

Noise Enhancer Testing on Isoclonal Jurkat and K562 Cells

Jurkat and K562 cells were seeded into 12-well plates at densities of 0.2 × 106 and 0.4 × 106

cells/mL respectively in media containing 20 μM IdU (Sigma, cat:I7125, dissolved in DMSO) or
equivalent volume of DMSO for 24 hours. Flow cytometry was performed using a BD LSRII
cytometer. Treated cells were run unfixed and live to avoid additional sources of variability from
fixation. 50k live cells were collected from each sample for noise measurements. Conservative
gating for a live subset of approximately 3k cells of similar size, volume, and state, was applied on
the FSC vs. SSC to reduce extrinsic noise contributions as previously described (22,24).

Single-Cell RNA Sequencing Preparation and Analysis

1x106 mESCs were seeded in a gelatin-coated, 10cm dish in 2i/LIF media. 24 hours follow-
ing seeding, cultures were replenished with 2i/LIF media containing 10μM IdU or an equivalent
volume of DMSO for 24 hours. After treatment, cells were trypsinized with TrypLE and spun
down for 5 minutes at 200 x g. Single-cell suspensions were prepared in DPBS at a concentra-
tion of 83,000 cells/ml. Approximately 3000 cells from each sample were loaded into a chip and
processed with the Chromium Single Cell Controller (10x Genomics). To generate single-cell gel
beads in emulsion (GEMs), DMSO- and IdU- treated samples were assigned unique indexes using
Single Cell 3′ Library and Gel Bead Kit V2 (10x Genomics, cat:120237). Sequencing was per-
formed on an Illumina HiSeq4000 with a paired-end setup specific for 10x libraries.

Data were aligned to mm10 reference genome using 10x Cell Ranger v2. Quality control, nor-
malization and analysis were carried out using two packages: Seurat and BASiCS. For analysis
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in Seurat, gene-barcode matrices were filtered and normalized using the “LogNormalize” method,
resulting in 812 and 744 transcriptomes from DMSO and IdU samples. Transcript variability was
quantified using variance (σ2), coefficient of variation (σ2

µ2 ), and Fano factor (σ2

µ
). During the nor-

malization procedure in Seurat, counts for the ith gene in the jth cell (xi j) are multiplied by the fol-
lowing scaling factor: S = 10000

∑
n
i=1 xi j

, where n is the number of genes in the dataset. The scaling factor
is therefore dependent on the number of UMIs detected per cell. The coefficient of variation is in-
sensitive to this scaling factor as it is a dimensionless quantity (i.e, σ and µ are scaled by the same
factor and thus cancel out when calculating coefficient of variation). However, the Fano factor,
which has units, must be re-scaled to account for the differential effect that this normalization pro-
cedure has on σ2 vs. µ (i.e., σ2 gets scaled by S2 while µ gets scaled by S). To negate the carryover
of this scaling factor, calculated Fano factors from the Seurat-normalized dataset were multiplied
by 1

S where S is a unique value for the DMSO and IdU samples: 10000
avg. number of UMIs per cell in sample .

For analysis using BASiCS, quality control and filtering was performed using the BASiCS Filter
function resulting in an identical number of transcriptomes (812 and 744) as produced by Seurat.
Posterior estimates of mean and over-dispersion for each gene were computed using a Markov
Chain Monte Carlo (MCMC) simulation with 40,000 iterations and a log-normal prior. For dif-
ferential mean testing, a threshold of fold change >2 with an FDR cutoff of 0.05 was used.
Differential variability was tested with a threshold of fold change >1.5 with an FDR cutoff of
0.05. Only genes with no change in mean expression were considered for interpreting changes
in variability. Code for scRNA-seq analysis is available at htt ps : //github.com/weinbergerlab−
ucs f/Code Desai et al and archived on Zenodo (79).

Gene features and sequences from the GRCm38 reference were used for analysis of gene char-
acteristics that potentiate noise enhancement. TAD boundary locations in mESCs were taken from
Hi-C maps produced by Elphège et al (80). DAVID v6.8 was used to test for gene ontology
(GO) enrichment among highly variable genes. All tested genes from BASiCS were used as back-
ground. Bonferroni-corrected p-values (adjusted p-values) were used to visualize GO enrichment.
Cell cycle determination was performed using cyclone as implemented in scran (33). The de-
fault set of cell cycle marker genes for mESCs (mouse cycle markers.rds) was used. Cells were
assigned to G1, S, and G2/M phases using their normalized genes counts produced by Seurat.
Pseudotime analysis was conducted using destiny (81) with the Seurat-normalized cell-gene ma-
trix as input. Gene-gene correlation matrices were assembled by first filtering out genes from the
Seurat-normalized matrix whose mean abundance <1 in each treatment group to avoid spurious
correlations that may emerge from low expression. 961 genes remained for downstream analysis.
Pearson correlation for each gene pair was calculated. Clustering of gene-pairs based on similarity
in correlation patterns was performed using the hierarchical clustering method within the seriation
package. Change in correlation strength was calculated by subtracting absolute value of gene-pair
correlation in DMSO condition from IdU condition.

Bulk RNA Sequencing Preparation and Analysis
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2x105 mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media. 24
hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU, 5μM
IdU or an equivalent volume of DMSO in triplicate for 24 hours. After treatment, cells were
trypsinized with TrypLE and RNA was extracted using a RNeasy minikit (Qiagen) according to
manufacturer’s instructions. ERCC spike-in RNA (2μl diluted at 1:100) was added to each RNA
extraction (Ambion, cat:4456740). A total of 9 cDNA libraries were prepared with an NEBNext
Ultra II RNA Library Prep kit (NEB, cat:E7770S) and sequenced with an Illumina HiSeq4000. Se-
quencing yielded a median of ∼40 million single-end reads per library. Read quality was checked
via FASTQC. Reads were aligned to an edited version of the mm10 reference genome containing
the ERCC spike-in sequences using TopHat with default parameters. Transcript level quantifica-
tion was performed using Cufflinks with default parameters. The quantification matrix was then
imported into R and analyzed via DESeq2. Samples were normalized using ERCC transcripts as
controls for size factor estimation. Differential mean testing was conducted with a threshold of
fold change >2 and an FDR cutoff of 0.05.

Single Molecule RNA FISH

Probes for detection of nascent and mature Nanog transcripts were developed using the de-
signer tool from Stellaris (LGC Biosearch Technologies) (Table S1). 30 probes (TAMRA con-
jugated) for mature Nanog mRNA were targeted towards the 3′ GFP segment of transcripts. 48
probes (Quasar 670 conjugated) for nascent Nanog mRNA were targeted towards the first intronic
sequence as taken from the mm10 genome reference. Probes were designed using a masking level
of 5, and at least 2 base pair spacing between single probes.

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish
(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replaced
with 2i/LIF containing 10μM IdU or equivalent volume DMSO. After 24 hours of treatment, cells
were then fixed with DPBS in 4% paraformaldehyde for 10 minutes. Fixed cells were washed with
DPBS and stored in 70% EtOH at 4°C for one hour to permeabilize the cell membranes. Probes
were diluted 200-fold and allowed to hybridize at 37°C overnight. Wash steps and DAPI (Thermo,
cat: D1306) staining were performed as described (https://www.biosearchtech.com/support/
resources/stellaris-protocols).

To minimize photo-bleaching, cells were imaged in a buffer containing 50% glycerol (Thermo,
cat: 17904), 75 μg/mL glucose oxidase (Sigma Aldrich, cat: G7141), 520 μg/mL catalase (Sigma
Aldrich, cat: C3515), and 0.5 mg/mL Trolox (Sigma Aldrich, cat: 238813). Images were taken on
a Zeiss Axio Observer Z1 microscope equipped with a Yokogawa CSU-X1 spinning disk unit and
100x/1.4 oil objective. Approximately 20 xy locations were randomly selected for each condition.
For each xy location, Nyquist sampling was performed by taking 30, 0.4μM steps along the z-plane.

Image analysis and spot counting was performed using FISH-quant (82). Cells were manually
segmented and analysis was conducted on cells of a similar size to minimize extrinsic noise. Tran-
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scriptional centers (TCs) were identified by signal overlap in exon, intron and DAPI channels. The
amount of nascent mRNA at TCs was quantified through a weighted superposition of point spread
functions.

Rate calculations for random-telegraph model

From smRNA-FISH data for Nanog, the kinetic parameters of the random-telegraph model
were inferred using the empirically derived values of mRNA mean (µ), mRNA Fano factor (Fano),
transcriptional center frequency ( fON) and transcriptional center intensity (TCmRNA) (28). The
transcription rate (ktx) is calculated as:

ktx = TCmRNA
kelongation

L
(1)

where kelongation is the elongation rate of RNAPII (1.9 kb/min) (83) and L is the length of the
transcribed region of Nanog. The degradation rate (kdeg) is calculated as:

kdeg =
fON · ktx

µ
(2)

The rate of promoter activation (kON) is given by:

kON = kdeg

(
−µ( fON−1)+ fON(Fano−1)

Fano−1

)
(3)

The rate of promoter inactivation (kOFF ) is given by:

kOFF =−kdeg

(
−µ( fON−1)+ fON(Fano−1)

Fano−1

)
·
(

1
fON
−1
)

(4)

Live-cell imaging of transcription with p21-MS2 reporter cell line

A p21-MS2 reporter U2OS cell line (38) was cultured at 37°C and 5% CO2 in the Dulbecco’s
Modified Eagle Medium (DMEM) with high glucose (Corning), containing 10% Fetal Bovine
Serum (FBS - Atlanta Biologicals) and 1% penicillin–streptomycin (Gibco). The reporter cells
were pre-treated with either IdU (10µM) or an equivalent amount of DMSO for 48 hours before
live-cell imaging. To induce expression of the p21 gene, the reporter cells were treated with 10µM
Nutlin-3 (Sigma, cat: N6287) for 2 hours prior to live-cell imaging.

During the entire imaging sessions, p21-MS2 reporter cells were kept in Leibovitz’s L-15
Medium (Gibco), containing 10% FBS at 37 °C and supplemented with Nutlin-3 and IdU or
DMSO. Time-lapse z-series images were acquired on a wide-field microscope (Olympus IX-81
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stand), equipped with an electron multiplying CCD camera (iXon3 DU-897E-CS0-# BV; Andor)
and an objective with a 1.4 NA and 60X magnification, which yielded a pixel-size of 266.8nm.
The microscope also was equipped with an automated XY stage (MS2000-XY with an extra-fine
lead-screw pitch of 0.635 mm and a 10-nm linear encoder resolution; Applied Scientific Instru-
mentation) and a piezo-Z stage (Applied Scientific Instrumentation). Microscope control and im-
age acquisition were achieved using MetaMorph software (Molecular Devices, Sunnyvale, CA).
A 491-nm laser (Calypso-25; Cobolt) was used for illumination, and cells were imaged for 118
minutes with 11 stacks at 500 nm intervals (1 picture every minute).

Time-lapse images were acquired by maximum intensity projection of the z-series in Im-
ageJ (http://rsb.info.nih.gov/ij/). The fluorescence of each transcription site (TS) in time-lapse
images was quantified with a custom MATLAB software. The TS of each cell was detected semi-
automatically, and the fluorescence signals were measured for each time point. Fast fluctuations
in the fluorescence signal of the TS were removed using a rolling average. Transcriptional activity
was normalized by dividing the fluorescence of the TS by the background signal. The TS was
defined as active when transcriptional activity was higher than 2.5-fold the background.

The cumulative transcription occurring in each cell was calculated based on the normalized
transcriptional activity over 118 minutes of imaging. The KOFF (hr-1) is calculated by taking the
inverse of the average of the burst duration. The KON (hr-1) is calculated by taking the inverse of
the average time between bursts. Errors represent the standard error of the mean. Significance was
determined by a two-sample t-test performed in MATLAB.

Extrinsic Noise Filtering on Flow Cytometry Data

All flow cytometry data were collected on BD FACSCalibur, LSRII or LSRFortessa X-20 with
488-nm laser used to detect GFP. For all measurements of Nanog-GFP mean and variability, >50k
cells are collected per sample. Gating of cytometry data was performed with FlowJo. Prior to
quantification of Nanog-GFP mean and variability, the smallest possible forward- and side-scatter
region containing at least 3k cells was used to isolate cells of similar size and shape. This fil-
ters out gene expression variability arising from cell-size heterogeneity as previously established
(22,24,28).

Cell-cycle Analysis by Propidium-Iodide Staining

2x105 Nanog-GFP mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF
media. 24 hours following seeding, media was replaced with 2i/LIF media containing 10μM IdU
or an equivalent volume of DMSO in triplicate for 24 hours. After treatment, cells were washed
with DPBS, dissociated with TrypLE, pelleted, washed with DPBS, and resuspended in ice-cold
70% ethanol. Samples were stored overnight at -20°C and pelleted the following day at 200g for
5 minutes at 4°C. Cells were washed twice with DPBS supplemented with 0.5% BSA to prevent
cell loss. Pellets were resuspended in 150μL of DPBS supplemented with 0.1mg/ml RNAse A
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(Thermo, cat: EN0531) and 30 μg/ml Propidium Iodide (Thermo, cat:P3566). After overnight in-
cubation at 4°C, cells were directly analyzed on a BD LSRII cytometer.

Actinomycin D assay for post-transcriptional noise

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF
media. 24 hours following seeding, media was replaced with 2i/LIF supplemented with 10μM
IdU, 6ug/ml Actinomycin D (ActD) (Sigma cat:A1410), 10μM IdU + 6ug/ml ActD or equivalent
volume DMSO. After 24 hours of incubation, cells were run unfixed and live on BD Fortessa.

Noise Enhancer Testing in Serum/LIF culture

Serum/LIF media was prepared with 85% DMEM (supplemented with 2mM of L-glutamine),
15% FBS, 0.1mM 2-mercaptoethanol, and 1000U/ml of LIF (Sigma Aldrich, cat: LIF1010).
Nanog-GFP mESCs grown feeder-free in 2i/LIF were passaged and seeded onto gelatin-coated
10cm dishes in serum/LIF media. Cells were passaged twice in serum/LIF media prior to noise
enhancer testing. 4x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated 6-
well plate in serum/LIF media. 24 hours following seeding, media was replaced with serum/LIF
supplemented with either 10μM IdU or equivalent volume DMSO in triplicate. After 24 hours of
treatment, cells were run unfixed and live on BD LSRII flow cytometer.

Live-cell time-lapse microscopy of Nanog-GFP expression

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish
(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replenished
with 2i/LIF containing 10μM IdU or equivalent volume DMSO in replicate. Time-lapse imaging
commenced immediately after addition of compounds with IdU- and DMSO- treated cells imaged
in the same experiment (neighboring wells). Imaging was performed on a Zeiss Axio Observer Z1
microscope equipped with Yokogawa CSU-X1 spinning disk unit and a Cool-SNAP HQ2 14-bit
camera (PhotoMetrics). 488nM laser line (50% laser power, 500-ms excitation) was used for GFP
imaging. Samples were kept in an enclosed stage that maintained humidified conditions at 37°C
and 5% CO2. Images were captured every 20 minutes for 24 hours. For each xy location, three
z-planes were sampled at 4-μm intervals. The objective used was 40x oil, 1.3 N.A.

Cell segmentation, tracking and GFP quantification were carried out using CellProfiler (84).
Tracking of cells was manually verified. Segmented cells tracked for less than 4 hours were
discarded. Cell division triggered the start of 2 new trajectories. After illumination correction
and background subtraction, the mean GFP fluorescence intensity of a segmented cell was taken
from each z-plane and averaged over the entire z-stack. For each trajectory, noise autocorre-
lation (τ1/2) and noise magnitude (intrinsic-CV2) were calculated as previously described (41).
Fluorescence trajectories were first detrended (normalized) by subtracting the population time-
dependent average fluorescence to isolate intrinsic noise. Distributions of noise frequency ranges
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(FN) were extracted from normalized autocorrelation functions (ACFs) of individual trajectories,
where FN = 1

τ1/2
.τ1/2 is the value of τ (lag time) where the normalized ACF reaches a value of 0.5.

Sox2 two-color reporter assay

The endogenous alleles of Sox2 are tagged with P2A-mClover and P2A-tdTomato. Both flu-
orophores have a PEST tag, thus shortening their half-lives to approximately 2.5 hours. 2x105

Sox2-dual-tag mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media.
24 hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU or
an equivalent volume of DMSO in triplicate for 24 hours. Cells were run unfixed and live on BD
LSRII flow cytometer. Data from all three replicates were pooled together. No cell-size gating
was performed as assay allows for separation of extrinsic noise. To align fluorescence values of
mClover and tdTomato on the same scale, each cell’s fluorescence intensity was normalized to the
mean expression level of that fluorophore for the population. Since Sox2 expression spans several
orders of magnitude, cells were binned according to their total Sox2 expression (mClover + td-
Tomato). Bins with fewer than 100 cells were discarded. Intrinsic noise (CV2) of Sox2 expression
for each bin was calculated using the following formula:

η
2
intrinsic =

〈(tdTomatoi−mCloveri)
2〉

2〈tdTomato〉〈mClover〉
(5)

This value was then multiplied by the mean Sox2 expression for each bin to obtain the Fano
factor. Given that the number of cells in each bin differs and variance estimates are affected by
sample size, we calculated 95% confidence intervals around the Fano factor for each bin through
bootstrapping. Bin populations were resampled 10,000 times with replacement.

Nucleoside analog screening

14 nucleoside analogs (compound names and sources listed in Table S3) were resuspended in
DMSO. 1x105 Nanog-GFP mESCs were seeded in gelatin-coated 12-well plates in 2i/LIF media.
24 hours after seeding, media was swapped with 2i/LIF containing 10μM of nucleoside analog or
equivalent volume DMSO in replicate. After 24 hours of treatment, cells were run unfixed and
live on BD LSRII cytometer. Extrinsic noise filtering via cell-size gating was performed prior to
calculation of Nanog Fano factor. Fano factor for Nanog-GFP expression for each treatment was
normalized to DMSO control.

Generation of stable CRISPRi Nanog-GFP mESC line

To stably integrate the CRISPRi machinery into the ROSA26 locus of Nanog-GFP mESCs,
AAVS1 homology arms of the CRISPRi knockin construct (krab-dCas9-p2a-mCherry, Addgene:73497)
were swapped with ROSA26 homology arms. The dox-inducible promoter of this construct was
replaced with a constitutive CAGGS promoter and the kanamycin resistance cassette was replaced
with puromycin resistance. Two million Nanog-GFP mESCs were nucleofected with the CRISPRi
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knockin construct and left to recover for 48 hours. Puromycin (1µg/ml) selection was run until sin-
gle colonies could be picked. Clonal CRISPRi Nanog-GFP mESC lines were assessed for mCherry
expression and ability to knockdown Nanog. We selected the clone with the highest percentage of
mCherry-positive cells.

CRISPRi gRNA design and cloning

gRNA sequences were were taken from the mCRISPRi-v2 library (85). gRNA oligos were an-
nealed and cloned into the pU6-sgRNA EF1Alpha-puro-T2A-BFP lentiviral vector (Addgene:60955)
using the BstXI/BlpI ligation strategy (85).

CRISPRi screening for genetic dependencies of noise enhancer

25 genes involved in nucleotide metabolism, DNA repair, and chromatin remodeling were
screened for their potential role in noise enhancement from IdU. Three gRNAs were designed per
gene (gene names and gRNA sequences listed in Table S4). Three non-targeting controls (scram-
bled gRNAs) were taken from the mCRISPRi-v2 library (85). Each gRNA expression plasmid was
separately packaged into lentivirus in HEK293T cells as previously described (85). For each gRNA
lentivirus, 1.5x105 CRISPRi Nanog-GFP mESCs were spinoculated with filtered viral supernatant
for 90 minutes at 200 x g in replicate. Following spinoculation, infected cells were seeded into
gelatin-coated, 6-well plates in 2i/LIF media. 48 hours following seeding, media was swapped
with 2i/LIF supplemented with either 10μM IdU or equivalent volume DMSO. Consequently, for
every knockdown there is a DMSO and IdU treatment group. After 24 hours of treatment, cells
were run unfixed and live on a BD LSRII flow cytometer. To minimize technical variability, analy-
sis was restricted to cells with homogeneous levels of dCas9-KRAB and gRNA expression through
stringent gating on mCherry/BFP double-positive cells. Extrinsic noise filtering through cell-size
gating was then applied. For each gRNA, Nanog Fano factor for the DMSO and IdU treatments
were normalized to the Nanog Fano factor of the non-targeting controls treated with DMSO.

qPCR verification of CRISPRi knockdown

To verify CRISPRi knockdown of Apex1 and Tk1, each of the six gRNA-expression plasmids
targeting these two genes along with a non-targeting control and empty vector were packaged into
lentivirus. 1.5x105 CRISPRi Nanog-GFP mESCs were spinoculated with filtered viral supernatant
for 90 minutes at 200 x g in replicate. Following spinoculation, infected cells were seeded into
gelatin-coated, 6-well plates in 2i/LIF media. 72 hours following seeding, 1x106 mCherry/BFP
double-positive cells from each infected cell population were sorted on a FACSAria II. Total
RNA was extracted using an RNeasy Mini Kit (QIAGEN cat:74104) and reverse-transcribed us-
ing a QuantiTect Reverse Transcription Kit (QIAGEN cat:205311). cDNA from each independent
biological replicate was plated in triplicate and run on a 7900HT Fast Real-Time PCR System
(Thermo) using designed primers (Table S5) and Fast SYBR Green Master Mix (Applied Biosys-
tems, cat:4385612). Expression of GAPDH was used for normalization. Relative mRNA levels
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of Apex1 and Tk1 were calculated by the ∆∆Ct method using the empty-vector populations as the
control. All reported levels of repression are relative to the non-targeting control.

Tk1 competition assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF
media. 24 hours following seeding, media was replaced with 2i/LIF supplemented with 10μM IdU
in combination with thymidine (Sigma cat:T1895) or uridine (Sigma cat:U3003) at concentrations
ranging from 0 to 100μM. Concentration combinations were done in triplicate. After 24 hours of
treatment, cells were run unfixed and live on BD FACS Calibur cytometer. Extrinsic noise filtering
via cell-size gating was performed prior to calculation of Nanog Fano factor.

ChIP-qPCR assay of Apex1 binding to Nanog promoter

1x106 Nanog-GFP mESCs were seeded in gelatin-coated 10cm dish in 2i/LIF media. 24
hours following seeding, media was replaced with 2i/LIF media containing 10μM IdU, 100μM
CRT0044876, 10μM IdU + 100μM CRT0044876 or an equivalent volume of DMSO in triplicate
for 24 hours.

After treatment, cells were washed with DPBS, dissociated with TrypLE, and subsequently
washed three times with 10ml PBS followed by fixation with 1% formaldehyde at 37°C for 10
minutes. Fixation was quenched with 0.125M glycine (Sigma-Aldrich, cat:50046) for 5 minutes at
room temperature. Cells were washed three more times with 10ml of ice-cold PBS (pH 7.0) con-
taining 1X protease inhibitor cocktail (P8340; Sigma-Aldrich) followed by lysing in lysis buffer
(1.0% SDS, 10mM EDTA, 50mM Tris-HCl pH7.8) for 10 minutes on ice. The lysate was subjected
to sonication in Covaris S2 sonicator (Covaris inc.) The sonicated lysate was centrifuged at 14,000
rpm for 15 minutes at 4°C and the supernatant was subjected to immunoprecipitation with 5ug of
Apex-1 antibody (Thermofisher Scientific, cat: 501726108 ) in buffer containing 0.01% SDS, 1%
Triton x-100, 1.2mM EDTA, 16.7mM Tris-HCl (pH 8.0) and 167mM NaCl at 4°C for 4 hours with
constant shaking. Next, 25ul of Protein A/G Dynabeads (Thermofisher Scientific, cat: 88802) was
added and incubated at 4°C for 2 hours with constant shaking. The beads were subjected to three
washes with wash buffer-A (50mM Hepes, pH 8.0, 500mM NaCl, 1mM EDTA, 1% Triton X-100,
0.1% Na-deoxycholate, 0.1% SDS, 0.5mM PMSF and protease inhibitor cocktail) followed by
three washes with wash buffer-B (20mM Tris, pH 8.0, 1mM EDTA, 250mM LiCl, 0.5% NP-40,
0.5% Na-deoxycholate, 0.5 mM PMSF and protease inhibitor cocktail) followed by two washes
with TE buffer (10mM Tris HCl and 1.0mM EDTA). Protein-DNA complex was eluted in ChIP
elution buffer (50mM Tris, pH 8.0, 1mM EDTA, 1% SDS and 50mM NaHCO3) and incubated
at 65°C for 10 minutes, followed by centrifugation at 14,000 rpm for 1 minute. Supernatant was
transferred to a new tube and the beads were eluted again with 200ul of elution buffer, followed by
reverse crosslinking by incubating the eluate in 200mM NaCl overnight at 65°C, and subjected to
digestion with RNAse and proteinase K. DNA was precipitated with phenol-chloroform extraction,
followed by ethanol precipitation. Purified ChIP DNA was resuspended in TE buffer and subjected
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to qPCR using 7900HT Fast Real-Time PCR system (Thermo-Fisher Scientific, cat:4329003 ) with
Fast SYBR Green Master Mix. qPCR primers were directed against Nanog promoter (sequences
in Table S7).

H2O2 oxidative stress assay

Nanog-GFP mESCs were seeded in gelatin-coated 12-well plate at a density of 20,000 cells/cm2

in 2i/LIF media. 24 hours after seeding, media was replaced with 2i/LIF containing the indicated
concentrations of H2O2 (Sigma cat: H1009) in triplicate. After 1 hour of treatment, H2O2 was
washed off, and cells were cultured in fresh 2i/LIF for 24 hours. Cells were run unfixed and live
on BD Fortessa.

MMS alkylation damage assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated 12-well plate in 2i/LIF
media. 24 hours after seeding, media was replaced with 2i/LIF containing 2mM MMS (Sigma cat:
129925), 2mM MMS + 100μM CRT0044876 or equivalent volume DMSO in triplicate. After 1
hour of treatment, media was washed off all wells and replaced with fresh 2i/LIF for 24 hours.
Cells were run unfixed and live on BD Fortessa.

UV stress assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF
media. 24 hours following seeding, cultures were exposed to 3kJ of 365nM light (Fotodyne UV
Transilluminator 3-3000 with 15W bulbs) for 15, 30 or 60 minutes at room temperature in the
dark. Control plates were left at room temperature in the dark for equivalent periods of time. Cells
from UV-exposed and control plates were run unfixed and live on BD FACS Calibur cytometer
1,2,4,8, and 12 hours post-exposure in replicate. Extrinsic noise filtering via cell-size gating was
performed prior to calculation of Nanog Fano factor.

Mpg and Ung overexpression assay

cDNA clones for mouse Methylpurine glycosylase (Mpg) (Origene MR204931) and mouse
Uracil DNA glycosylase (Ung) (Origene MR204314) were PCR amplified, ligated with IRES-
mCherry and cloned into MluI/NotI sites of pHR-TREp-Tat-Dendra lentiviral vectors (86).

Mpg, Ung, and rtTA (pHR-SFFVp-rtTA) vectors were packaged into lentivirus in HEK293Ts.
Nanog-GFP mESCs were spinoculated with filtered viral supernatant containing rtTA lentivirus in
combination with Mpg or Ung lentivirus for 90 minutes at 200 x g. After expansion of infected
cells, 1x105 Mpg- and Ung-overexpressing Nanog-GFP mESCs were seeded in gelatin-coated 12-
well plates in 2i/LIF media. 24 hours after seeding, media was replaced with 2i/LIF containing
2ug/ml doxycycline (Sigma-Aldrich, cat: D9891) or equivalent volume DMSO in triplicate. After
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24 hours of doxycycline-induction, cells were run unfixed and live on BD Fortessa. To minimize
technical variability, analysis was restricted to cells with homogeneous levels of Mpg/Ung expres-
sion through stringent gating on mCherry positive cells. Extrinsic noise filtering through cell-size
gating was then applied.

Rescue of noise-enhancement with catalytically inactive Apex1

Coding sequences of wild-type and catalytically inactive (CI) (G283C, G625A) mouse Apex1
(NM009687.2) were synthesized from IDT gBlocks, ligated with IRES-mOrange, and cloned into
BamHI/NotI sites of pHR-TREp-Tat-Dendra (86).

Apex1-WT, Apex-CI, mOrange control, and rtTA (pHR-SFFVp-rtTA) vectors were packaged
into lentivirus in HEK293T cells. CRISPRi Nanog-GFP mESCs were spinoculated with filtered vi-
ral supernatant containing rtTA lentivirus in combination with Apex1-WT, Apex1-CI or mOrange
control lentivirus for 90 minutes at 200 x g. Following spinoculation, infected cells were expanded
and grown in 2i/LIF supplemented with 2ug/ml doxycycline. After 2 days of doxycycline induc-
tion, mOrange positive cells from each infected populated were bulk sorted on a FACSAria II to
obtain successfully transduced cells.

Apex1 gRNA-expression (4th sequence in Table S4) plasmid (contains BFP reporter) was pack-
aged into lentivirus in HEK293T cells. Importantly, Apex1 gRNA was targeted towards the en-
dogenous promoter sequence and thus does not interfere with expression of transduced vectors.
Apex1-WT, Apex-CI, mOrange control CRISPRi cell lines were spinoculated with filtered viral
supernatant containing Apex1 gRNA lentivirus for 90 minutes at 200 x g. Following spinocula-
tion, infected cells were seeded into gelatin-coated, 12-well plates in 2i/LIF media at a density
of 25,000 cells/cm2. 24 hours after infection, media was replaced with 2i/LIF supplemented with
2ug/ml doxycycline. After 24 hours of doxycycline induction, media was replaced with 2i/LIF
supplemented with 2ug/ml doxycycline and either 10μM IdU or equivalent volume DMSO in trip-
licate. After 24 hours of treatment, cells were run unfixed and live on BD Fortessa. To minimize
technical variability, analysis was restricted to cells with homogeneous levels of Apex1-WT/CI,
dCas9-KRAB and gRNA expression through stringent gating on mOrange/mCherry/BFP triple-
positive cells. Extrinsic noise filtering through cell-size gating was then applied. Nanog Fano
factor for all treatment conditions were normalized to the Nanog Fano factor of the mOrange con-
trol cell line treated with DMSO.

Biotinylated-trimethylpsoralen (bTMP) supercoiling assay

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish
(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replaced
with 2i/LIF supplemented with 10μM IdU, 10μM IdU + 100μM CRT0044876, or equivalent vol-
ume DMSO in replicate. After 24 hours of treatment, media was replaced with 2i/LIF supple-
mented with 1μM aphidicolin (Sigma-Aldrich, cat:A0781) for two hours. For control experiments,
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Nanog-GFP mESCs were cultured with or without 10μM IdU for 24 hours followed by treatment
with 100μM bleomycin for one hour. Cells were then washed 1xDPBS and then permeabilized
with 0.1% Tween-20 in DPBS for 15 minutes. Cells were then incubated with 0.3mg/ml EZ-Link
Psoarlen-PEG3-Biotin (Thermo, cat:29986) for 15 minutes. Cultures were then exposed to 365nM
light (AlphaImager HP with 15W bulbs, ProteinSimple) for 15 minutes at room temperature. Cells
were then washed 2xDPBS, fixed with cold 70% ethanol for 30 minutes at 4°C, and then washed
2xDPBS. Cells were then incubated with Alexa Fluor 594 Streptavidin (Thermo cat:S32356) for
one hour at room temperature in the dark, washed 2xDPBS, and stained with DAPI for 10 minutes
at room temperature in the dark. Cells were imaged in a buffer containing 50% glycerol (Thermo,
cat: 17904), 75 μg/mL glucose oxidase (Sigma Aldrich, cat: G7141), 520 μg/mL catalase (Sigma
Aldrich, cat: C3515), and 0.5 mg/mL Trolox (Sigma Aldrich, cat: 238813). Images were taken on
a Zeiss Axio Observer Z1 microscope equipped with a Yokogawa CSU-X1 spinning disk unit and
63x/1.4 oil objective. Approximately 20 xy locations were randomly selected for each condition.
For each xy location, three z-planes were sampled at 4-μm intervals. Nuclear segmentation using
DAPI signal and quantification of psoralen staining intensity were carried out using CellProfiler.
After illumination correction and background subtraction, the mean psoralen fluorescence inten-
sity of a segmented nucleus was taken from each z-plane and averaged over the entire z-stack.

Topoisomerase 1 overexpression assay

Topoisomerase 1 (NM 009408) expression vector (Origene, MR218547L3) with puromycin
selection marker was packaged into lentivirus using HEK293T cells. Nanog-GFP mESCs were
spinoculated with lentiviral supernatant. Three days following transduction, infected cells were
subjected to seven days of puromycin (1ug/ml) selection to isolate cells stably overexpressing
Topoisomerase 1.

1x105 wildtype and Topoisomerase 1 overexpressing Nanog-GFP mESCs were seeded in gelatin-
coated 12-well plates in 2i/LIF media. 24 hours after seeding, media was swapped with 2i/LIF
containing 10μM of IdU or equivalent volume DMSO in triplicate. After 24 hours of treatment,
cells were run unfixed and live on BD LSRII cytometer. Extrinsic noise filtering via cell-size gating
was performed prior to calculation of Nanog Fano factor. Fano factor for Nanog-GFP expression
for each treatment was normalized to the DMSO control for wildtype Nanog-GFP mESCs.

96-dose combination for testing of noise phase space

Compound plates containing 96 concentration combinations of IdU, BrdU (Sigma Aldrich, cat:
B5002), or HmU (Santa Cruz Biotech, cat: SC-221028) with CRT0044876 were prepared by the
Gladstone Assay Development and Drug Discovery Core using an Agilent Bravo liquid handling
system. All wells contained equivalent volumes of DMSO. Compound mixtures were suspended in
200μL of 2i/LIF media. 1x104 Nanog-GFP mESCs were seeded into each well of a gelatin-coated,
96-well dish in 200μL of 2i/LIF media. 24 hours after seeding, 100μL of media was removed from
each well and 100μL of compound-containing 2i/LIF was added in replicate. Layout and final
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concentrations of treatments are listed in Table S6. IdU and BrdU concentrations ranged from 0 to
50μM while HmU concentrations ranged from 0 to 10μM. CRT0044876 ranged from 0 to 150μM.
After 24 hours of treatment, cells were detached using TrypLE and plates were run on BD LSR-
Fortessa high-throughput system. After extrinsic noise filtering via cell-size gating, Nanog mean
and Fano factor for each treatment were normalized to DMSO control well. Reported fold changes
in mean and Fano factor are the average of two replicates.

Estimation of promoter toggling kinetics from scRNA-seq data

Gene expression data from the scRNA-seq dataset were fit to the 2-state model using the D3E
algorithm, allowing for estimation of kON ,kOFF ,andktx in proportion to the rate of mRNA degra-
dation which is the lone parameter that is not estimable from this dataset alone (70). Parameter
estimation was conducted using the methods of moments approach with the normalise and re-
moveZeros options. Analysis was run for the 945 genes classified as highly variable according to
the BASiCS algorithm. The Cramer-von Mises test was used for goodness-of-fit testing. Values
of kdecay were then retrieved from an existing dataset of mRNA degradation rates in mESCs (87),
with the assumption that degradation rates are unchanged between DMSO and IdU conditions. Pa-
rameter estimates were then verified against experimental values of mean mRNA counts using the
following relationship: 〈RNA〉 = kON

kON+kOFF
· ktx

kdecay
. Genes whose predicted mean was within 10%

of experimental value were used for downstream analysis. 314 genes passed this filtering process
based on availability of mRNA degradation rates and alignment of parameter estimates with ex-
pected mean mRNA counts.

Mathematical modeling and simulations

Detailed descriptions of model development, parameterization, evaluation, and sensitivity anal-
ysis can be found in the supplementary text along with details of Gillespie simulations.

Differentiation of mESCs into neural ectodermal lineage

Nanog-GFP mESCs were seeded at a density of 20000 cells/cm2 in gelatin-coated 12-well
plate in 2i/LIF media. 24 hours after seeding, cells were washed with PBS, and differentiation was
carried out in N2B27 medium (88) supplemented with 4uM IdU or equivalent volume DMSO in
6 replicates. Spent medium was exchanged with fresh medium after 48 hours, and IdU was only
kept in culture for the first 48 hours of differentiation.

After 48 hours and 96 hours of differentiation, cells were washed once with PBS and then in-
cubated in basal (N2B27) medium with Alexa Fluor700 Rat Anti-Mouse CD24 (BioLegend cat:
101836, clone M1/69) at a dilution of 1:1000 for 30 min at 37 °C, in the dark. Subsequently, cells
were washed once with PBS, dissociated with Accutase (Life Technologies cat: 00455556), and
analyzed on BD Fortessa.
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Cellular reprogramming assays

Three cellular reprogramming systems were tested in this study: (1) Nanog-GFP secondary
mouse embryonic fibroblasts (MEFs) harboring stably integrated, doxycycline-inducible cassettes
for Oct4, Sox2, and Klf4. GFP is expressed from the endogenous Nanog locus. (2) Oct4-
GFP MEFs that express GFP from the endogenous Oct4 locus. (3) Oct4-GFP MEFs that harbor
knocked-in, doxycycline-inducible cassettes for Oct4, Sox2, C-Myc and Klf4 (OKSM) at Col1a1
locus.

In the first reprogramming assay, Nanog-GFP secondary MEFs were seeded onto gelatin-
coated, 12-well plates at a density of 10,000 cells/cm2 in MEF medium (DMEM supplemented
with 10% FBS and 0.1mM non-essential amino acid, and 2mM Glutamax). 24 hours after seeding,
wells were washed with DPBS and media was switched to ESC media (knockout DMEM, 10%
FBS, 10% KSR, 2mM Glutamax, 0.1mM non-essential amino acid, 0.1mM 2-mercaptoethanol,
103 units/ml leukemia inhibitory factor) supplemented with 1μg/ml doxycycline. Additionally,
IdU (1uM or 4uM) or equivalent volume DMSO (Day 0) were added to media. 48 hours after
the start of IdU treatment, wells were washed with DPBS and media was replaced with ESC me-
dia supplemented with 1μg/ml doxycycline alone. Media was refreshed every other day until day
10 of reprogramming. Alkaline phosphatase staining was performed according to manufacturer’s
instructions using the Alkaline Phosphatase Detection Kit (Millipore, cat: SCR004). For flow cy-
tometric analysis of Nanog-GFP expression, cells were dissociated with TrypLE and run unfixed
on BD FACS Calibur cytometer.

In the second reprogramming assay, Oct4-GFP primary MEFs were transduced with lentiviral
vectors encoding Oct4, Sox2, Klf4, and c-Myc. Lentiviruses encoding these factors were indi-
vidually packaged in PLAT-E cells (ATCC) using pMX-based vectors. 48 hours after transfection
of lentiviral vectors, viral supernatant was collected and filtered. For infection, Oct4-GFP pri-
mary MEFs were seeded on gelatin-coated, 6-well plates at a density of 10,000 cells/cm2 in MEF
medium 24 hours prior to transduction (Day -2). Oct4, Sox2, Klf4, and c-Myc viruses were mixed
in equal volume along with 5μg/ml polybrene and incubated with primary MEFs for 24 hours in
MEF medium (Day -1). Following infection, wells were washed with ESC media and cells were
incubated with ESC media supplemented with 10μM Forskolin, 1mM Valproic Acid, 4μM IdU
or equivalent volume DMSO (Day 0). ESC media was refreshed every other day. IdU supple-
mentation was discontinued after 48 hours while Forskolin and Valproic Acid were kept in media
continuously. Oct4-GFP(+) colonies were counted on days 8, 10 and 12.

In the third reprogramming assay, Apex1 was knocked down via shRNAs (sequences in Table
S8) to assess its necessity for IdU-mediated enhancement of reprogramming. shRNA sequences
were inserted into AgeI/EcoRI sites of pLKO.1 (Addgene # 10878) and puroR was replaced with
mCherry. Oct4-GFP MEFs with doxycycline-inducible cassettes for OKSM factors were seeded
on gelatin-coated, 12-well plates at a density of 6000 cells/cm2 in MEF medium 24 hours prior to
transduction (Day -2). shRNA viruses along with 5μg/ml polybrene were incubated with MEFs
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for 24 hours in MEF medium (Day -1). Following infection, wells were washed with ESC media
and cells were incubated with ESC media supplemented with 2μg/ml doxycycline and 4uM IdU
or equivalent volume DMSO (Day 0). IdU supplementation was discontinued after 48 hours. ESC
media with 2μg/ml doxycycline was refreshed every other day, and from Day 6, medium was re-
freshed every day. On day 10, cells were dissociated with TrypLE and run unfixed on BD Fortessa.
Oct4-GFP percentages were analyzed among mCherry positive (shRNA expressing) cells. qPCR
validation of Apex1 knockdown was carried out as described in above section (qPCR verification
of CRISPRi knockdown). qPCR primer sequences are listed in Table S8.

Bulk RNA-seq of secondary MEFs undergoing reprogramming

Secondary MEFs were seeded onto gelatin-coated, 6-well plates at a density of 10,000 cells/cm2

in MEF medium. For each timepoint (2- and 5-day), 4 wells were seeded (2 replicates for stan-
dard reprogramming and 2 replicates for IdU-assisted reprogramming). 24 hours after seeding,
wells were washed with DPBS and media was switched to ESC media supplemented with 1μg/ml
doxycycline. Additionally, 4μM IdU or equivalent volume DMSO (Day 0) were added to media.
48 hours after the start of reprogramming, cells for the 2-day timepoint in DMSO and IdU condi-
tions were dissociated with TrypLE, pelleted, and snap frozen with liquid nitrogen. Media in the
remaining wells was refreshed with ESC media supplemented with 1μg/ml doxycycline alone at
48 hour timepoint. This was repeated on day 4. On day 5, remaining cells were dissociated and
frozen identically to that of the 2-day timepoint.

RNA was extracted from each cell pellet using a RNeasy minikit (Qiagen) according to man-
ufacturer’s instructions. A total of 8 cDNA libraries were prepared with an NEBNext Ultra II
RNA Library Prep kit (NEB, cat:E7770S) and sequenced with an Illumina HiSeq4000. Sequenc-
ing yielded a median of ∼50 million single-end reads per library. Read quality was checked via
FASTQC. Reads were aligned to the mm10 reference genome using TopHat with default parame-
ters. Transcript level quantification was performed using Cufflinks with default parameters.
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Overview

The overall goal of our computational modeling initiative was to develop a mechanistic model
of transcription that was capable of quantitatively fitting empirical data of the Apex1-generated in-
crease in transcriptional noise without changing mean. We refer to this phenomenon as Discordant
Transcription through Repair (DiThR) and herein develop a series of models of increasing com-
plexity (summarized in Supp. Fig. 22) to identify a minimal model capable of capturing how
Apex1 recruitment to DNA (mediated by IdU) affects transcription, thus recapitulating DiThR.
We refer to the model that most accurately recapitulates the experimental data as the DiThR model.

All tested models (Supp. Fig. 22) build from the canonical two-state random-telegraph model
(Model 0) and are described in Sections 2–3 (below). Experimental data are used to infer parame-
ter estimates for the models (Section 4) and Monte-Carlo simulations of the models were used for
model negation and identification of the best-fit model (Sections 5 and 6). Parameter sensitivity
analysis was performed (Section 7), and the best-fit model was tested for its ability to recapitulate
observed DiThR for other genes (section 8).

1 General modeling assumptions
Based upon existing literature of nucleotide incorporation into DNA (89) and the observed linear
increase in Fano factor with increasing IdU concentration (Fig. S22D), all models assume first-
order IdU incorporation. To prevent overparameterization, IdU incorporation is treated as a single
kinetic step (i.e. Michaelis Menten kinetics with kincorpo = [IdU ] · k0,incorpo).

Based on the data that IdU does not increase noise when Apex1 is knocked down (Fig. 3C),
Apex1 recruitment to DNA—rather than IdU incorporation—was modeled as the key transcription-
altering step. Based on the Apex1 catalytic inhibitor data, models assume that the steric and topo-
logical actions of Apex1 on DNA generates a transcriptionally non-productive state and that RNA
polymerase II cannot read through the Apex1-IdU DNA complex. Notably, two types of off states
were modeled: the canonical off state of the promoter (OFF) and an effective off state. The effective
off state can be seen as all the promoter states that are incapable of active transcription, irrespective
of the underlying mechanism inhibiting transcription. In other words, this non-productive, effective
off state is equivalent to the measured off state (see section 4 for further details).

2 Detailed mathematics and derivation of parameter constraints
for various models

Five models of increasing complexity are considered. Relationships between kinetic rates at equi-
librium are derived and these relationships are then used to constrain the parameter phase space in
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section 4.

Model 0

Model 0, used essentially as a null hypothesis, is the well-known canonical two-state random
telegraph model (17) and is described by the following schematic and rate scheme:

Model 0

OFF ON RNA O
kon

koff

ktx kdeg

OFF
kON−−→ ON

ON
kOFF−−−→ OFF

ON ktx−−→ RNA

RNA
kdeg−−→∅

Model 0 is used for the Maximum Likelihood Estimation and Akaike Information Criterion
(AIC)-based model selection (see section 5.1) and for analysis of smFISH results to determine
reaction rates (see main methods section) and parametric relationships as follows.

Model 0 can be described by the following set of coupled linear Ordinary Differential Equations
(ODEs):



dOFF
dt =−kONOFF + kOFFON

dON
dt = kONOFF− kOFFON

dRNA
dt = ktxON− kdegRNA

(6)

At steady state:

dOFF
dt

=
dON

dt
=

dRNA
dt

= 0
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we obtain:


K .
= kON

kOFF
=

ONeq
OFFeq

RNAeq =
ktx

kdeg
×ONeq

(7)

The fraction of time spent in ON+OFF = 1 (since a single promoter is being considered). So:

ONeq =
kON

kOFF
(1−ONeq) =

kON

kON + kOFF

Thus, we arrive at the fundamental relationships used herein:

〈ON〉 .= ONeq =
kON

kON + kOFF
; 〈OFF〉 .= OFFeq =

kOFF

kON + kOFF

K .
=

kON

kOFF
=

ONeq

OFFeq
; 〈RNA〉 .= RNAeq =

ktx

kdeg
· kON

kON + kOFF

Importantly, at equilibrium only ratios between kinetic parameters are important.

Intuitively, we can write a ratio involving the promoter kinetic constants as:

kON

kON + kOFF
=

kON

kOFF
· 1

kON
kOFF

+1

Thus, from the previously derived relations, it follows that:

kON

kON + kOFF
=

ONeq

ONeq +OFFeq

Lumped kinetic parameters
Often the true promoter states are more complex than the simple two-state model (90). Since,

with smFISH we are restricted to measuring two promoter states, i.e., a measured ON and measured
OFF state (Figure S22B), the kinetic rates that were measured by smFISH need to be treated
as lumped kinetic parameters. We therefore adopt capital notations for the lumped or effective
kinetic parameters that are measured through smFISH (KON ,KOFF ,KT X ,Kdeg). In other words, all
following rates that have a capital notation (i.e. K) are lumped parameters that can be measured by
smFISH.
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OFF ON RNA Ø

Model parameters 
recasting

KX = f({k})

Microscopic model

k1, k2, ... , kN

Effective model

KON , KOFF , Ktx , Kdeg

KON

KOFF

Ktx Kdeg

Figure 1: Model parameters recasting procedure. From kinetic parameters inferred using the
effective model at equilibrium, via smFISH experiments, it is possible to derive constraints for
microscopic kinetic parameters.

Model 1

This model assumes that IdU incorporation and subsequent interaction of Apex1 with DNA
occurs only in the OFF state of the promoter:

Model 1

OFF ON RNA O
kon

koff

kdeg

OFF*

krepair kincorpo

ktx

Biologically, this would occur if certain additional mechanisms were at play that would inhibit
DNA repair during active transcription.

This model is described by the following set of ODEs:
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

dOFF
dt = kON ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF− kOFF ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dRNA
dt = ktx ·ON− kdeg ·RNA

In accordance with the derivations made for Model 0, the time fraction the system remains in
the ON state is defined as follows:

KON

KON +KOFF
≡ ON

ON +OFF +OFF∗
(8)

KOFF represents the transition rate to the effective OFF state (i.e., comprising all states that are
incapable of transcribing mRNA). In this case the effective OFF state consists of both OFF and
OFF* and the transition into these states is governed by ko f f and kincorpo respectively.

We can thus derive the following constraint between krepair and kincorpo:

krepair =
KON +KOFF

KON
· kON

kON + kOFF + kincorpo
− kincorpo (9)

Model 2

In this model, Apex1 can interact with DNA in both the ON and OFF states of the promoter. If
Apex1 interacts with the DNA in the ON state, this leads to an effective turning off of the system
(i.e., the system enters the effective off state when in the OFF* state).
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Model 2

OFF ON RNA O
kon

koff

kdeg

OFF*

krepair kincorpo kincorpo

ktx

As noted in Model 1, this effective off state encompasses all states that are not transcriptionally
active due to mechanisms distinct from the typical switching off of a promoter and thus differs
from the canonical off state (OFF). Once repair is completed, the system enters the canonical off
state (OFF), which could happen if, for instance, the interaction of Apex1 with DNA may recruit
chromatin modifiers (e.g. histone deacetylases, histone methyltransferases) that in turn silence
gene expression. As a consequence, stalled polymerases, at both the promoter proximal region or
further downstream would unbind DNA.

This model can be described by the following set of ODEs:



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF− (kOFF + kincorpo) ·ON

dOFF∗
dt = kincorpo ·OFF + kincorpo ·ON− krepair ·OFF∗

dRNA
dt = ktx ·ON− kdeg ·RNA

Using equation (8) we derive the following constraint between krepair and kincorpo:

kincorpo

krepair
=

KOFF

KON
· kON

kOFF
−1 (10)

where KOFF represents the transition rate to the effective OFF state, consisting of both OFF
and OFF* and the transition into these states is governed by ko f f and kincorpo respectively.
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Model 3

This model assumes that Apex1 can still interact with IdU in the ON state but that this interac-
tion does not alter the “primed” characteristic of the gene-expression system. In this transcription-
ally non-productive ON* state, when Apex1 is recruited to the DNA, active transcription cannot
occur (i.e., cannot be measured) but the transcriptional permissiveness of the state is not altered:

OFF ON

ON*

RNA

krepair

O
kon

koff

kincorpo

kdeg

OFF*

krepair kincorpo

Model 3
ktx

Physiologically, this could be achieved if primed polymerases remain paused but do detach
from the DNA, or if transcription-enhancing epigenetic marks are not erased. As a result, exiting
into this “primed” ON* state would allow for continuation of transcription once repair is com-
pleted. Notably, while this ON* state is still primed for continuation of transcription, it contributes
to the effective off state, since active transcription does not occur and cannot be measured in this
state.

This model can be described by the following set of ODEs:



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kOFF + kincorpo) ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = ktx ·ON− kdeg ·RNA
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In accordance with the derivations made for Model 0, the time fraction the system remains in
the ON state is defined as follows:

KON

KON +KOFF
≡ ON

ON +ON∗+OFF +OFF∗
(11)

KOFF represents the transition rate into the effective OFF state, which in this case consists of
the OFF, OFF*, and ON* states. The transition into these states is governed by ko f f and kincorpo
respectively. We can thus derive the following constraint:

kincorpo

krepair
=

1
kON + kOFF

· [kON ·
KOFF

KON
− kOFF ] (12)

The details of this derivation are described below for Model 4.

Model 4

Model 4 is an extension of Model 3, where a positive transcriptional response to the repair (a
coherent feedforward loop) is included. When the system transitions from ON* to ON, the basal
transcription rate (ktx1) increases by a multiplicative factor (gain), which establishes the feedfor-
ward circuit:

ktx2 = gain · ktx1. (13)

OFF ON

ON*

RNA

krepair

O
kon

koff

kincorpo

kdeg

OFF*

krepair kincorpo

Model 4

ktx

gain
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Transcription rate (ktx) is a product of the polymerase occupancy and the elongation rate of
each polymerase (ktx = Pol · kelong) (91). The positive activation (gain) on transcription rate (ktx)
may be caused by a number of underlying mechanisms impacting either polymerase occupancy
and/or elongation rate of polymerases: (i) modification of supercoiling which may facilitate poly-
merase loading or increase transcriptional elongation upon relaxation of supercoiling (Chong et.
al., Cell 2014, see Fig. S4D); (ii) by forcing polymerases to pause while the system is in the ON*
state, chromatin remains in the accessible state (92) causing accumulation of polymerase ‘con-
voys’ and increased total polymerase occupancy; or (iii) the accumulation of polymerases in turn
can enhance the elongation rate of all bound polymerases (93).

Notably, while the primed promoter state (ON*) is considered part of the effective off state
because transcriptional elongation does not occur, when transitioning back into the transcription-
ally active (ON) state, the system will retain its primed state resulting in a feedforward (gain) on
transcription.

This model can be described by the following set of ODEs :

dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = 〈ktx〉 ·ON− kdeg ·RNA

Where kincorpo = [IdU ] · k0,incorpo. Here, [IdU] is the concentration of IdU in the cell, which is
assumed to remain constant.

At equilibrium :

dOFF
dt

=
dON

dt
=

dOFF∗

dt
=

dON∗

dt
=

dRNA
dt

= 0
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=⇒



OFFeq =
kOFF
kON
·ONeq

ONeq =
kON

kOFF
·OFFeq

OFF∗eq =
kincorpo
krepair

·OFFeq

ON∗eq =
kincorpo
krepair

·ONeq

RNAeq =
〈ktx〉
kdeg
·ONeq

(14)

The relationship between the effective ON and effective OFF states is defined as:

KON

KON +KOFF
≡ ON

ON +OFF +ON∗+OFF∗
(15)

where KOFF represents the transition rate to the effective OFF state. For this model the effective off
state consists of the OFF, OFF*, and ON* states, and is governed by both ko f f and kincorpo. Using
the set of equations in (14) and (15) we obtain:

KON

KON +KOFF
=

krepair

krepair + kincorpo
· kON

kON + kOFF
(16)

Equation (16) can be seen as :

P(ONe f f ective) = P(”Repaired state”) ·P(ON)

Because P(ONe f f ective)≡ P(” Repaired state ”∩ON) we can deduce that “Repaired state” and
ON are independent probabilistic events.

Thus, equation (16) can be rewritten as:

KON

KOFF
=

krepair · kON

kOFF · (krepair + kincorpo)+ kON · kincorpo
(17)
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Which yields:

kincorpo

krepair
=

1
kON + kOFF

· [kON ·
KOFF

KON
− kOFF ] (18)

Next, we define 〈ktx〉 ≡ mean transcription rate in the presence of IdU and ktx1 ≡ the basal
transcription rate in the control condition (DMSO). This yields:

〈ktx〉= P(ON | OFF) · ktx1 +P(ON | ON∗) ·gain · ktx1 (19)

where the gain term represents the amplification of the transcription rate following completion
of repair. P(ON | OFF) and P(ON | ON∗) represent the probability that the gene transitioned to
the ON state from the OFF and ON* states, respectively.

These probabilities read:


P(ON | OFF) = kON ·OFF

kON ·OFF+krepair·ON∗

P(ON | ON∗) = krepair·ON∗

kON ·OFF+krepair·ON∗

(20)

Next, combining equations (18) and (20) yields:
P(ON | OFF) = kOFF

kOFF+kincorpo

P(ON | ON∗) = kincorpo
kOFF+kincorpo

(21)

As shown in equations (19) and (21), the effect of the feedforward circuit depends on the fre-
quency of time spent in the ON* state, which in turn depends on kincorpo.

Rewriting (19) using (21) we obtain:

〈ktx〉
ktx1

=
1

kOFF + kincorpo
· (kOFF +gain · kincorpo) (22)
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=⇒ gain =
kOFF + kincorpo

kincorpo
· 〈ktx〉

ktx1
− kOFF

kincorpo
(23)

Equation (23) can be rewritten to explicitly consider [IdU ]:

gain =
kOFF + k0,incorpo · [IdU ]

k0,incorpo · [IdU ]
· 〈ktx〉

ktx1
− kOFF

k0,incorpo · [IdU ]
(24)

Model 5

Model 5 makes the same assumptions as model 4 except that the dominant Apex1 interaction
with DNA occurs in the ON state. (i.e., the interaction of Apex1 in the OFF state is negligible
compared to that in the ON state):

OFF ON

ON*

RNA

krepair

O
kon

koff

kincorpo

kdeg
ktx

gain

Model 5

In this model, base excision and repair are coupled to transcription. The ODEs describing this
model are as follows:



dOFF
dt = kOFF ·ON− kON ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = 〈ktx〉 ·ON− kdeg ·RNA
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The gain expression remains unchanged from Model 4 but the ratio between krepair and kincorpo
changes as follows:

KON

KOFF
≡ ON

OFF +ON∗
(25)

Thus we obtain:

KON

KOFF
=

krepair · kON

kOFF · krepair + kincorpo · kON
(26)

And:

kincorpo

krepair
=

KOFF

KON
− kOFF

kON
(27)
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3 Chemical Master Equation
For all models we constructed an associated stochastic reaction scheme. As an example, Model
5 can be rewritten using the following scheme in which ON2 was introduced for computational
expediency (see Box 1) and represents the repaired and “primed” ON state of the gene.

OFF
kON−−→ ON1

ON1
kOFF−−−→ OFF

ON1
ktx1−−→ RNA

ON1
kincorpo−−−−→ ON∗

ON∗
krepair−−−→ ON2

ON2
kincorpo−−−−→ ON∗

ON2
kOFF−−−→ OFF

ON2
ktx2−−→ RNA

RNA
kdeg−−→∅

OFF ON1
RNA

O

kOFF

kOFF

kON

kTX1

k
deg

RNA

O

kTX2

k
deg

kincorpo

kincorpokrepair

ON*

ON2
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Box 1
Starting from the stochastic reaction scheme, we can write the corresponding set of ODEs:



dOFF
dt = kOFF · (ON1 +ON2)− kON ·OFF

dON1
dt = kON ·OFF− (kincorpo + kOFF) ·ON1

dON2
dt = ON∗ · krepair− (kincorpo + kOFF) ·ON2

dON∗
dt = kincorpo · (ON1 +ON2)− krepair ·ON∗

dRNA
dt = ktx1 ·ON1 + ktx2 ·ON2− kdeg ·RNA

Here we define ON ≡ ON1 +ON2. As defined earlier, ktx2 ≡ gain · ktx1. It comes that:



dOFF
dt = kOFF ·ON− kON ·OFF

dON
dt ≡

dON1
dt + dON2

dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = ktx1 ·ON1 +gain · ktx1 ·ON2− kdeg ·RNA

That is:


...
dRNA

dt =
(

ktx1 · ON1
ON +gain · ktx1 · ON2

ON

)
·ON− kdeg ·RNA

By identification, we recover the set of ODEs presented in section 2.

This stochastic scheme represents the ODEs from section 2. ON2 was introduced for computa-
tional expediency (see Box 1) and represents the repaired and “primed” ON state of the gene. This
repaired and primed ON state has a higher transcription rate (ktx2), due to the positive feedforward
loop (gain), where ktx2 = gain · ktx1. Notably, as shown in equation (19), the effect of this feed-
forward gain depends on the frequency of time spent in the ON* state, which in turn depends on
kincorpo (see Figure S26C).
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Using this scheme, we can construct the chemical master equation (CME) describing the time
dependent distributions of mRNA copy number (94):

dP(m, t)
dt

= A ·P(m, t)+δ (E− I)[mP(m, t)]+∆(E−1− I)[P(m, t)] (28)

Where A, ∆, and δ are the transition, transcription, and degradation matrices respectively:

A =


−kON 0 −kOFF −kOFF

0 −krepair kincorpo kincorpo
kON 0 −(kOFF + kincorpo) 0

0 krepair 0 −(kincorpo + kOFF)



∆ =


0 0 0 0
0 0 0 0
0 0 ktx1 0
0 0 0 ktx2



δ =


kdeg 0 0 0

0 kdeg 0 0
0 0 kdeg 0
0 0 0 kdeg


P(m, t) is a four-element column vector consisting of the time-dependent mRNA probability

distributions while in the OFF,ON∗,ON1,andON2 states respectively. E and E−1 are the forward
and backward shift operators while I is the identity matrix.

At steady-state, the mRNA probability distribution can be reconstructed as a sum of the bino-
mial moments (94)

P(m) = ∑
k≥m

(−1)m−k
(

k
m

)
bk,m = 0,1,2, . . . (29)

Where bk is the kth binomial moment of the distribution given by:
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bk =
1

∏
k
i=1 det(iδ −A)

·
1

∏
i=k

[uN(iδ −A)∗∆] ·b0,k = 1,2, . . . (30)

where uN = [1,1,1,1]. (iδ −A)∗ and det(iδ −A) are the adjugate and the determinant of matrix
(iδ −A) respectively. b1 is equivalent to the mean mRNA abundance of the system at equilibrium.
b0 is the corresponding eigenvector for the zero eigenvalue of A. The 4 elements of b0 therefore
represent the fraction of time spent in the OFF,ON∗,ON1,and ON2 states at equilibrium. The nth

component of b0 is given by:

b(n)0 =
3

∏
i=1

β
(n)
i
αi

,1≤ n≤ 4 (31)

where α1,α2,α3 are the three non-zero eigenvalues of A. β
(n)
1 ,β

(n)
2 ,β

(n)
3 are the three eigen-

values of the sub-matrix Mn which is constructed by removing the nth row and nth column of A.

The Fano factor for mRNA counts at equilibrium is then given by:

FF =
2b2 +b1−b2

1
b1

(32)

An exact numerical simulation of such a stochastic process can be generated by Gillespie’s
method (a.k.a., Doob-Gillespie algorithm) (95). The algorithm was implemented in-house using a
Julia 1.1.1 script. For each model 1500 simulations were run for a virtual duration of 200 h. Since
the time is not discrete, a ‘parsing’ algorithm, based on recursive binary search, was used to align
all the trajectories on a common time scale of 2000 intervals. For each interval of the discretized
time, the average and variance of the number of mRNAs, taking into account all trajectories, was
computed. The analytic relationships described above are used to verify the inferred kinetic rates
from stochastic simulations.

4 Estimation of model parameters from experimental data
Using smRNA FISH data, we can infer the effective kinetic rates (Table S2). The kinetic rates
computed in the control condition (DMSO in Table S2) are the starting point for all simulations
and were considered as constant for all the models and associated results.
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Using these measured effective rates (KON , KOFF , Ktx, Kdeg) along with the relationships de-
veloped in section 2, we are left with one remaining degree of freedom for our models: krepair (or
equivalently kincorpo).

Comparison between experimental data and the results of stochastic simulations for each of
the models described in section 2 allows determination of which models most accurately fit the
experimental data.
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5 Model selection: Comparison of simulation results to exper-
imental data

5.1 Information theory-based approach: Maximum Likelihood Estimation
(MLE) and Akaike information criterion (AIC)

5.1.1 Workflow

In this approach, we compared the effective behavior of simulation results to the experimental data.
After deriving constraints on the phase space spanned by krepair, each of the models was simulated
over a range of krepair values. For each of the 500 chosen values (logarithmically spaced) of our
unique degree of freedom (krepair), 50,000 simulations for a total duration of 200h were run. Only
the last point of each simulation was stored. Then the steady-state distribution of RNA was com-
puted using the same binning as in the experimental data. From these stochastic simulations, the
effective behavior of the system can be extracted for a given model. KOFF and KON were com-
puted using a non-linear curve fitting assuming exponentially distributed residence times (Poisson
process). Both νon (fraction of time that promoter is active) and the burst size BS were computed
using their basic definitions (96). The density of mRNA population was computed using the last
points of the simulations. A classic kernel density was used to represent the data.
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Model Data

Structural constraints

krepair = unique degree of freedom
krepair1 krepair2 krepair3

Stochastic 
simulations

Infered krepair

Log-likelihood
computation

max(LLE)

5.1.2 Basis for Maximum likelihood estimation and AIC computation

The computation of the log-likelihood is as follows:

Let X the vector of n empirical observations and let X∆ : {x∆
i : x∈ [xi−1,xi] ⇐⇒ x→ x∆

i ∀x∈
X} the set of bins1 derived from X, where xi = xi−1+∆ for i = 1, . . . ,N, x0 = 0 and ∆ is the size of
a bin. We define p̂(x∆) as the binned empirical probability (in fact the observed binned frequency),
derived from X, and P(x∆) as the probability of a given bin x∆ for a given model. In addition in

1”→” means here ”is associated to”
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the following we denoted by P(x j) the model probability of an observation x j. The likelihood L
is defined as :

L
.
= ∏

x j∈X
P(x j) (33)

Following the binning procedure described before, we can derive a binned likelihood L ∆ given
by:

L ∆ .
= ∏

x j∈X
x j→x∆∈X∆

P(x∆) = ∏
x∆∈X∆

P(x∆)n·p̂(x∆) (34)

In the following we drop the ∆ superscript in L ∆ and denote the binned likelihood as L . The
(binned) log-likelihood is then given as:

log(L ) = ∑
x∆∈X∆

np̂(x∆) · log(P(x∆)) (35)

In this case, L is a function of krepair. We then try to find the value of krepair that maximizes
log(L ):

k̂repair,MLE = argmax
krepair

log(L (krepair)) (36)

With krepair ∈ [10−4,10], by assumption. After computing log(L (krepair)) for each of the 500
values of krepair, we apply a smoothing (moving average) to the data, take the derivative, smooth
the derivative, find the two points on each side of the abscissa, and then interpolate the point for
which the derivative is equal to zero using a linear interpolation. The maximum log(L ) is com-
puted after the first smoothing. Then, we compute the effective behavior of the system using the
inferred value of krepair, namely k̂repair,MLE .

The model selection is based on the Akaike information criterion (AIC) and the resulting mea-
sures ∆iAIC and Akaike weights wi (97). Because k̂repair,MLE is dependent on the empirical distri-
bution, we can assume that it is only an estimate of the true value, which we call k0

repair. Thus we
want to reduce as much as possible the distance between k̂repair,MLE and k0

repair. This optimization
problem allows us to derive the so-called Akaike information criterion (AIC) as a measure to com-
pare models (97). AIC is an estimate of the expected relative distance between the fitted model and
the unknown true mechanism that actually generated the observed data:

AIC =−2log(L (k̂repair,LLE))+2K (37)

with K being the number of degrees of freedom of the system.
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5.1.3 Results

As shown in Figures S23A-B, Model 5 is selected on the basis of minimized AIC. Model 4 is
second-best. Model 5 qualitatively and quantitatively matches experimental data with its inferred
krepair.

5.1.4 Parameter identifiability

Bootstrapping was used to assess the quality of the inference of krepair for Model 5 using MLE.
This method allows the computation of the confidence interval (CI) for krepair, and, in the frame-
work of Bayesianism, a posterior distribution P(Data|krepair) using a flat, minimally-informative
prior (97). The distribution of the MLE is peaked around a particular value, suggesting parameter
identifiability (Figure S23C).

5.2 APE-based approach
5.2.1 Workflow

As in the first approach for model selection, after deriving constraints on the phase space spanned
by krepair, each of the models was simulated over a range of krepair values. From these stochastic
simulations, the effective behavior of the system can be extracted for a given model.

For each model, inference of the best value of krepair is based on the minimization of a loss
function (absolute percentage error, a.k.a. APE). This quantitative approach is coupled to a visual
comparison of the model behavior to experimental data. The model whose inferred krepair value
minimizes divergence between model and data behavior is thus chosen. A graphical representation
of such a process is given below:
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5.2.2 Method of APE calculation

To discriminate between models based on their effective behavior, we utilized a measure that quan-
tifies the discrepancy between model-derived results and experimental data. Because the effective
observations (Fano factor, KON , burst size BS, etc.) derived from smFISH experiments are of dif-
ferent orders of magnitude, we utilized a relative measure to avoid the largest parameters carrying
the highest weight on the error. The absolute percentage error (APE) satisfied these constraints.
The procedure is as follows:

Consider the vector M ≡ (〈RNA〉,νON ,BS,FF,KON ,KOFF). Thus, Mmodel and Mexp contain
all the effective observations from modeling and experiment respectively. Mmodel is a function of
krepair or kincorpo equivalently. k̂repair,APE is the best inferred value of the degree of freedom for a
particular model. It is given by:
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k̂repair,APE = argmink

∣∣∣∣Mexp−Mmodel(k)
Mexp

∣∣∣∣ (38)

With k ∈ [10−4,10], by assumption. This notation implies minimization of the `1 norm (sum
of the vector components). In an operative manner, we simulated each model for 250 logarithmic
distributed values of krepair using the previously described Doob-Gillespie algorithm (95).

To validate our approach, we devised an alternative loss function where the `1 norm is com-
puted using a non-biased (i.e symmetric) measure of relative prediction accuracy: the absolute log
accuracy (ALA). The procedure is as follows:

k̂repair,ALA = argmink

∣∣∣∣log
(

Mmodel(k)
Mexp

)∣∣∣∣ (39)

With k ∈ [10−4,10], by assumption.

5.2.3 Results

Both the APE and ALA approaches yielded exactly the same results for parameter inference (ex-
cept for model 1 for which k̂incorpo,ALA = 0.39) and model selection. According to the APE-based
approach for parameter inference and model selection, model 5 best recapitulates the observed data
of increased expression noise without change in mean expression (Figure S24) and is referred to
as the Discordant Transcription through Repair (DiThR) model.

5.3 Selection of Model 5 (DiThR Model)
Based on both the MLE- and APE-based approaches, model 5 (DiThR model) best matches exper-
imentally measured mRNA distrubtions for both FISH data and scRNA-seq data for Nanog (Fig.
S23-24). The DiThR model utilizes a repair mechanism that is dependent on a transcriptionally
active state, in which repair events only occur while the gene is transcriptionally permissive (i.e.,
in the ON state). The key adjustment we make is the introduction of a coherent feedforward loop
caused by the system entering a primed yet transcriptionally inactive state (ON*). Completion
of this repair results in a higher transcription rate due to either: (i) modification of supercoiling
(57) which in turn has a feedforward effect on transcriptional elongation once continuation of tran-
scription is enabled; (ii) by forcing polymerases to pause while the system is in the ON* state,
chromatin remains in the accessible state (92) causing accumulation of polymerases and increased
total polymerase occupancy; (iii) the accumulation of polymerases in turn can enhance the elonga-
tion rate of all bound polymerases (93).

This feedforward loop is supported by the model-selection process, as the second-best model
(model 4) also has an amplified transcription rate following Apex1 interaction and subsequent
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DNA repair. Interestingly, for the same value of krepair, this transcription-coupled base excision
mechanism (model 5) leads to a less significant increase in noise and better maintenance of mean
as compared to model 4 in which repair can also take place in the OFF state (model 4). This im-
plies that coupling of base excision to transcription is the most efficient method of DNA repair in
terms of minimizing excess transcriptional variability.

It is important to note that the dynamic binding and unbinding of Apex1 triggers noise enhance-
ment more than the repair per-se. One implication is that other protein-DNA dynamic interactions
may lead to unavoidable noise modulation through structural constraints like supercoiling. The
strength of such modulation will depend on the kinetic rates of interaction.
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6 Validation of Model 5 (DiThR Model)
To validate that it is indeed the feedforward loop (i.e., gain) and not simply an increase in tran-
scription rate (i.e., higher ktx), that causes the experimentally observed increase in Fano with no
effect on the mean, we modified Model 5 to include two additional scenarios: i) no positive feed-
forward (Figure S25A); and ii) no positive feedforward together with a manually increased kT X
(Figure S25B). These two scenarios were compared with Model 5 (Figure S25C) for ability to fit
the observed data. Model 5 was again found to be the most accurate model at fitting the experi-
mental data.

A perturbative approach was followed to test whether the DiThR model can recapitulate exper-
imental data of the Nanog gene expression system in the presence of topoisomerase inhibitors. We
computationally tuned krepair to predict the behavior of the gene expression system. First, krepair
was decreased by a factor n (akin to addition of a small molecule ‘+SM’ topoisomerase inhibitor),
which increases the average time spent in the ON* state by the same factor. Decreasing krepair is
meant to simulate the effect of topoisomerase inhibition (+SM) which is thought to trap the system
in the ON* state for a longer time due to reduced rate of supercoiling relaxation, represented in the
following schematic.

OFF ON

ON*

RNA

krepair

O
kon

koff

kincorpo

kdeg
ktx

gain

+SM

Model 5

When the system is in the ON* state, it exhibits Poisson dynamics, characterized by exponen-
tially distributed escape time, τ , with rate krepair/n. It follows that 〈τ〉 = n/krepair = n · 〈τ〉n=1.
The subscript n = 1 in the previous expression indicates the average value in the absence of per-
turbation (SM = 0). Densities were computed using the final point of 10000 Gillespie’s simulations.

As a first approximation, we expect that an increase in residence time in the ON* state should
be translated into an equivalent increase in feedforward strength. In other words, the longer the
system stays in the ON* state, the higher the feedforward gain, and consequent enhancement of
transcription rate (ktx). Interestingly, we observe (Figure S24C) that significant perturbation (n= 2)
of krepair slightly changes average gene expression (×1.41) while leading to a striking increase in
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Fano factor (×3.12).

The modeling results indicate that noise-without-mean amplification is positively correlated
with time spent in the ON* state. If Apex1-induced supercoiling is a mediator of both transcrip-
tional repression (time in ON* state) and feedforward gain, it stands that modulation of baseline
supercoiling levels should influence transcriptional noise in the presence and absence of BER ac-
tivity (58). We experimentally verify this through overexpression of Topoisomerase I (Fig. S21C)
and inhibition of topoisomerase catalytic activity using small molecules such as topotecan and
etoposide (Figure S21B). Inhibition of topoisomerase catalytic activity yields a stark increase in
Fano factor (×3.16 for topotecan and ×5.03 for etoposide), while the mean remains comparable
(×0.98 for topotecan and ×1.16 for etoposide). Conversely, overexpression of Topoisomerase
I reduced IdU-mediated noise enhancement indicating that increased rates of supercoiling relax-
ation reduces time spent in ON* state and thus attenuates the noise modulatory properties of BER.
Model 5 therefore captures the effects of topoisomerase —and thus supercoiling —perturbation.

Importantly, modeling of topoisomerase inhibition through reduction of krepair can be general-
ized to a broad range of BER activity (i.e., range of kincorpo rates). To constrain the modeling by
experimental data, we modeled AP-site formation using the kinetic rates derived from IdU experi-
mental data: in the absence of IdU, the baseline noise level should change (reduced BER activity),
but not the qualitative modulation of the Fano factor in response to topoisomerase inhibition. This
is shown quantitatively in the following sensitivity analyses (Section 7.1).

7 Sensitivity analysis of Model 5 (DiThR Model)

7.1 Modulation of krepair and kincorpo with fixed feedforward strength
The model incorporating Apex1 interaction with chromatin, and an associated transcriptional am-
plification (i.e., feedforward loop), can recapitulate the noise-without-mean amplification of Nanog
expression observed with IdU treatment. We next asked how this behavior – increase in noise with-
out substantial modification of mean expression – is related to the dynamics of Apex1 binding and
unbinding (krepair and kincorpo describe this interaction).

We conducted a phase-plane analysis of the mean and Fano factor for both krepair and kincorpo
(Fig S26A-B). We assumed that the feedforward strength is fixed and equal to the deduced feedfor-
ward strength from the previous analysis using Nanog RNA FISH data for 10µM IdU. As expected,
the Fano factor increases as kincorpo increases (for kincorpo lower than ≈ 1). This demonstrates a
positive dose-dependent relationship between IdU and noise (Fig S26B).

We observe an inverse relation for krepair, where noise increases as krepair decreases. Exper-
imentally, the small-molecule inhibitor of the Apex1 endonuclease domain (CRT0044876) was
used to decrease krepair. We note that when kincorpo is higher than ≈ 1 the Fano factor starts to
decrease (Fig. S26B). These observations can be understood examining equation (40) for the Fano
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factor:

FF = 1+
(1−νon) · ktx

KON +KOFF + kdecay
(40)

For kincorpo > 1, νon decreases slowly and the effective 〈ktx〉 starts to increase slowly as com-
pared to when kincorpo ∈ [0.1,1] (Fig S26C-D). These changes are counteracted by a larger increase
in KOFF . The behavior for the mean number of RNA produced with increasing kincorpo > 1 can also
be understood using the previous considerations: the decrease in mean corresponds to a decrease
of the frequency in the ON state that is not counteracted by a strong enough feedforward gain.

7.2 Modulation of kON and kOFF with fixed feedforward gain
We next wanted to define the parameter regime for kON and kOFF in which homeostatic mainte-
nance of mean expression is possible with the DiThR model.

For this analysis, simulations were run with values of kON ,kOFF ∈ [10−3,10] for both the null
model (model 0, DMSO condition) and DiThR model. For the same values of kON ,kOFF , the fold
change in mean of mRNA counts was calculated by comparing results of DiThR model to the null
model. This provides insight into how IdU treatment may impact expression of genes with different
bursting kinetics. When kOFF � kON , the addition of IdU in DiThR model increases the average
number of mRNA produced as compared to the null model (Fig S26E). This can be explained by a
competition between the OFF and ON∗ states and by the fact that in this portion of the phase space
kON < kOFF < kincorpo (and kincorpo < krepair ). Therefore, the probability of presence in the ON2
state (transcriptionally more productive state), increases. This implies that IdU treatment would
increase the mean of very lowly expressed genes. This was seen experimentally in bulk RNA-seq
measurements of transcript abundance in mESCs as the ∼ 100 genes that showed an increase in
mean with IdU treatment were from the lowest expression regime (Fig S3). The exact inverse
effect is observed in the upper left corner of the heatmap, where kON > kOFF > kincorpo. Thus for
highly expressed genes, the effect of IdU on mean expression is minimal, as seen experimentally.

7.3 Feedforward strength and noise enhancement
When all the kinetics rates of the system are fixed, increasing the feedforward gain, and thus the
effective transcription rate, leads both to an increase in mean and Fano factor (Fig S26F).

8 Testing of DiThR Model for other noise-enhanced genes
The analysis above indicated that IdU mediates the recruitment of Apex1 (and perhaps other DNA
base-excision repair machinery) to DNA while the gene is transcriptionally permissive (DiThR
model). By postulating a second ON state characterized by increased ktx the model is sufficient to
recapitulate the experimental observations of increased noise while mean is relatively unchanged.
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However, this model was parameterized and validated based on the Nanog expression data. Con-
sequently, we next asked whether the DiThR model could explain the experimental data collected
for other noise-enhanced genes within the scRNA-seq dataset (Fig. 1C).

To simulate DiThR model for additional genes, estimates for the following parameters were
needed: kON ,kOFF ,ktx1(basal transcription rate in DMSO),kdeg,and〈ktx〉 (effective transcription rate
in IdU). To derive these parameter estimates, we used an established moments-matching technique
described in (70), where the first, second, and third exponential moments of the mRNA distri-
butions in the DMSO and IdU conditions are used to calculate the parameters of a Poisson-beta
distribution (that describes the two-state model) which best fits experimental count data. The pa-
rameter estimates were derived in proportion to kdeg. Values of kdeg were retrieved from an existing
dataset of mRNA degradation rates in mESCs (87).

Of the 945 genes classified as highly variable with IdU treatment, 314 genes remained for
downstream analysis based on availability of mRNA degradation rates and high confidence param-
eter estimates (Fig. S28A). Using the above parameter estimates, we computed the constraints on
the feedforward (gain) term and kincorpo as a function of krepair using the relationships derived in
Section 2 for Model 5. As above, there was again one remaining degree of freedom in our model
system: krepair. Using the MLE-based approach (Section 5.1), simulation results for a range of
krepair values were compared against scRNA-seq data to identify k̂repair,LLE for each of the 314
genes.

Once k̂repair,LLE was identified, the effective values of KON and KOFF from simulation results
were compared to experimentally derived estimates of KON and KOFF from scRNA-seq data for
each gene (Fig. S29). Overall, simulated values for effective rates of promoter toggling in the
IdU condition align with experimental results, indicating that the DiThR model holds explana-
tory power for noise-enhanced genes beyond just Nanog. This suggests that the use of a second,
transcriptionally-enhanced ON state may be a unified mechanism for maintenance of transcrip-
tional homeostasis during base excision repair across a broad range of genes with different bursting
kinetics.

46



Supplementary Figures S1-S32
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Figure S1: Nucleoside analog increases expression variability of housekeeping promoters in
Jurkat and K562 cells.
(A) Representative flow cytomtery distributions of d2GFP expression in an isoclonal population of
Jurkat cells treated with either 20μM IdU or equivalent volume DMSO for 24 hours. Mean and SD
are derived from 2 biological replicates. (B) Representative flow cytomtery distributions of d2GFP
expression in isoclonal populations of K562 cells treated with either 20μM IdU or equivalent vol-
ume DMSO for 24 hours. Mean and SD are derived from 2 biological replicates.
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Figure S2: Noise enhancement occurs for coding and non-coding genetic elements across all
expression levels.
(A) 4,578 genes from scRNA-seq dataset were binned into one of four groups (quartiles) based on
mean expression level in DMSO condition. Comparison of mean expression level for each gene
in IdU and DMSO treatment groups. Boxplots show median ±interquartile range of mean values
for genes within each bin. Solid lines connect the same gene in the DMSO and IdU boxplots. P
values were calculated using a two-tailed, paired Student’s t test. (B) Comparison of Fano factor
for each gene in IdU and DMSO treatment groups. Boxplots show median ±interquartile range
of Fano factors for genes within each bin. Solid lines connect the same gene in the DMSO and
IdU boxplots. P values were calculated using a two-tailed, paired Student’s t test. **p < 0.001,
*p = 0.0016 (C) Fold change (Log2) in Fano factor for expression of 10 long non-coding RNAs
(lncRNAs). Comparison is between 10μM IdU and DMSO treatments. lncRNAs with greater than
100 total counts per sample in scRNA-seq dataset were used for analysis. Majority of lncRNAs
show enhancement of expression variability with IdU treatment.
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Supplemental Figure 3
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Figure S3: IdU causes minimal change in mean gene expression levels as measured by bulk
RNA-seq.
Transcript abundances were normalized using ERCC spike-in counts. Differential mean testing
was conducted with a threshold of fold change > 2 and an FDR cutoff of 0.05. Genes considered
differentially expressed are highlighted in red. (A) Mean transcript abundance vs. fold change
(Log2) in mean for 12,502 genes. Comparison is between 10μM IdU and DMSO treatments. 98
genes were identifed as differentially expressed. (B) Mean transcript abundance vs. fold change
(Log2) in mean for 12,054 genes. Comparison is between 5μM IdU and DMSO treatments.
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Supplemental Figure 4
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Figure S4: Noise-enhanced genes tend to be centrally located within topologically associating
domains.
Comparisons are between 945 genes classified as highly variable and 3,513 genes classified as non-
variable (background) according to BASiCS algorithm. Gene characteristics and sequences were
taken from Ensembl GRCm38 reference genome. (A) Distributions of gene lengths for highly
variable and background genes. Length was calculated as distance between Ensembl gene start
and end coordinates which correspond to outermost transcript start and end coordinates. (B) Per-
centage of base-pairs in gene body (based on gene start and end coordinates) that are A:T. (C)
Percentage of base-pairs in 200bp region upstream of gene start that are A:T. (D) The number of
exons was averaged over all transcripts associated with a gene. Distributions of average exon quan-
tity for genes in the highly variable and background group were then plotted. (E) Fraction of genes
with TATA sequence in 200bp region upstream of gene start. Data represent mean and SD from
bootstrapping procedure with 10,000 resamplings of 100 genes from each group with replacement.
(F) Fraction of genes whose coding sequence is located on negative and positive strands. Data
represent mean and SD from bootstrapping procedure with 10,000 resamplings of 100 genes from
each group with replacement. (G) Fractional distance of gene within TAD was calculated as (gene
start coordinate - TAD start coordinate)/(TAD end coordinate - TAD start coordinate). Coordinates
of TAD boundaries in mESCs were taken from Elphege et al. (80).
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Supplemental Figure 5
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Figure S5: Ontology analysis of variably expressed genes shows enrichment for housekeeping
and pluripotency maintenance pathways.
DAVID v6.8 was used to identify enriched ontologies among the 945 genes classified as highly
variable according to BASiCS algorithm.
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Supplemental Figure 6

Sox2Klf4
Nanog

Oct4

0.00

0.25

0.50

0.75

1.00

−3.0 −1.5 0.0 1.5 3.0
Log2(Fold Change in Variability)

Po
st

er
io

r P
ro

ba
bi

lit
y

G1 Phase
Sox2

Oct4

0.00

0.25

0.50

0.75

1.00

−3.0 −1.5 0.0 1.5 3.0
Log2(Fold Change in Variability)

Po
st

er
io

r P
ro

ba
bi

lit
y

Nanog

Klf4

S Phase

Sox2

Klf4 Nanog
Oct4

0.00

0.25

0.50

0.75

1.00

−3.0 −1.5 0.0 1.5 3.0
Log2(Fold Change in Variability)

Po
st

er
io

r P
ro

ba
bi

lit
y

G2 Phase

A B

C
23% of Genes

21% of Genes17% of Genes

Figure S6: Noise-enhancement of pluripotency factors occurs in all three phases of the cell
cycle.
A total of 1556 cells in the scRNA-seq dataset were classified into one of three cell-cycle phases.
Differential variability testing was then conducted between cells in the DMSO and IdU treatment
groups with the same cycle classification. 17%, 21% and 23% of genes are classified as highly
variable in G1, S, and G2 phases respectively.
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Supplemental Figure 7
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Figure S7: Transcript variability is not caused by bifurcation of mESCs into separate devel-
opmental lineages.
Pseudotime analysis of IdU-treated cells shows no differentiation of mESCs into separate devel-
opmental lineages.
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Supplemental Figure 8
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Figure S8: Majority of gene-gene pairs show a decrease in correlation strength.
The Pearson correlation of expression for 923,521 (961 x 961) gene-gene pairs were compared
between DMSO and IdU treatment groups. For each gene-gene pair, the absolute value of the
correlation strength in DMSO was subtracted from the absolute value of the correlation strength in
IdU. Negative values indicate loss of correlation in expression.
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Supplemental Figure 9
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Figure S9: Shortened burst duration and increased transcription rate causes enhanced cell-
to-cell variability in Nanog mRNA counts.
(A) Distribution of cell sizes for analyzed cells in DMSO and IdU conditions. Cell size was
calculated as number of pixels within segmented cell boundary. Dashed lines represent means
of each distribution. Data represent pooling of cells from all four biological replicates for each
condition. KS test shows no significant difference between cell size distributions. (B) Distributions
of unspliced/nascent Nanog mRNA per cell as quantified by probes for first intron of Nanog. Data
represent pooling of cells from all four biological replicates for each condition. With IdU, active
transcriptional centers (TCs) have more unspliced/nascent mRNA, *p = 0.0029 by a two-tailed,
unpaired Student’s t test. (C) Fold change in number of nascent Nanog transcripts detected at
TCs by intron (5‘ end) and exon (3‘ end) probes (number of nascent transcripts in IdU condition /
number of nascent transcripts in DMSO condition). IdU treatment causes an equivalent increase in
nascent transcripts at 5‘ and 3‘ ends of gene body, indicating that . P values were calculated using a
two-tailed, unpaired Student’s t test. (D) Inference of parameters for 2-state model of transcription.
P values were calculated using a two-tailed, unpaired Student’s t test. *p = 0.0017, **p = 0.0001.
(E) Schematic describing expected changes in TC intensity (as quantified by intron and exon probe
set) based on changes in polymerase elongation through gene body. As described in the second
row, slowed elongation with a pileup of polymerases at the end of the gene would cause an increase
in exon signal accompanied by a decrease in intron signal. As described in the third row, slowed
elongation with a pileup of polymerases at the start of the gene would cause a decrease in exon
signal and increase in intron signal. As described in the fourth row, an increased transcription rate
would result in an increase of both the intron and exon signal. Experimental data (Fig. 2D and fig.
S9, B& C) is most consistent with the scenario described in row four.
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Figure S10: Live-cell imaging of transcription demonstrates shortened burst duration with
maintenance of transcriptional output.
(A) Images of U2OS cells containing p21-MS2 reporter (maximum intensity projections of z-
dimension stacks). Scale bar, 5 µm. Images were taken 10 minutes apart. White arrow points to
transcription site (TS). Top panel: U2OS p21-MS2 reporter cells treated with Nutlin (activator of
p21 transcription). Bottom panel: U2OS p21-MS2 reporter cells treated with Nutlin and 20μM
IdU. (B) Quantification of the fluorescence intensity at the TS for 5 representative cells in the con-
trol and IdU conditions. Shadings represent bursts of transcription where fluorescence signal (a.u.)
exceeds background signal by 2.5-fold. (C) Cumulative transcriptional output per cell in control
and IdU conditions. Data represent analysis of 56 cells for each condition over 118 minutes of
imaging. Boxplots show median ±interquartile range of cumulative transcriptional output, which
is calculated based on the normalized transcriptional activity from fluorescence tracings exempli-
fied in panel B. (D) Transcriptional activity (yellow bars) of each tracked cell over time in control
and IdU conditions. (E) Rate of activation for p21 promoter (KON). Data represent mean (± SEM)
of 56 cells for each condition. (F) Rate of inactivation for p21 promoter (KOFF ). Data represent
mean (± SEM) of 56 cells for each condition. **p < 0.001 by a two-sample t-test.
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Supplemental Figure 11
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Figure S11: Noise-enhancement of Nanog protein expression is independent of cell-cycle
state.
(A) Representative flow cytometry distributions of propidium iodide staining for Nanog-GFP
mESCs treated with either DMSO or 10μM IdU for 24 hours. No signs of aneuploidy are visi-
ble, indicating transcriptional variability is not due to cell-to-cell variability in gene copy numbers.
(B) Percent of cells in each phase of the cell cycle for DMSO and IdU treatments based on propid-
ium iodide staining. IdU treatment slightly slows entry into S phase. Data represent mean and SD
of three biological replicates. P values were calculated using a two-tailed, unpaired Student’s t test.
*p < 0.01 (C) Representative flow cytometry distributions of Nanog-GFP for mESCs within the
G1, S and G2 phases of the cell cycle. mESCs were treated with 10μM IdU or equivalent volume
DMSO for 24 hours followed by propidium iodide staining. (D) IdU-induced noise-enhancement
of Nanog-GFP protein levels is unchanged across all three phases of the cell cycle. Nanog-GFP
Fano factor with IdU treatment was normalized to DMSO control for calculation of fold change.
Data represent mean and SD of three biological replicates. P values were calculated using a two-
tailed, unpaired Student’s t test.
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Supplemental Figure 12
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Figure S12: Increased expression variability of Nanog protein originates from transcrip-
tional sources of noise which drives a greater number of mESCs into the low-Nanog state
while cultured in serum/LIF.
(A) Representative flow cytometry distributions of Nanog-GFP expression for mESCs cultured in
2i/LIF and treated with either 10μM IdU or equivalent volume DMSO for 24 hours (left histogram)
or 6ug/ml Actinomycin D in the presence or absence of 10μM IdU for 24 hours (right histogram).
(B) Inhibition of transcription ablates IdU-induced noise-enhancement of Nanog-GFP protein lev-
els. Nanog-GFP Fano factor was normalized to DMSO control for calculation of fold change. Data
represent mean and SD of three biological replicates. P values were calculated using a two-tailed,
unpaired Student’s t test. (C) Flow cytometry distribution of Nanog-GFP expression for mESCs
cultured in serum/LIF and treated with 10μM IdU or equivalent volume DMSO for 24 hours. Data
is pooled from three biological replicates.
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Supplemental Figure 13
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Figure S13: Time-lapse imaging demonstrates that altered kinetics of promoter toggling
cause individual cells to experience larger fluctuations in Nanog protein expression.
(A) Each point represents a single-cell fluorescence trajectory (DMSO on left, n = 1513; IdU
on right, n = 1414). Single-cell fluorescence trajectories were detrended by subtracting time-
dependent population average for Nanog-GFP fluorescence. The mean Nanog-GFP fluorescence
for each raw trajectory is then plotted versus the CV2 of the detrended version of the trajectory
to isolate intrinsic noise. The dashed lines represent the average intrinsic CV2 of all trajectories
for each treatment group. Time-lapse imaging shows that for individual cells the magnitude of
Nanog protein fluctuations increases with IdU treatment. (B) Distributions of noise frequencies
from autocorrelation functions of each detrended trajectory. Noise frequency is calculated as the
inverse of the autocorrelation time (τ1/2). Shorter but more productive transcriptional bursts with
IdU treatment pushes the frequency content of Nanog-GFP fluctuations to higher spectra.
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Supplemental Figure 14
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Figure S14: Amplification of expression fluctuations occurs independently of starting Nanog
level.
Single-cell trajectories whose starting fluorescence value was below 500 a.u. or above 700 a.u.
were binned into low (left column) and high (right column) groups respectively. Only trajectories
whose starting point coincided with addition of DMSO or IdU at time zero were used. Distributions
of trajectory fluorescence values at zero, seven, and 14 hours into treatment conditions are shown.
By 14 hours into IdU treatment, there is visible interconversion of cells between the low and high
Nanog states, indicating that memory of initial Nanog expression level is erased. This precludes
the possibility that noise enhancement is due to promoter mutations that create sub-populations of
cells with stable expression of Nanog at low and high levels.
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Supplemental Figure 15
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Figure S15: IdU treatment increases intrinsic noise of Sox2 expression.
(A) Flow cytometry dot-plot of mESCs with Sox2 dual color tags (P2A-mClover fused to one
allele and P2A-tdTomato fused to other allele). Dashed red line has slope of one. mClover and
tdTomato fluorescence values were normalized to population average. Data shown is pooled from
three biological replicates. (B) Cells were binned according to total Sox2 expression from both
alleles. Each point represents the intrinsic noise (Fano factor) of Sox2 expression for cells within a
particular bin. Grey shadings represent 95% confidence intervals as determined by bootstrapping.
Smooth lines are produced from loess regression. IdU increases Sox2 intrinsic noise across all
expression levels.
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Supplemental Figure 16
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Figure S16: Validation of CRISPRi knockdown of Apex1 and Tk1 via qPCR measurements.
∆∆Ct method was used with the empty-vector cell population as the control. Levels of Apex1 and
Tk1 repression are relative to the non-targeting (scrambled) population. Data represent mean and
SD of two biological replicates.
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Supplemental Figure 17
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Figure S17: Thymidine competition ablates Nanog noise-enhancement from IdU and ChIP-
qPCR demonstrates increased recruitment of Apex1 to Nanog promoter with IdU treatment.
(A) The Fano factor of Nanog for each concentration combination is normalized to DMSO control.
For all treatment combinations, IdU concentration is held constant at 10μM. Concentration of
thymidine (red) and uridine (blue) is reported on the x-axis. Combination of 100μM thymidine
and 10μM IdU returns Nanog Fano factor to baseline level (DMSO control). Uridine, which is not
a substrate of Tk1, fails to ablate IdU-induced noise-enhancement. Data points represent mean and
SD of three biological replicates. (B) ChIP-qPCR analysis of Apex1 binding to Nanog promoter.
IdU treatment enhances recruitment of Apex1 to the Nanog promoter; *p = 0.0334, **p = 0.0089
by Dunnett’s multiple comparisons test.
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Figure S18: Activation of BER with MMS and H2O2 increases gene expression variability
while activation of NER with UV exposure fails to increase noise.
(A) (Left) Representative flow cytometry distributions of Nanog-GFP expression for mESCs
treated with 2mM MMS (blue), 2mM MMS with 100uM CRT0044876 (red) and DMSO (grey).
Compounds were washed off after 1 hour of treatment. Flow-cytometry analysis performed 24
hours after wash. (Right) Nanog-GFP Fano factor was normalized to DMSO control for calcula-
tion of fold change. Data represent mean (±SD) of three biological replicates. **p < 0.00086,
*p = 0.014 by a two-tailed, unpaired Student’s t test. (B) (Left) Representative flow cytometry
distributions of Nanog-GFP expression for mESCs treated with 300uM H2O2 (green) and DMSO
(grey). Compounds were washed off after 1 hour of treatment. Flow-cytometry analysis performed
24 hours after wash. (Right) Nanog-GFP Fano factor was normalized to DMSO control for calcu-
lation of fold change. Data represent mean and SD of three biological replicates. **p = 0.0045,
***p = 0.0005, ****p < 0.0001 by a two-tailed, unpaired Student’s t test. (C) Representative flow
cytometry distributions of Nanog-GFP expression from UV-exposed (green) and control (grey) cell
populations. Cells were analyzed one, two, four, eight, and 12 hours post exposure. (D) For each
exposure group (15, 30, and 60 minutes), the fold change in Fano factor is calculated as the Fano
factor for Nanog in the UV-exposed population normalized to the Fano factor of its respective con-
trol population. Data points represent mean and SD of two biological replicates. Across all time
points (except 4 hour point in 15 minute exposure group) UV stress reduces the Fano factor of
Nanog.
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Figure S19: Activation of BER through overexpression of Mpg or Ung increases gene expres-
sion noise.
(A) Knockdown of Thymine-DNA glycosylase (Tdg) or Uracil-DNA glycosylase (Ung) failed to
ablate IdU-mediated noise enhancement of Nanog-GFP expression. Fold change in Fano factor
is normalized to Fano factor of Nanog-GFP expression in CRISPRi mESCs expressing scram-
bled gRNA. Three gRNAs for Tdg and three gRNAs for Ung were each tested in triplicate. Data
represent mean and SD of all nine samples for each knockdown. P values were calculated using
a two-tailed, unpaired Student’s t test. (B) (Left) Representative flow cytometry distributions of
Nanog-GFP expression from mESCs overexpressing methylpurine glycosylase (Mpg, green) and
control (grey) cell populations. (Right) Nanog-GFP Fano factor was normalized to DMSO control
for calculation of fold change. Data represent mean and SD of three biological replicates. *p =
0.0246, by a two-tailed, unpaired Student’s t test. (C) (Left) Representative flow cytometry dis-
tributions of Nanog-GFP expression from mESCs overexpressing Uracil-DNA glycosylase (Ung,
purple) and control (grey) cell populations. (Right) Nanog-GFP Fano factor was normalized to
DMSO control for calculation of fold change. Data represent mean and SD of three biological
replicates. *p = 0.0138, by a two-tailed, unpaired Student’s t test.
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Supplemental Figure 20
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Figure S20: Bleomycin treatment reduces bTMP intercalation into DNA, validating assay
sensitivity for negative supercoiling levels.
Boxplots show median ±interquartile range of single-cell bTMP staining intensities. Treatment
of mESCs with 100μM bleomycin was performed for 1 hour just prior to bTMP incubation.
Bleomycin reduces the mean bTMP staining intensity for cells treated with DMSO or 10μM IdU as
compared to DMSO control with no bleomycin treatment (**p < 0.0001). The reduction in bTMP
staining when IdU is coupled with bleomycin indicates that IdU alone in uncoiled DNA does not
increase bTMP intercalation. Data shown are pooled from two biological replicates. P values were
calculated using Kruskal-Wallis test followed by Tukey’s multiple comparison test.
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Supplemental Figure 21
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Figure S21: Loss of Topoisomerase activity increases Nanog expression variability while
overexpression of Topoisomerase 1 partially ablates IdU-mediated noise-enhancement of
Nanog expression.
(A) CRISPRi knockdown of Topoisomerases involved in relaxation of DNA supercoiling. Nanog
Fano factor was normalized to scrambled gRNA population. Data represent mean (± SD) of three
biological replicates. Knockdown of Top1 (*p = 0.002) and Top2a (*p = 0.003) increases Nanog
expression variability. P values were calculated by two-tailed, unpaired Student’s t test. (B) Rep-
resentative flow cytometry distributions of Nanog-GFP expression in mESCs treated with DMSO,
500nM topotecan or 500nM etoposide for 24 hours in 2i/Lif media. Extrinsic noise filtering via
cell-size gating was performed prior to calculation of Nanog Fano factor. Table inset shows mean
and Fano factor (±SD) of Nanog expression averaged over three biological replicates of each treat-
ment. (C) Overexpression of Topoisomerase 1 partially ablates IdU-mediated noise-enhancement
of Nanog expression. Wildtype (WT) and topoisomerase 1 (Top1) overexpressing Nanog-GFP
mESCs were treated with DMSO or 10µM IdU for 24h in 2i/LIF media. Nanog Fano factor
was normalized to wildtype population of Nanog-GFP mESCs treated with DMSO. Data repre-
sent mean (± SD) of three biological replicates. Overexpression of Top1 (*p = 0.0036) reduces
IdU-mediated enhancement of Nanog variability by 31%. P values were calculated by two-tailed,
unpaired Student’s t test. (D) Knockdown of histone remodelling factors known to interact with
BER pathway failed to ablate IdU-mediated noise enhancement of Nanog-GFP expression. Fold
change in Fano factor is normalized to Fano factor of Nanog-GFP expression in CRISPRi mESCs
expressing scrambled gRNA. Three gRNAs for each histone remodelling factor were tested in
triplicate. Data represent mean and SD of all nine samples for each knockdown. P values were
calculated using a two-tailed, unpaired Student’s t test.
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Figure S22: Schematic of tested models with canonical and effective OFF states highlighted.
(A) Schematic of simulated models incorporating Apex1 into standard two-state model of tran-
scription. Canonical OFF state of each model is highlighted in green. (B) Identical schematic of
simulated models as in panel A. Effective OFF state (all states incapable of producing mRNA)
of each model is highlighted in blue. (C) Representative micrographs from smRNA FISH exper-
iment with DAPI staining (maximum intensity projection). Nanog-eGFP transcripts are labelled
with probe-set for eGFP. Scale bar is 5µm. (Left) Purple arrow indicates active transcriptional
center as verified by intron probe set, which represents the effective ON state. (Right) Lack of
active transcriptional center represents effective OFF state. (D) Fold change of Nanog-GFP Fano
factor as a function of IdU concentration (adapted from data in Figure 4C). Incorporation of IdU
(a thymidine nucleotide analogue) is a result of DNA polymerase insertion during replication and
so incorporation of IdU is likely in pseudo-first order regime of Michaelis Menten kinetics. This
is consistent with experimental evidence demonstrating that IdU-mediated noise-enhancement of
Nanog expression is dose-dependent.
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Figure S23: MLE-based approach for model selection reveals transcription-coupled base-
excision mechanism best recapitulates experimental data.
(A) (First Column) Schematic of simulated models incorporating Apex1 into standard 2-state
model of transcription. (Second Column) For each model, 500 logarithmically-spaced values of
krepair ∈ [10−4,10] were simulated. For each simulated value of krepair, log-likelihood is calculated
as described in supplementary text 5.1.2 and plotted. Dashed vertical line in each plot denotes
value of krepair that maximizes log-likelihood estimate. (Third Column) Comparison of experi-
mental Nanog mRNA distribution (red) to simulated distributions of Nanog mRNA (blue) for each
model using value of krepair that maximizes log-likelihood. (Fourth Column) The effective be-
havior (mean Nanog mRNA [µ], Fano factor [FF], KOFF , fraction of time active [von], burst size
[BS], KON) of each model using value of krepair that maximizes log-likelihood estimate are com-
pared to experimental data (supplementary text 5.1). Bars represent simulation values of Nanog
gene expression system while red points with vertical line represent experimental data on Nanog
expression from smRNA-FISH of mESCs treated with 10μM IdU. (B) For each tested model, the
maximum log-likelihood value is listed along with the associated ∆iAIC. Model 5 (DiThR model)
best describes experimental data based on these metrics. (C) Distribution and confidence interval
(CI) of inferred krepair values (based on MLE) for DiThR model using bootstrapping method in
which the empirical distribution of Nanog mRNA counts from smRNA-FISH data was re-sampled
1000 times with replacement (supplementary text 5.1.4). Bootstrapping results show a well peaked
distribution indicating practical parameter identifiability for krepair.
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Figure S24: APE-based approach for model selection concurs with MLE-based approach,
identifying DiThR model as best match to experimental data.
(A) (First Column) Schematic of simulated models incorporating Apex1 into standard 2-state
model of transcription. (Second Column) Comparison of experimental Nanog mRNA distribu-
tion (red) to simulated distributions of Nanog mRNA (blue) for each model using value of krepair
that minimizes absolute percentage error. (Third Column) Effective behavior of simulation results
(using value of krepair that minimizes absolute percentage error) are compared to experimental data
(supplementary text 5.2). Bars represent simulation values of Nanog gene expression system while
red points with vertical line represent experimental data on Nanog expression from smRNA-FISH
of mESCs treated with 10μM IdU. (B) Values of krepair that minimize the absolute percentage error
for each model are listed. DiThR model yields the smallest APE and the largest log-likelihood.
(C) Predicted effect of small-molecule (SM) topoisomerase inhibitors with DiThR model (sup-
plementary text section 6). (−)SM condition was simulated using the inferred kinetic parameters
for Nanog gene expression system with IdU treatment (10µM). Inhibition of topoisomerase activ-
ity causes krepair to decrease by a factor n (+SM), which increases the average time spent in the
ON* state by the same factor. The longer the residence time in the ON* state, the stronger the
enhancement of transcription rate (kT X ) through a positive feedforward loop. Densities were com-
puted using final point of 10000 Gillespie simulations. Significant perturbation (n = 2) of krepair
only slightly changed average gene expression (×1.41) while leading to a stronger increase in Fano
factor (×3.12), which matched experimental data (Fig. S21B).
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max(LL): -1260 max(LL): -1243 max(LL): -1235

gain

Figure S25: Control of transcription rate through feedforward mechanism in DiThR model
allows for best fit of experimental data.
(A) Schematic and macroscopic behavior of DiThR model with no feedforward mechanism (i.e.,
no boost of transcription rate after repair completion). Simulation results are compared to exper-
imental data of Nanog expression from smRNA-FISH of mESCs treated with 10μM IdU (sup-
plementary text 6). (B) Schematic and macroscopic behavior of DiThR model with a manually
increased kT X (i.e., kT X is increased by a factor n following completion of repair). (C) Schematic
and macroscopic behavior of DiThR model with a feedforward mechanism (gain) where the pro-
posed speedup of transcription is dependent on the frequency of time spent in the ON* state.
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Figure S26: Sensitivity analysis of model parameters reveals phase-space for modulation of
Nanog variability independently of mean.
(A) Heatmaps displaying mean (left) and Fano factor (right) of Nanog mRNA from simulation re-
sults of DiThR model as a function of krepair and kincorpo values spanning four orders of magnitude
(supplementary text 7.1). Dashed horizontal and vertical lines represent inferred values of krepair
and kincorpo that match experimental Nanog gene expression system in the presence of 10μM IdU.
Multiple regions of the parameter phase-space exhibit constant mean output with unique levels
of variability (Fano factor) demonstrating how mean and variability are tuned independently. (B)
Simulated distributions of Nanog mRNA with increasing concentration of IdU which increases
kincorpo. Simulation results demonstrate how DiThR model allows for maintenance of mean output
with increasing variability as concentration of IdU is increased. (C) Effective transcription rate
of Nanog gene expression system as a function of kincorpo. As IdU incorporation and subsequent
Apex1 recruitment increases, the effective transcription rate increases as well. This represents the
compensatory, feedforward mechanism of the DiThR model allowing for maintenance of mean
output with increasing incorporation of IdU. (D) Heatmap displaying fraction of time that the
Nanog gene expression is in the effective ON state as a function of krepair and kincorpo values. (E)
Heatmap displaying fold change in mean as a function of canonical ko f f and kon values (supple-
mentary text 7.2). Fold change is calculated as the output of DiThR model relative to model 0
(canonical 2-state model) for the same set of ko f f and kon values. For a gene whose ko f f >> kon,
addition of IdU to the system increases the mean output. (F) Mean mRNA and Fano factor of
DiThR model output as a function of the gain term which describes how strongly the transcription
rate is amplified following completion of repair (supplementary text 7.3).
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Figure S27: Treatment with BrdU or hmU in combination with CRT0044876 allows for tun-
ing of Nanog variability independently of the mean.
(A) Testing of 96 concentration combinations of BrdU and CRT0044876 (Apex1 endonuclease
domain inhibitor) to validate tunability of Nanog variability. BrdU and CRT0044876 were used
to increase binding and decrease unbinding of Apex1 respectively. Nanog-GFP mESCs grown
in 96-well plates were treated with 12 concentrations of CRT0044876 ranging from 0 to 150uM
in combination with 8 concentrations of BrdU ranging from 0 to 50uM. Data represent average
of two biological replicates. (Top left and top right panels) 96-well heatmaps displaying fold
change in Nanog mean and Fano factor for each drug combination as compared to DMSO (top-
leftmost well). Insufficient number of cells (<50,000) for extrinsic noise filtering were recorded
from white wells. (Bottom Panel) Representative flow cytometry distributions from highlighted
wells (black rectangles). Nanog variability increases independently of the mean. (B) Testing of
96 concentration combinations of HmU and CRT0044876 (Apex1 endonuclease domain inhibitor)
to validate tunability of Nanog variability. hmU is a naturally found, Tet-induced oxidation prod-
uct of thymine. Nanog-GFP mESCs grown in 96-well plates were treated with 12 concentrations
of CRT0044876 ranging from 0 to 150uM in combination with 8 concentrations of hmU rang-
ing from 0 to 10uM. Data represent average of two biological replicates. (Top left and top right
panels) 96-well heatmaps displaying fold change in Nanog mean and Fano factor for each drug
combination as compared to DMSO (top-leftmost well). Insufficient number of cells (<50,000)
for extrinsic noise filtering were recorded from white wells. (Bottom Panel) Representative flow
cytometry distributions from highlighted wells (black rectangles). As with IdU and BrdU, Nanog
variability increases independently of the mean.
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Supplemental Figure 28
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Figure S28: Highly variable genes exhibit shorter but more intense transcriptional bursts.
(A) Of the 945 genes classified as highly variable with IdU treatment, we were able to estimate
parameters of the 2-state model for 314 of these genes (supplementary text 8). (B) Boxplots show
median ±interquartile range of parameter estimates with each point representing a gene. (C) Dis-
tributions of fold change in bursting kinetics between IdU and DMSO conditions for 314 highly
variable genes. Dashed blue line signifies mean of distribution. Majority of highly variable genes
exhibit increased KOFF and KT X , which is consistent with DiThR model and changes in burst-
ing kinetics observed for Nanog. (D) Base-excision repair orchestrates shorter but more intense
transcriptional bursts to maintain mean expression for genes with diverse bursting kinetics.
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Figure S29: DiThR model provides unifying mechanism for noise-enhancement of genes with
different bursting kinetics.
(A) Experimental values (exp) of effective KON and KOFF in IdU condition, as derived from a
moments-matching technique applied to scRNA-seq data, are compared to predicted values (simul)
derived from simulations of DiThR model in the IdU condition. Each point represents a gene.
Boxplots show median±interquartile range of parameter values. (B) Experimental values of mean,
Fano factor, KON , and KOFF (based on scRNA-seq data) in the IdU condition are compared to
simulated values derived from DiThR model.
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Supplemental Figure 30

Figure S30: Noise-enhancement potentiates differentiation of mESCs into neural ectoderm
lineage.
(A) Representative flow cytometry dot plots of CD24 staining at days 2 and 4 of differentiation
with 4uM IdU or equivalent volume DMSO added for first 48 hours. (B) Percent of CD24(+) cells
at days 2 and 4 of differentiation as measured by flow cytometry. Data represent mean and SD of
6 replicates for each condition. ****p < 0.0001, by a two-tailed, unpaired Student’s t test.
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Figure S31: IdU treatment enhances conversion of mouse embryonic fibroblasts (MEFs) into
induced pluripotent stem cells (iPSCs).
(A) Secondary MEFs with the endogenous Nanog locus tagged with GFP were treated with 4μM
IdU or equivalent volume DMSO for 48 hours in MEF media. (Right) Representative flow cytom-
etry distributions of Nanog-GFP expression in secondary MEFs after 48 hour treatment with IdU
or DMSO. (Left) Quantification of Nanog Fano factor demonstrates that IdU treatment increases
expression variability as compared to DMSO control (*p = 0.003, by a two-tailed, unpaired Stu-
dent’s t test). Data represent mean and SD of three biological replicates. (B) (Top) Representative
flow cytometry distributions of propidium iodide staining for Nanog-GFP secondary MEFs treated
with either DMSO or 4μM IdU for 48 hours in MEF media. No signs of aneuploidy are visible,
indicating Nanog expression variability is not due to cell-to-cell variability in gene copy numbers.
(Bottom) Percent of cells in each phase of the cell cycle for DMSO and IdU treatments based
on propidium iodide staining. IdU treatment does not alter cell-cycle progression, indicating en-
hanced reprogramming is not due to accelerated cellular division. Data represent mean and SD
of three biological replicates. P values were calculated using a two-tailed, unpaired Student’s t
test. (C) Bulk RNA-seq was conducted on days 2 and 5 of doxycycline-induced reprogramming of
secondary MEFs supplemented with 4μM IdU or equivalent volume DMSO for the first 48 hours.
Distributions of fold change in expression for 129 pluripotency genes (taken from Mouse Genome
Informatics, gene ontology term: 0019827) in the IdU condition as compared to the DMSO control
are shown. Dashed blue line represents mean of distribution. 81% and 66% of the pluripotency
factors show increased expression with the addition of IdU as compared to DMSO control at days
2 and 5 of reprogramming, respectively. Noise amplification during early stages of reprogramming
accelerates activation of pluripotency network.
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Figure S32: Knockdown of Apex1 in MEFs ablates IdU-mediated enhancement of repro-
gramming efficiency.
(A) Oct4-GFP primary MEFs (seeded at 10,000 cells/cm2) were retrovirally transduced with cD-
NAs encoding Oct4, Sox2, Klf4, and c-Myc. 24 hours after transduction, infected cells were
treated with DMSO (continuously), 1mM valproic acid (VPA, continuously), 10µM forskolin (con-
tinuously), or 4µM IdU (first 48 hours). VPA and forskolin are established enhancers of cellular
reprogramming. The number of Oct4-GFP(+) stem cell colonies were counted 8, 10, and 12 days
from the start of drug treatment. Data represent mean and SD of 2 biological replicates. Treatment
of transduced MEFs with IdU during early stages of reprogramming increases the number of Oct4-
GFP(+) colonies that form as compared to DMSO control, *p =0.039 by one-way ANOVA with
Bonferroni post hoc test. (B) Validation of shRNA knockdown of Apex1 in Oct4-GFP secondary
MEFs via qPCR measurements. Relative mRNA levels of Apex1 were quantified using Gapdh
as a reference gene. ∆∆Ct method was used with the empty-vector cell population as the control.
Data represent mean and SD of biological triplicates. (C) Representative flow cytometry dot plots
of Oct4-GFP expression at day 10 of reprogramming for secondary MEFs with Apex1 depleted.
Oct4-GFP secondary MEFs were treated with either 4μM IdU or equivalent volume DMSO for
first 48 hours of reprogramming in ESC media.
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Captions for supplementary tables S1-S8

Table S1 (attached separately)
Sequences of smRNA-FISH oligonucleotide probes for first intron of Nanog and GFP.

Table S2 (attached separately)
Inferred effective kinetic rates of 2-state random telegraph model for Nanog in DMSO and IdU
conditions.

Table S3 (attached separately)
List of nucleoside analogs that were screened for ability to increase to Nanog protein variability.

Table S4 (attached separately)
Gene targets and sequences of gRNAs used in CRISPRi screen.

Table S5 (attached separately)
Sequences of primers used for RT-qPCR verification of Apex1 and Tk1 knockdown.

Table S6 (attached separately)
Concentrations and layout of compound plates used for testing of IdU, BrdU, or hmU in combina-
tion with CRT0044876.

Table S7 (attached separately)
Sequences of primers used for ChIP-qPCR measurement of Apex1 interaction with Nanog pro-
moter.

Table S8 (attached separately)
Sequences of Apex1 shRNAs and RT-qPCR primers used in Figure S32.
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