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Abstract

Single-molecule pre-mRNA and mRNA sequencing data can be modeled and analyzed using the
Markov chain formalism to yield genome-wide insights into transcription. However, quantitative
inference with such data requires careful assessment and understanding of noise sources. We find
that long pre-mRNA transcripts are over-represented in sequencing data, and explore the mecha-
nistic implications. A biological explanation for this phenomenon within our modeling framework
requires unrealistic transcriptional parameters, leading us to posit a length-based model of capture
bias. We provide solutions for this model, and use them to find concordant and mechanistically
plausible parameter trends across data from multiple single-cell RNA-seq experiments in several
species.

1 Background

The development of increasingly accurate and quantitative single-cell RNA sequencing (scRNA-
seq) makes it increasingly tractable to fit single-molecule data to models of the RNA life cycle,
thus facilitating a mechanistic view of genome-wide transcriptional regulation. Specifically, pro-
tocols with cell barcodes and unique molecular identifiers (UMIs) allow for parameterization of
discrete probabilistic models, whereby it is natural to interpret the contents of cells as draws from
distributions over the non-negative integers.
A standard framework for such modeling is the Chemical Master Equation (CME), which models
the molecular contents of cells via Markov chains that traverse a discrete state space of RNA
counts [1–3]. To fit biophysical parameters (the “inverse” problem of inference), one must solve
the CME (the “forward” problem of prediction). This workflow requires computationally facile
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solutions that can be applied to thousands of genes. In mammalian and bacterial systems, the
specific form of the CME is based on a random telegraph model of gene regulation, which describes
a single gene locus that randomly switches between active and inactive states [1]. A common
simplification, supported by genome-wide fluorescence studies [4], treats the active state’s duration
as vanishingly small: mRNA is produced in geometrically-distributed bursts that arrive according to
a Poisson process. This model can be extended to describe rather general downstream processes of
splicing, degradation, and translation. We focus on newly available data with spliced and unspliced
mRNA, which can be fit to an analytically tractable bursting model [5, 6].
Within this classical framework, there are two substantial challenges that must be overcome in order
to perform inference with scRNA-seq data: first, sequencing is probabilistic, with some molecules
inevitably unobserved in the process. Second, conventional “top-down” methods for scRNA-seq
data processing used to correct for sampling artifacts, such as hyperparametrized imputation,
normalization, and smoothing [7], are incompatible with a discrete “bottom-up” picture of the
underlying biophysics. A variety of approaches have been adopted to address these issues. Certain
methods abandon the CME altogether, instead applying moment-based models to smoothed and
normalized data [8, 9]; this approach may introduce distortions of an unknown magnitude, and
can result in loss of statistical power. Other approaches do not correct for sampling [10, 11],
with resultant batch effects of an unknown magnitude persisting in the data. Thus, treating
both biological and technical stochasticity remains a significant lacuna in single-cell transcriptional
models, with no satisfactory and rigorous solutions.

2 Length bias in measured pre-mRNA expression

We begin by exploring the biophysical interpretability of scRNA-seq data in light of the length
bias seen in pre-mRNA expression. Such analysis is crucial for understanding approaches such as
RNA velocity [8,12]. In some datasets, average spliced mRNA counts do not seem to show a length
dependence (Fig. 1a), consistently with previous studies of UMI-based protocols [13]. On the
other hand, unspliced mRNA counts strongly correlate with gene length (Fig. 1b). This prompts
us to investigate whether this discrepancy has biological origins, and raises questions about the
consequences of ignoring this bias.

2.1 Stochastic analysis produces implausible parameter estimates

At first glance, a näıve analysis using a conventional [4] stochastic transcriptional model (Fig. 1c
as described in Section 3.2) yields reasonable results (Fig. 1d). However, comparison with previous
transcriptome-wide analyses prompts questions regarding the plausibility of these findings and the
model’s ability to represent scRNA-seq data.
We find that the inferred burst size increases with transcript length, in stark contrast with the
previously observed modest inverse relationship [14]. The degradation rate, normalized to burst
frequency, displays a similar positive trend. Previous studies found little to no gene length effect
on burst frequency [14] and no effect on the rate of mRNA degradation [15]. The latter is primarily
controlled by open reading frame features rather than the length of the source gene. The decreasing
rates of splicing are more challenging to analyze: the splicing timescales given in the literature
vary over several orders of magnitude depending on system and technology [16]. However, several
factors suggest that length-based effects should be minimal: co-transcriptional splicing is expected
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Figure 1: a. Length dependence of average spliced mRNA observations in three datasets (orange:
high-expression gene cluster; gray: discarded low-expression cluster). b. Length dependence of
average unspliced mRNA observations in same datasets (colors as in a). c. Model of transcriptional
physiology. d. Transcriptional parameter estimates without a stochastic model of sequencing
demonstrate pervasive length-dependent trends (gold: lower bounds on 99% confidence intervals;
gray: fits rejected by statistical testing).

to be ubiquitous in mammalian cells [17, 18], and widely varying intron sizes have little impact on
splicing time in direct comparison using a single protocol [19]. Therefore, the parameter estimates
are discordant with previously reported results.
Aside from empirical data, there are theoretical reasons to question these results: there is little
reason any of these parameters should “know” about the gene length. Although transcription of
longer genes should ostensibly take longer, it seems reasonable to posit that the burst frequency
and size should be governed by the promoter rather than any downstream elements. Similarly, the
splicing rate is likely governed by spliceosome kinetics at individual introns, which is a local, rather
than gene-wide, effect. Finally, the transcript that is degraded is the terminal isoform, whose length
is only weakly related to the length of the original parent transcript.
In summary, the observed UMI counts of spliced transcripts cannot be plausibly treated the same
way as those of unspliced transcripts. Such a simplification is incompatible with empirical evidence
and currently accepted models.
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3 A technical noise model

In the current section, we motivate, solve, and apply a stochastic model of sequencing that addresses
technical artifact to scRNA-seq data. First, we describe the primary probability objects in Section
3.1. We use the CME framework to derive the model from a microscopic Markov description of
transcription in Section 3.2. Finally, we report the model solution in Section 3.3, and fully describe
the derivation in Section S1.1.
In brief, we build a model that explicitly incorporates the stochastic sequencing steps taking place
in fixed media (Fig. 2a). Consistently with previous work on modeling pre-mRNA [8], we assume
that the library construction step in the 10X sequencing workflow [20] includes molecules that
have been captured at off-target binding sites. We posit that unspliced mRNA are primarily
captured at internal poly(A) stretches, whereas spliced mRNA are captured at the poly(A) tail. To
quantitatively model this effect, we introduce the concept of UMI “false positives”: if a molecule has
sufficiently many poly(A) sites, it is likely to be captured and reverse-transcribed multiple times.
As a first-order approximation, we model this bias as a length-dependent capture rate. Thus, each
molecule in a cell gives rise to a Poisson distribution of cDNA. The downstream sequencing and
alignment steps are treated as binomial sampling from the cDNA distribution.

3.1 Probability distributions

A probability density function (PDF) associated with a continuous-valued random variable is de-
noted by f(·; ·). A probability mass function (PMF) associated with a discrete-valued random
variable X is denoted by P (X = x; ·) or P (x; ·). Analogously, the joint multivariate PMF val-
ues are given by P (X1 = x1, X2 = x2, ...; ·) or P (x1, x2, ...; ·). The parameter arguments are
elided throughout the rest of the paper for simplicity of notation. The PMF of a nonnegative-
valued discrete random variable can be equivalently expressed as the continuous probability gen-
erating function (PGF), G(g) := E[gX ] =

∑∞
x=0 P (x)gk. The multivariate PGF is given by

G(g1, g2, ...) =
∑∞

g1,g2,...=0 P (x1, x2, ...)
∏
i g
xi
i .

The following distributions arise in the problem:

• Exponential: if X ∼ Exp(λ), f(x;λ) = λe−λx.

• Geometric: if X ∼ Geom(p), P (X = k; p) = (1 − p)kp, where p ∈ (0, 1] and k ∈ N0.
The geometric distribution is well-known to arise in the short-burst limit of the two-state
transcription model [21]. The corresponding PGF is p

1−(1−p)z .

• Negative binomial (NB): if X ∼ NegBin(r, p), P (X = k; r, p) = Γ(r+k)
k!Γ(r) (1 − p)rpk, where

p ∈ [0, 1] and r > 0. We note that MATLAB and the NumPy library take the opposite
convention, with a p̃ parameter defined as 1− p. The corresponding PGF is

( 1−p
1−pz

)r
.

• Poisson: if X ∼ Poisson(λ), P (X = k;λ) = 1
k!λ

ke−λ. The corresponding PGF is eλ(z−1).

• Binomial: if X ∼ Bin(n, p), P (X = k;n, p) =
(
n
k

)
pk(1 − p)n−k. The corresponding PGF is

[(1− p) + pz]n.

• Bernoulli: if X ∼ Bernoulli(p), P (X = k; p) = pk(1 − p)1−k. The corresponding PGF is
(1−p)+pz. The Bernoulli distribution is a degenerate case of the binomial distribution, with
n = 1.
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Figure 2: a. The integrated stochastic model of transcription and sequencing, with length depen-
dence of the library construction step indicated in red. b. Inferred transcriptional parameters do
not appear to have strong length dependence (gold: lower bounds on 99% confidence intervals;
gray: fits rejected by statistical testing). c. The sampling parameter likelihood landscape shows a
single optimum (dark: lower, light: higher total Kullback-Leibler divergence between fit and data;
orange cross: optimal sampling parameter fit for the displayed landscape; orange points: optimal
sampling parameter fits for other analyzed datasets). d. The parameter fitting procedure success-
fully recapitulates empirical observations (dark: lower, light: higher log probability mass; black
points: raw data UMI counts).
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3.2 Model definition

We summarize the model-specific quantities, distributions, and random variables in Table 1, and
define the relevant parameters in Table 2. In the living cell, we model a two-stage birth-death
process coupled to a bursting promoter:

∅ ki−→ B × U β−→ S γ−→ ∅

The bursts arrive with frequency ki, and generate unspliced mRNA. The bursts have magnitude

B ∼ Geom
(

b
1+b

)
, with expectation b. After a waiting time ∼ Exp(β), the unspliced mRNA is

converted to spliced mRNA. After another waiting time ∼ Exp(γ), the spliced mRNA is degraded.
We assume the system reaches its unique steady state; the existence of such a state is guaranteed by
ergodicity. This in vivo stage produces an unobservable stationary distribution P (Nu = nu, Ns =
ns), where Nz is the random variable describing true physiological counts of molecule z and nz is
the molecule count. The PGF of this distribution is defined as G(gu, gs).
After equilibration, cDNA library construction begins and all physiological processes halt due to
cell fixation [20]. Due to the possibility of multiple priming, each molecule of mRNA produces
Poisson(Dz) molecules of cDNA. Du is presumed length-dependent and governed by internal prim-
ing, whereas Ds is presumed length-independent and governed by poly(A) tail priming. This stage
produces a distribution P (Mu = mu,Ms = ms), where Mz is the random variable describing UMI
counts of a gene product and mz is the cDNA number. The definition of the sampling procedure
implies Mz|nz ∼ Poisson(Dznz). As we assume the species are sampled independently, we can
represent the per-molecule PGF as G1,z(gz) = eDz(gz−1). The corresponding overall joint PGF is
GMu,Ms(gu, gs) = G(G1,u(gu), G1,s(gs)).
Finally, amplification and sequencing take place. Significantly, unlike the library construction, these
are strictly depleting processes: we suppose they cannot generate new UMIs, but they can lead to
loss of UMIs. We assume the PCR amplification and product fragmentation are not substantially
biased from gene to gene; further, the downstream fragments do not retain length information. Nev-
ertheless, the overall identifiability of unspliced and mature mRNA may be different. Therefore, we
suppose that each in vitro cDNA UMI gives rise to Bernoulli(pz) ∈ {0, 1} amplified, sequenced, and
corrected in silico UMIs. The definition of the sampling procedure implies Xz|mz ∼ Bin(mz, pz).
We can represent the per-molecule PGF as G2,z(gz) = (1 − pz) + pzgz. The corresponding overall
joint PGF is GXu,Xs(gu, gs) = G(G1,u(G2,u(gu)), G1,s(G2,s(gs))) := H(gu, gs). The parameters Dz

and pz are not independently identifiable, leading us to define net sampling rates λz := Dzpz.
We use a first-order model of length dependence λu = CuL, which implies that the rate of capture of
any particular molecule scales directly with its length, acting as a proxy for the number of poly(A)
stretches in the molecule. It is well-known that even short poly(A) sequences can be captured by
the oligo(dT) primers used in sequencing [22], and the number of poly(A) sequences in a given gene
is strongly correlated with length (Fig. S2). We do not directly consider the number of stretches,
as the determination of appropriate length thresholds or weights is a distinct thermodynamics
challenge. The spliced mRNA parameter λs is kept constant, modeling capture at the poly(A) tail.

3.3 Model solution

Per previous reports [5,6], the steady-state PGF for the joint distribution of unspliced and spliced
mRNA is G(gu, gs) = eφ(vu,vs), where vu = gu− 1, vs = gs− 1, φ(vu, vs) = ki

∫∞
0

bU
1−bU ds, f := β

β−γ ,
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Table 1: Theoretical statistical variables

Variable Definition

z Molecular species, either unspliced u or spliced s
nz Number of in vivo mRNA (species z)
Nz Random variable describing number of in vivo mRNA (species z)
mz Number of in vitro UMIs for cDNA (species z)
Mz Random variable describing number of in vitro cDNA UMIs (species z)
xz Number of in silico sequenced and identified UMIs (species z)
Xz Random variable describing number of in silico UMIs (species z)

P (nu, ns) Joint PMF of unspliced and spliced mRNA
G(gu, gs) PGF of P (nu, ns)
P (mu,ms) Joint PMF of unspliced and spliced cDNA UMI counts
G1,z(gz) Per-molecule PGF of cDNA capture process

GMu,Ms(gu, gs) PGF of P (mu,ms)
P (xu, xs) Joint PMF of unspliced and spliced identified UMI counts
G2,z(gz) Per-molecule PGF of sequencing and identification process

GXu,Xs(gu, gs) = H PGF of P (xu, xs)

Table 2: System parameters

Parameter Definition

z Molecular species, either unspliced u or spliced s
ki Burst frequency
B Stochastic burst size
b Expectation of B
β Splicing rate
γ Degradation rate
Dz Poisson rate of per-molecule cDNA generation
pz Bernoulli probability of per-molecule sequencing and identification
λz Dzpz, aggregated Poisson rate of per-molecule in silico UMI generation
L Gene length
Cu Length dependence of λu, such that λu = CuL
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Table 3: Summary statistics

Variable Definition

X Generic gene-specific random variable
a Generic gene-specific parameter
X̄ Sample mean of observed variable X

µX = E[X] Expectation of random variable X
S2
X Sample variance of observed variable X

σ2
X = V[X] Variance of random variable X

â Maximum likelihood estimate of parameter a
âMoM Method of moments estimate of parameter a
ā Sample mean of inferred parameter a across multiple genes
Sa Sample standard deviation of inferred parameter a across multiple genes

and U = vsfe
−γs + [vu − vsf ]e−βs. As derived above, the PGF of a distribution under two steps

of independent sampling is H(gu, gs) = G
(
G1,u(G2,u(gu)), G1,s(G2,s(gs))

)
, where Gi,z is the PGF

for sampling step i and species z. Using the model assumptions outlined above, the overall PGF
H(gu, gs) = G(eλu(gu−1), eλs(gs−1)). The corresponding joint probability distribution P (xu, xs) is
easily computed by evaluating gu and gs around the complex unit circle and performing an inverse
Fourier transform.
The moments of the model can be calculated using the definition of the PGF. We define the
relevant theoretical and empirical summary statistics in Table 3, and report the lower moments of
the noise-free model and the full model in Table 4.

Table 4: Summary statistics

Moment Noise-free model Technical noise model

µu
kib
β

λukib
β

µs
kib
γ

λskib
γ

σ2
u − µu µub µuλu(1 + b)

σ2
s − µs µs

bβ
β+γ µsλs

(
1 + bβ

β+γ

)
Cov(u, s) kib

2

β+γ
λuλskib

2

β+γ

4 Experimental data yield consistent parameter fits

4.1 Data processing and inference

The processing pipeline is summarized in Fig. S1. Briefly, we initialize a grid of sampling parame-
ters, compute the conditional maximum likelihood estimates of the transcriptional parameters for
each grid point, identify the global optimum, then analyze the parameter trends.
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We collected Ensembl FASTQ files [23] corresponding to the full human and mouse genomes,
computed gene lengths, and partitioned each gene’s sequence into a set of contiguous poly(A)
sequences. These sequences were used to compute cumulative histograms of the number of poly(A)
stretches.
We collected FASTQ produced by 10X scRNA-seq and processed them with the kallisto|bustools
pipeline [12]. The twelve analyzed datasets are summarized in Table S1; eight were generated by
10X Genomics and four were generated for a mouse brain cell atlas study [24,25]. Pseudoalignment
and quantification produced a set of loom files. The numbers of cells and genes retained after filter-
ing are reported in the “Cells” and “Genes Detected” columns. Genes without length annotations
were discarded. As shown in Fig. S4, all datasets demonstrated the previously encountered (Fig.
1) expression bias. Genes appeared to fall into two categories, with two distinct linear trends:
high-expression genes (orange) and low-expression genes (gray). We clustered [26] based on the
spliced expression/length plot and discarded the low-expression genes, with effective resolution of
the unspliced expression trends. As quantified in Table S2, the low-expression cluster was domi-
nated by pseudogenes and non-coding genes with poor annotations (over 50% of the cluster in each
dataset). We likewise removed genes considered too sparse (Xu ≤ 0.01, Xs ≤ 0.01, maxXu ≤ 3,
maxXs ≤ 3) or too computationally intensive (maxXu ≥ 350, maxXs ≥ 350) to fit. The numbers
of genes retained after filtering are reported in the “Genes Kept” column of Table S1.
The datasets lend themselves to interpretation as technical and biological replicates: for example,
“10X 1k PBMC” and “10X 10k PBMC” correspond to two libraries produced from a single human
blood cell sample, whereas “Allen B01” and “Allen A08” correspond to libraries produced from the
brains of two distinct mice. Therefore, we split the twelve datasets into the four subsets reflected
in Table S1 and identified the genes retained after filtering in all members of the subset; the size of
the set is reported in the “Genes Overlap” column. Finally, we selected a random subset of these
genes to fit; the number of genes is reported in the “Genes Selected” column. The names of genes
rejected by clustering, as well as those analyzed using the workflow, are provided in Supplementary
File 1.
Parameter estimation was performed by minimizing the Kullback-Leibler (KL) divergence between
the data and the proposed PMFs. We computed each PMF using the solution reported in Section
3.3, evaluated over the data domain. The integral was approximated computed using order 60
Gaussian quadrature on t ∈ [0, 10(β−1 +γ−1)], implemented using scipy.integrate.fixed_quad.
The alternative adaptive procedure scipy.integrate.quad_vec is available, but requires an or-
der of magnitude more time for evaluation. The incurred error was small enough to justify the
approximation (no more than 10−4 total variation distance).
Fits to the noise-free model were performed by gradient descent initialized at the method of mo-
ments parameter estimates (Section S1.2.3), computed from the moments reported in Table 4.
Identifying parameters of the technical noise model was somewhat more challenging: given N
genes, the model has 3N local (gene-specific) and 2 global (genome-wide) parameters. To fit all
parameters, we implemented a variant of the coordinate descent algorithm: we scanned over a grid
of Cu and λs and computed conditional maximum likelihood estimates b, β, γ|Cu, λs. For each tuple
of (Cu, λs), the optimization routine was initialized at the method of moments estimates (Section
S1.2.3). The global maximum likelihood estimate was computed by identifying the sampling pa-
rameter set with lowest total divergence. The scan and search domains are reported in Table S3;
a 40 × 41 grid was used. The coordinate descent approach also permitted direct examination of
the likelihood landscapes, and allowed us to confirm the existence of a unique sampling parameter
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optimum. Finally, we applied the chi-squared test with the Bonferroni correction to each optimal
PMF, and discarded all genes with parameters within 0.01 of the search domain bounds to identify
potential model misspecification problems.
To compute confidence intervals, we used local Gaussian approximation to the maximum likelihood
estimate, justified by the relatively high number of samples (cells). For the noise-free model,
we computed the Fisher information matrix (Hessian of the KL divergence) I at the maximum
likelihood estimate θ̂, inverted it, and found lower bounds on the parameter standard deviations

as the diagonal entries σi = [ncI(θ̂)]
−1/2
ii , where nc denotes the number of cells. Given these

standard deviations σi, we used the z-score to estimate 99% confidence intervals as 2.576σi. For the
technical noise model, we determined the Fisher information matrix using an identical computation,
holding the sampling parameters fixed. This procedure effectively yields a conditional posterior
distribution that is necessarily an underestimate, because uncertainty in {Cu, λs} is unaccounted
for, but consistent with the interpretation of σi as a theoretical lower bound.

4.2 Results

Fitting transcriptional parameters using the noise-free model produced trends consistent with the
fits described above (Fig. S5), and inconsistent with orthogonal empirical results (Section 2.1).
Two other noise models without a sequencing length bias produced qualitatively identical results
(Section S2). Fitting the Poisson technical noise model yielded transcriptional parameters (Fig. 2b,
Fig. S6) with very weak length dependence. Therefore, we suggest that this integrated description
of transcription and sequencing provides a more realistic and physically interpretable picture than
available by considering the two sources of stochasticity separately.
All optima discovered by the coordinate scan procedure lie within the square log10Cu = −6.0± 0.4
and log10 λs = −0.6 ± 0.2. The KL divergence landscapes suggest that the datasets have unique
optima and the model is appropriate (Fig. 2c, Fig. S7). Furthermore, empirical joint mRNA count
histograms were consistent with the fits (Fig. 2d).
The inferred parameter distributions were consistently well-described by a log normal-inverse Gaus-
sian law (Fig. 3a, Fig. S8), although the mechanistic import of this finding is unclear. We performed
a set of technical replicates, fitting distinct libraries generated from the same organism, and bio-
logical replicates, fitting libraries from multiple organisms. The results (Fig. 3b-c, Fig. S9, S10)
are consistent, with higher correlations among the technical replicates. We report the statistical
summaries of maximum likelihood parameter fits, as well as the fractions of rejected genes, in Table
S4.
Using the same procedure, we compared whole-cell and nucleus-only libraries generated from mouse
neurons. The nucleus-only fits had significantly worse performance (50.5% rejected by chi-squared,
vs. 9.1%), and demonstrated a dramatic offset with respect to the whole-cell fits, particularly for
the degradation parameter (Fig. S11). Comparison of successful fits to all datasets (Fig. S12)
appears to confirm this effect. Average parameter values vary over roughly an order of magnitude;
however, the nuclear RNA dataset has a rather higher location parameter.
Comparing parameter fits for a subset of genes observed in heart and neuron datasets, we observed
much weaker correlations (Fig. S13). This effect is concordant with expectations, as different
tissues have different gene expression patterns. In the case of splicing and degradation rate, we
observed pervasive offsets (on the order of 100.5 for each parameter), likely attributable to errors
in the estimation of the sampling parameters.
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Figure 3: a. Inferred transcriptional parameter distributions (allen B08; gray: histogram of 4696
genes retained after statistical testing; teal line: best fit to normal-inverse Gaussian distribution).
b. Technical replicates show largely concordant inferred parameter values (orange dashed line:
identity; gold: lower bounds on 99% confidence intervals; gray: fits rejected by statistical testing).
c. Biological replicate parameter estimates are likewise concordant (colors as in b).
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5 Discussion

We have introduced and implemented a stochastic model of intrinsic transcriptional noise that
accounts for sequencing artifacts or technical noise. This model addresses an apparent overrep-
resentation of long unspliced mRNA in a variety of scRNA-seq datasets, and we posit that this
bias is unlikely to arise biologically: fitting a simple model of mRNA production, splicing, and
degradation produces parameter trends that render the fits suspect. Instead, we propose a model
motivated by the chemistry of the sequencing process: each mRNA can be captured and reverse
transcribed multiple times, with the possibility of such false positives growing with the length of
molecule and the number of poly(A) capture sites (Fig. S2).
We fit this model to a variety of datasets, and discover that the parameter values, and thus entire
mRNA distributions, are consistent for sets of technical and biological replicates. Further, the
parameter values themselves (Fig. S12) are concordant with previous reports. Average burst sizes
in the technical noise model are in the range (100.5, 101.5) [27,28], rather than (10−0.5, 100.5) in the
noise-free model (Fig. S5). Degradation rates γ/ki are in the range (100, 101), roughly consistent
with fluorescence-based genome-wide results [4]. Finally, the splicing rates β/ki are relatively slow
and largely fall in the range (10−0.5, 100.5), on the order of 100 min. This result suggests that β is
best interpreted as the rate of an abstracted, multi-intron process, as a single intron takes minutes
to tens of minutes to splice [16, 17, 19]. We discuss potential refinements of this model in Section
5.2.
While the model performs well with whole-cell scRNA-seq data, it yields poor fits and inconsistent
parameter values when applied to a nuclear mRNA datasets (Fig. S11). This phenomenon can be
interpreted mechanistically as a reduction in degradation. Instead, the efflux of spliced mRNA is
purely due to export from the nucleus to the cytoplasm. Therefore, we suggest that the dramatic
increase in inferred degradation rates appears to reflect a rapid efflux process, whereas the high
rate of reported model rejection may be explained by misspecification. For example, this efflux may
be non-Markovian, and occur after a deterministic, rather than stochastic, delay. Unfortunately,
in spite of extensive recent analytical work [29–34], probabilistic solutions are only available for
constitutive, not bursty systems [5], making this hypothesis challenging to test.
We propose that our approach has applications beyond technical batch effect regression: it offers
a mechanistic approach to the identification of differentially regulated genes. Instead of testing
differences in average expression [7], our model enables testing differences in parameter values. This
conceptualization likely provides multiple advantages. Firstly, it increases statistical power, due to
reliance on model-specific results rather than non-parametric limiting theorems. For example, a
gene may be expressed at nearly identical average levels in two cell types, but have very different
distributions; such an effect is easier to detect using full parametric distribution fits. Secondly, it
yields greater interpretability, as all parameters explicitly model biophysical processes. For example,
a difference in average expression may be directly attributed to modulation of burst size or a reaction
frequency, as in previous work using fluorescence-based measurements [35]. We provide a sample
comparison between mouse heart and brain tissue inference results in Fig. S13, which demonstrates
weakly correlated, often discordant parameter fits. More sophisticated theoretical machinery must
be developed to quantitatively compare different tissues or experimental conditions: the offsets seen
in Fig. S13 suggest that the sampling parameter fits are suboptimal, and thus skew estimates of
splicing and degradation parameters. Multiple solutions are available, ranging from ad hoc selection
of sampling parameters that concord with the identity, to fully Bayesian estimation of the posterior
distributions.
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5.1 Previous work

Wang et al. [36] use a similar sampling model, with X|n ∼ Poisson(Cn). Their description
recognizes the concordance between Poisson and Bernoulli models at low sampling rates. However,
the underlying motivation for the Poisson model is obscure, and not motivated by the possibility
of multiple priming for a single transcript. The authors make reference to Kim et al. [37], which
models the number of cDNA molecules available for sequencing using a Bernoulli model. Although
the same manuscript posits that the number of observed transcripts is Poisson-distributed with
respect to the cDNA count, no technical justification is provided, nor is any mechanistic hypothesis
advanced to explain the apparent emergence of new artifactual UMIs. The study only considers
exonic reads and models them as direct gene products; as a consequence, it cannot represent
buffering by splicing, which has been implicated as a significant mode of copy number control [38].
More recent work by Sarkar and Stephens [39] likewise posits a Poisson model, motivated by an
approximation of the multivariate hypergeometric distribution [40] previously used to model relative
abundances in the context of non-UMI technologies [41], rather than the details of sequencing. In
contrast, we develop a concrete physiological and technical multimodal model with reference to the
chemistry of the underlying sequencing process.
The aforementioned studies generally omit detailed discussion of the intrinsic biological noise. Sev-
eral reports do consider technical and biological noise in scRNA-seq datasets, although with limited
discussion of the origin of technical noise. The D3E package fits the one-species telegraph model,
with analysis of sensitivity to dropout events [42]. However, the full drop-out model was not solved
or fit and the inference procedure did not attempt to identify the technical noise parameter. Fur-
thermore, the parametric form (dependent on the biological average expression) describes cellular
drop-out events [43], without clear physical motivation: it is not obvious why the same gel bead
may have UMIs corresponding to one gene but a total loss of the other. Further, these models do
not have a self-consistent multi-gene interpretation: even if the dropout events are to be treated
as cell-wide failure in cDNA library construction, the model does not imply that the same cells
fail for different genes. Although this “zero-inflated” model has been conventional in scRNA-seq
analysis [10, 43, 44], it has undergone substantial criticism in recent years [40, 45], and we suggest
the theoretical issues outweigh the appeal of tractability.
Overall, our modeling approach concords with some of the recommendations made in a recent
study by Kim et al. [46]: normalization, transformation, and imputation are useful tools for data
exploration but they may severely distort the underlying data. As we discuss in Section 5.2, some
cell cluster analysis is necessary when homogeneous cell populations are present. However, we
argue that the Poisson model they suggest for a homogeneous cell population is not consistent
with findings from orthogonal methods, such as the pervasive transcriptional bursting observed by
fluorescence measurements [4, 27, 35, 47]. The study’s focus on zero fractions as a test statistic for
model identification is likewise problematic: despite apparent agreement between empirical and
Poisson zero fractions, the actual RNA distributions are near-universally overdispersed (Fig. 1a
of [46]). Therefore, we again emphasize the general need for mechanistic models consistent with
orthogonal data and full distributions. However, it is plausible that the approach of Kim et al. may
be appropriate for certain transcripts present at high abundance and serving as cell type markers.
We report the zero fractions for unspliced species in Section S1.3.
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5.2 Limiting assumptions and future directions

While the noise modeling provided by our model adds realism over noise-free CME models, it
relies on several simplifications. We discuss these at length, describe the physical basis of the
assumptions, and propose corrections which may be implemented to represent more domains of
behavior in extensions of this work.
Most prominently, the entire population of cells is presumed homogeneous and ergodic.
The homogeneity assumption implies that there is a single population of cells, which are inter-
changeable. This means the model is unable to directly represent heterogeneous samples with
multiple distinct cell types. In practice, this simplification reflects the standard assumption that a
relatively small set of marker genes is differentially regulated between different subpopulations or
cell types. We use the chi-squared test with the Bonferroni correction to test agreement with the
model fit. Genes that show, e.g., substantial bimodality, are excluded from the analysis.
Several approaches can be used to describe cell heterogeneity. To start, we can assume the cell
population consists of a set of discrete, disjoint cell types. A computationally facile “top-down”
approach first identifies cell types using standard clustering workflows, then separately fits the
parameters for each cell cluster. In contrast, a fully stochastic, “bottom-up” approach might use
the expectation-maximization algorithm to assign cell identities in a mixture model.
Ergodicity assumes that the cell populations are in equilibrium. This means the model is unable
to directly represent samples from differentiation pathways. In practice, this simplification reflects
the assumption that only a small subset of marker genes drive the differentiation process, and can
be excluded using statistical testing; most genes are presumed to be ergodic.
Nevertheless, cell differentiation can be conceptualized using multiple probabilistic models. If we
assume the cellular processes are slow relative to the mRNA dynamics, we can model the trajectory
by a set of discrete cell types and fit them under the assumption of local ergodic equilibrium. If
orthogonal information about the direction of the cell type trajectory is available, this model
allows the investigation of parameter evolution throughout a differentiation process. However, the
assumption of local equilibrium makes it impossible to fit the trajectory. On the other hand, it is
possible to model the cell types as deterministic or stochastic functions governing the parameter
values, and fit data to the resulting non-ergodic occupation measures.
We do not normalize by cell sizes at any step in the process, as normalization makes the data
incompatible with the CME framework. Although this choice stands in stark contrast to standard
scRNA-seq workflows [7], it is rigorously motivated by the kinetics of the process. The production
of unspliced mRNA is presumed to occur at a single gene locus in a zeroth-order reaction with
no spatial dependence. The splicing reaction is first-order, and the binding of the spliceosome is
presumed to be non-limiting, which is supported by the reaction’s localization within the nucleus.
Finally, the degradation reaction is likewise first-order; the binding of RNase is assumed non-
limiting, i.e., the concentration of RNase is modeled as uniform throughout the cell. More complex
models that incorporate second-order reactions would necessitate accounting for the cell volume to
represent the probability of two molecules encountering each other.
We do not account for cell sizes in the model of the sequencing process. This description is motivated
by simplicity, but we can make it rigorous based on chemically plausible assumptions. A crucial
assumption is required for cell size independence during the library construction process: the process
must be homogeneous.
Homogeneity in sequencing simply means that the reaction rates are constant across all cells, as
well as over the duration of the reaction. All experimental steps after encapsulation in a gel bead
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take place in a cell-free medium. Assuming sufficient quality control in bead, droplet, and reaction
mixture preparation, each cell’s reagent concentration is identical, at least at first.
Whether it remains this way depends on the molecular concentrations and process kinetics. For
example, if the amount of reagents and primers is much greater than the number of mRNA, even the
hypothetical sequencing of every molecule in a cell would not substantially deplete the reagents.
The number of sequencing primers on a bead tends to exceed the number of mRNA. A typical
human cell has 105− 106 mRNA [48–50], whereas the number of unique UMIs in 10X v3 chemistry
is usually above 106 [12]. Although the distribution of primer counts on the proprietary 10X beads
does not appear to be characterized in the literature, it is well-known that inter-gene UMI collisions
(identification of distinct molecules with identical UMIs in a given cell) frequently occur in 10X
datasets [12], which implies at least a several-fold excess of primers. The enzymes are catalytic, so
their concentration is unlikely to vary over the course of the reaction. Finally, under the assumption
that reverse transcription reagents are not depleted, cell size bias is implausible. All steps after
library construction take place in combined media, rendering the cell size irrelevant altogether.
We note that it is possible to construct models more sophisticated than the homogeneous pure birth
process to describe library construction. For example, we may describe the gradual denaturation
of enzymes by a decaying sampling rate. This turns out to make no difference to the mathematical
formulation of the process: the distribution of cDNA produced by an inhomogeneous arrival process
is still Poisson [51]. Quantitatively, this means that a cDNA synthesis reaction with duration t yields
Mz|Nz ∼ Poiss(NzΛz), with Λz =

∫ t
0 λz(t

′)dt′ for some time-dependent rate λz. Therefore, we can
relax the assumptions to suppose such an effective sampling rate Λz is identical for all cells. We
anticipate that multinomial models can provide a useful orthogonal description [40], but may be
challenging to analyze jointly with Markov models of transcription.
Of course, cell sizes do vary in a non-stochastic way, and there is evidence that transcriptional
parameters are in part regulated based on cell size [52]. More complex models may explicitly
incorporate this dependence; yet again, there are several approaches to account for coordinated
expression levels across multiple genes. A “top-down” model may use the total number of mRNA
in a cell as a proxy for cell size, as is standard practice [7, 36], and represent the burst parameters
as a mixture model. On the other hand, a “bottom-up” model may explicitly describe burst size
synchronization between genes [5]. However, such models are rather complex to formulate and
solve, so we omit their discussion, and reiterate that results presented here suggest fair agreement
with the model and no further unexplained sources of overdispersion.
We use statistical testing to exclude genes that do not fit the bursty model. However, it is possible
to use information criteria to identify other transcriptional models. For example, it is straightfor-
ward to model constitutive production [53], potentially with parametrized extrinsic noise [54, 55].
Sampling of these models yields Poisson-negative binomial (or Poisson-Poisson) mixtures easily
tractable using the generating function method [56]. Furthermore, analogous solutions are avail-
able for the Poisson-Beta telegraph model [57]. However, empirically, the Poisson and Poisson-Beta
distributions are rarely observed in scRNA-seq datasets [10], and bursty production is supported
by fluorescence studies [4, 27]. These considerations, and the considerable computational expense
of fitting multiple models for each gene, lead us to focus on the current model.
The binary model classifying each molecule as either spliced or unspliced is computationally
tractable, but unsatisfying: it is only mechanistically justified in the case where only one inter-
mediate transcript and one protein-coding transcript are prevalent. However, differential isoform
expression is well-known to be prominent [25,58], with significant biological impact [59,60]. In prin-
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ciple, a more sophisticated workflow may identify individual intermediate isoforms and fit a full
splicing graph. At this time, two protocols are available for isoform identification: Smart-seq3 [61]
and FLT-seq [58], which generate full-length libraries with cell barcodes and UMIs. However, these
methods can only capture relatively small numbers of cells, rather insufficient for full splicing graph
and parameter estimation. Further, their annotations are not directly applicable to short-read data:
short reads can identify classes of compatible transcripts rather than full transcripts. Therefore,
the problem of fitting full isoform dynamics is statistically challenging. Parenthetically, we note
that both methods use poly(A) capture, and are expected to yield capture biases similar to the
short-read protocol.
The deterministic dependence on length is a simple model used as a proxy for the number of poly(A)
tracts. With the growing availability of isoform-specific data, it is possible to build a more detailed
thermodynamic description that explicitly models the rate of molecule capture as a function of
the poly(A) content. The current implementation is partially modular to such descriptions, and
permits using thermodynamic binding propensities instead of gene lengths.
Finally, we focus on maximum likelihood parameter estimates. Due to the high dimensionality of
the problem, and relatively high computational cost of evaluating the relevant distributions, it is
impractical to compute true confidence sets in the full search space. We implement a routine that
approximates conditional confidence intervals for maximum likelihood {b, β, γ} vectors (at a given
{Cu, λs}) by evaluating the Hessian of the KL divergence. With sufficient computing power, it is
feasible to use standard Markov chain Monte Carlo schema to sample full posteriors.

6 Data and code availability

https://github.com/pachterlab/GP_2021_3 contains a Python notebook that can be used to
reproduce the figures, as well as a sample notebook that applies the computational pipeline to a
10X PBMC dataset. The same repository contains all scripts used to make references, download
datasets, quantify transcripts, and process the resulting loom files through the inference pipeline.
The raw loom files and all search results are deposited in the CaltechDATA repository [62,63].
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Erik Sundström, Gonçalo Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson,
and Peter V. Kharchenko. RNA velocity of single cells. Nature, 560(7719):494–498, August
2018.

[9] Volker Bergen, Marius Lange, Stefan Peidli, F. Alexander Wolf, and Fabian J. Theis. General-
izing RNA velocity to transient cell states through dynamical modeling. Nature Biotechnology,
August 2020.

[10] Lisa Amrhein, Kumar Harsha, and Christiane Fuchs. A mechanistic model for the negative
binomial distribution of single-cell mRNA counts. Preprint, bioRxiv: 657619, June 2019.

[11] Jong Kim and John C Marioni. Inferring the kinetics of stochastic gene expression from
single-cell RNA-sequencing data. Genome Biology, 14(1):R7, 2013.
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Supplementary Material

S1 Stochastic model of gene expression and sequencing

S1.1 Model derivation

The gene-specific model of transcriptional physiology assumes the existence of a single gene lo-
cus with stochastically regulated expression. Bursts of gene transcription arrive at exponentially
distributed intervals with rate ki. This model can be derived from the more general two-state
telegraph model of non-leaky gene expression at a locus:

OFF
kon−−→ ON

ON
koff−−−→ OFF

ON
kini−−→ ON + U

U β−→ S

S γ−→ ∅

In the limit of koff → ∞, kini → ∞, with kini/koff → b ∈ (0,∞), the three-parameter telegraph
model reduces to the two-parameter burst model, yielding geometrically-distributed bursts with ex-
pectation b at each transcription event [21]. The burst frequency is simply ki ← kon. The unspliced
mRNA U is converted to spliced mRNA S after an exponentially distributed interval with rate β;
the spliced mRNA is degraded after an exponentially distributed interval with rate γ. Since the
single-cell RNA sequencing data are intrinsically atemporal, i.e. no natural experimental timescale
exists to determine absolute rates without explicit experimental design, such as 4-thiouridine la-
beling of newly synthesized mRNA [8,64], the rates β and γ are only considered in units of ki, the
burst frequency. Equivalently, ki is set to 1.
An expression for the system’s probability generating function (PGF) G(gu, gs, t) is readily available
[6]. By evaluating gu and gs around the unit circle and performing an inverse discrete Fourier
transform, it is straightforward to evaluate the time-dependent probability distribution of unspliced
and spliced mRNA copy numbers P (nu, ns, t). Due to the aforementioned atemporality of the
scRNA-seq data, we only consider the steady-state distribution as t → ∞, henceforth referred to
as P (nu, ns). The Markov chain representing the traversal is irreducible and aperiodic, so a unique
stationary distribution is guaranteed to exist.
The mRNA population is presumed distributed according to P (nu, ns). We model the cDNA library
construction from species z as a pure birth Poisson process with rate Dz. This choice is motivated
by the chemistry of the process [20]. We assume that the fixation of the cell medium stops all
transcription, splicing, and degradation. Furthermore, diverging from previous descriptions [12],
we model the process of the cellular mRNA being stripped off the newly synthesized cDNA by the
template-switched second strand: the mRNA is not sequestered, and remains free to participate in
further reactions. This makes the process catalytic, and suggests that the appropriate functional
form for the distribution of cDNA produced from a single mRNA is a Poisson, rather than Bernoulli,
distribution. Specifically, we posit that the rates of capture are usually sufficiently small that the
Poisson probability of producing two or more cDNA is low; the correction is only necessary when
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the Poisson distribution rate is sufficiently high, such as when intronic regions have a large number
of poly(A) priming sites.
Independent Poisson sampling yields cDNA copy numbers distributed per Poisson(Dz) for each
mRNA molecule, where Dz is an experiment-specific sampling rate for species z. From standard
stability properties, the distribution of the number of cDNA generated from nz mRNA is governed
by Mz|nz ∼ Poisson(Dznz). By the law of total probability and the assumption of independent
sampling processes, the full joint distribution is:

P (mu,ms) =
∞∑

nu=0

∞∑
ns=0

P (mu,ms|nu, ns)P (nu, ns)

=

∞∑
nu=0

∞∑
ns=0

P (mu|nu)P (ms|ns)P (nu, ns)

=
∞∑

nu=0

∞∑
ns=0

(nuDu)mue−nuDu

mu!

(nsDs)
mse−nsDs

ms!
P (nu, ns)

By the definition of the PGF of P (mu,ms):

GMu,Ms(gu, gs) = E[gMu
u gMs

s ] =
∞∑

mu=0

∞∑
ms=0

gmuu gmss P (mu,ms)

=
∞∑

mu=0

∞∑
ms=0

gmuu gmss

∞∑
nu=0

∞∑
ns=0

(nuDu)mue−nuDu

mu!

(nsDs)
mse−nsDs

ms!
P (nu, ns)

=

∞∑
mu=0

∞∑
ms=0

∞∑
nu=0

∞∑
ns=0

(nuDu)mue−nuDu

mu!

(nsDs)
mse−nsDs

ms!
gmuu gmss P (nu, ns)

=
∞∑

nu=0

∞∑
ns=0

P (nu, ns)
∞∑

mu=0

∞∑
ms=0

(nuDugu)mue−nuDu

mu!

(nsDsgs)
mse−nsDs

ms!

=
∞∑

nu=0

∞∑
ns=0

P (nu, ns)

[ ∞∑
mu=0

(nuDugu)mue−nuDu

mu!

∞∑
ms=0

(nsDsgs)
mse−nsDs

ms!

]

=

∞∑
nu=0

∞∑
ns=0

enuDu(gu−1)ensDs(gs−1)P (nu, ns)

=

∞∑
nu=0

∞∑
ns=0

enuDu(gu−1)ensDs(gs−1)P (nu, ns)

=

∞∑
nu=0

∞∑
ns=0

Gnu1,u(gu)Gns1,s(gs)P (nu, ns)

= G
(
G1,u(gu), G1,s(gs)

)
,

where G1,z(gz) is the PGF of the Poisson distribution with rate Dz and the interchange of sum-
mation operators holds due to Fubini’s theorem. The final result accords with standard PGF
identities.
After library construction, the cDNA molecules undergo amplification by polymerase chain reaction
(PCR), fragmentation into short reads, adapter ligation, DNA sequencing, and identification from
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read data. The specific stochastic processes that govern these reactions are challenging to consider
in detail. However, in contrast to the cDNA library construction, there appears to be no compelling
mechanistic reason to presuppose any of the reactions can create novel false UMIs: previous studies
have shown UMI collapse is effectively eliminates the transcription errors that arise in this process
[12]. Therefore, as a first-order model, we treat these steps as a sequence of depletions or filters,
amounting to Nf steps of Bernoulli sampling applied to each molecule, with respective parameters

p
(1)
z , ..., p

(Nf )
z , . Trivially, this implies that the final per-molecule distribution is again Bernoulli,

with a product probability pz =
∏
i p

(i)
z . From standard identities, the number of observed UMIs,

given the existence of mz cDNA, follows Xz|mz ∼ Bin(mz, pz).
From standard properties:

P (xz|nz) =

∞∑
mz=0

P (xz|mz)P (mz|nz)

=
∞∑

mz=0

(
mz

xz

)
pxzz (1− pz)mz−xz

(nzDz)
mze−nzDz

mz!

=
∞∑

mz=0

mz!

xz!(mz − xz)!
(1− pz)mz

(
pz

1− pz

)xz (nzDz)
mze−nzDz

mz!

=
e−nzDz

xz!

(
pz

1− pz

)xz ∞∑
mz=0

(1− pz)mz
(nzDz)

mz

(mz − xz)!

:=
e−nzDz

xz!

(
pz

1− pz

)xz ∞∑
mz=0

ςmz

(mz − xz)!

=
e−nzDz

xz!

(
pz

1− pz

)xz
ςxz

∞∑
mz=xz

ςmz−xz

(mz − xz)!

=
e−nzDz

xz!

(
pz

1− pz

)xz
ςxz

∞∑
i=0

ς i

i!

=
e−nzDz

xz!

(
pz

1− pz

)xz
ςxzeς

=
e−nzDz

xz!

(
pz

1− pz

)xz
(1− pz)xz(nzDz)

xze(1−pz)nzDz

=
(pznzDz)

xze−pznzDz

xz!
,

a Poisson distribution with a rate rescaled by the sequencing probability.

P (xu, xs) =
∞∑

nu=0

∞∑
ns=0

P (xu, xs|nu, ns)P (nu, ns)

=
∞∑

nu=0

∞∑
ns=0

P (xu|nu)P (xs|ns)P (nu, ns)

=

∞∑
nu=0

∞∑
ns=0

(punuDu)xue−punuDu

xu!

(psnsDs)
xse−psnsDs

xs!
P (nu, ns)
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By the definition of the PGF associated with P (xu, xs):

H(gu, gs) := E[gXuu gXss ] =
∞∑

xu=0

∞∑
xs=0

gxuu gxss P (xu, xs)

=
∞∑

xu=0

∞∑
xs=0

gxuu gxss

∞∑
nu=0

∞∑
ns=0

(punuDu)xue−punuDu

xu!

(psnsDs)
xse−psnsDs

xs!
P (nu, ns)

=

∞∑
nu=0

∞∑
ns=0

P (nu, ns)

∞∑
xu=0

∞∑
xs=0

(punuDugu)xue−punuDu

xu!

(psnsDsgs)
xse−psnsDs

xs!

=
∞∑

nu=0

∞∑
ns=0

P (nu, ns)

[ ∞∑
xu=0

(punuDugu)xue−punuDu

xu!

∞∑
xs=0

(psnsDsgs)
xse−psnsDs

xs!

]

=

∞∑
nu=0

∞∑
ns=0

epunuDu(gu−1)epsnsDs(gs−1)P (nu, ns)

=

∞∑
nu=0

∞∑
ns=0

enuDu(pugu−pu)ensDs(psgs−ps)P (nu, ns)

=
∞∑

nu=0

∞∑
ns=0

enuDu([pugu+(1−pu)]−1)ensDs([psgs+(1−ps)]−1)P (nu, ns)

= G
(
G1,u(G2,u(gu)), G1,s(G2,s(gs))

)
,

where G2,z(gz) is the PGF of the Bernoulli distribution corresponding to species z and the inter-
change of summation operators holds due to Fubini’s theorem. Again, this accords with standard
properties of PGFs.
Most significantly to the formulation of the problem, the functional form of the results reinforces
the fact that Bernoulli resampling of the distribution makes the individual parameters in the pairs
Du, pu and Ds, ps impossible to distinguish. Therefore, we define the effective capture rates λu :=
Dupu and λs := Dsps, such that each molecule of species z yields a Poisson distribution of observed
UMIs with sampling rate λz.

S1.2 Model moments

S1.2.1 Marginal moments

The moments of the marginals are easily acquired from standard descriptions of Poisson mixtures
[65, 66]; here, we derive them explicitly using standard properties of generating functions. Given
H(gu, gs) = G(eλu(gu−1), eλs(gs−1)), the moments are found by taking derivatives at gu, gs = 1:

E[Xz] =
∂H

∂gz

∣∣∣∣
gu,gs=1

= λze
λz(gz−1) ∂G

∂gz

∣∣∣∣
gu,gs=1

= λzE[Nz]

V[Xz] + E[Xz]
2 =

∂2H

∂g2
z

∣∣∣∣
gu,gs=1

+ E[Xz]

= λ2
z

[
eλz(gz−1) ∂G

∂gz
+ e2λz(gz−1)∂

2G

∂g2
z

]
gu,gs=1

+ E[Xz]
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= λ2
z

[
V[Nz] + E[Nz]

2
]

+ E[Xz]

V[Xz] = λ2
zV[Nz] + λ2

zE[Nz] + λzE[Nz]− E[Xz]
2

= λ2
zV[Nz] + λ2

zE[Nz] + λzE[Nz]− λ2
zE[Nz]

2

= λ2
zV[Nz] + λzE[Nz].

Usefully, this formula is independent of the specific form of G, and can be applied to any model of
transcription and processing. In our case, per previous results [6]:

E[Nu] =
kib

β

E[Ns] =
kib

γ

V[Nu] = E[Nu](1 + b)

V[Ns] = E[Ns]

(
1 +

bβ

β + γ

)
This yields the following analytical expressions for the moments of observables Xz (defining F :=
β

β+γ ):

E[Xu] =
λukib

β

E[Xs] =
λskib

γ

V[Xu] = λuE[Nu]
(
1 + λu(1 + b)

)
=
λukib

β

(
1 + λu(1 + b)

)
V[Xs] = λsE[Ns]

(
1 + λs(1 + bF )

)
=
λskib

γ

(
1 + λs(1 + bF )

)
S1.2.2 Cross-moments

Analogously to the previous section:

Cov(Nu, Ns) = bFE[Nu] =
kib

2F

β

E[XuXs] =
∂2H

∂gu∂gs

∣∣∣∣
gu,gs=1

= λuλse
λu(x−1)eλs(y−1) ∂2G

∂gu∂gs

∣∣∣∣
gu,gs=1

= λuλsE[NuNs]

Cov(Xu, Xs) = E[XuXs]− E[Xu]E[Xs] = λuλs(E[NuNs]− E[Nu]E[Ns])

= λuλsCov(Nu, Ns) =
λuλskib

2F

β

The Pearson correlation can be computed accordingly. First, we find the noise-free correlation ρ∗:

ρ∗ =
Cov(Nu, Ns)√
V[Nu]V[Ns]

=
bFE[Nu]√

E[Nu]E[Ns](1 + b)(1 + bF )
=

√
γb2F 2E[Nu]2

βE[Nu]2(1 + b)(1 + bF )
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=

√
γb2F 2

β(1 + b)(1 + bF )
=

√
b2F (1− F )

(1 + b)(1 + bF )

Then, we compute the correlation ρ of the sampled system:

ρ =
Cov(Xu, Xs)√
V[Xu]V[Xs]

=
λuλsbFE[Nu]√

λuλsE[Nu]E[Ns](1 + λu(1 + b))(1 + λs(1 + bF ))

=

√
λuλsb2F (1− F )

(1 + λu(1 + b))(1 + λs(1 + bF ))

We can compare these quantities:(
ρ

ρ∗

)2

=
λuλsb

2F (1− F )

(1 + λu(1 + b))(1 + λs(1 + bF ))

(1 + b)(1 + bF )

b2F (1− F )

=
λuλs(1 + b)(1 + bF )

(1 + λu(1 + b))(1 + λs(1 + bF ))

Defining ζ := 1 + b > 1 and η := 1 + bF > 1 yields:(
ρ

ρ∗

)2

=
λuλsζη

(1 + λuζ)(1 + λsη)

=
1

(1 + 1
λuζ

)(1 + 1
λsη

)
< 1.

As expected, sampling strictly reduces the correlation with respect to the technical noise-free sys-
tem, although the ratio of the correlation coefficients tends toward 1 as λuζ and λsη tend toward
infinity.

S1.2.3 Method of moments parameter estimates

We set ki to 1 with no loss of generality at steady state. Treating the noise-free model, we can easily
compute method of moments estimates for the three physiological parameters using the analytical
results in Table 4:

V[Nu]

E[Nu]
= 1 + b

b̂MoM =
S2
Nu

Nu

− 1

β̂MoM =
b̂MoM

Nu

γ̂MoM =
b̂MoM

N s

Given λu and λs, we can compute the conditional method of moments estimates for the three
physiological parameters in the Poisson technical noise model:

V[Xu]

E[Xu]
= 1 + λu(1 + b)
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b̂MoM =
1

λu

(
S2
Xu

Xu

− 1

)
− 1

β̂MoM =
λub̂MoM

Xu

γ̂MoM =
λsb̂MoM

Xs

S1.3 Zero fractions

Due to the sparsity of molecular datasets, the zero fraction P0 is a popular data summary [21,46,67].
In general, we suggest using fully parametric fits, but we report the P0 for the considered models.
The zero fraction is the value of the distribution’s PGF at gz = 0. Therefore, for a Poisson
distribution with mean λ, PPoiss0 = eλ(0−1) = e−λ. The same relation can be applied to all other
PGFs. We omit the discussion of spliced species, as they do not have analytically tractable solutions,
but we do note that computing them requires only a single integral
First, we consider the original bursty system.

P (Nu = 0) = G(0, 1) =

(
1

1− b(gu − 1)

)ki/β∣∣∣∣∣
gu=0

= (1 + b)−ki/β

P (Nu = 0)

PPoiss0

= (1 + b)−ki/β exp

(
kib

β

)
= exp

(
ki
β

[b− log(b+ 1)]

)
Since b > 0, the argument [b− log(b+ 1)] is strictly positive. This implies that the zero fraction of
the bursty system is strictly higher than that of the moment-matched Poisson system.
In the case of the sampled system:

P (Xu = 0) = H(0, 1) =

(
1

1− b(eλu(gu−1) − 1)

)ki/β∣∣∣∣∣
gu=0

=
(

1− b(e−λu − 1)
)−ki/β

P (Nu = 0)

PPoiss0

=
(

1− b(e−λu − 1)
)−ki/β

exp

(
λukib

β

)
= exp

(
ki
β

[b− log(b+ 1)]

)
= exp

(
ki
β

[λub− log(1− b(e−λu − 1))]

)
Since b, λu > 0, the argument [λub−log(1−b(e−λu−1))] is strictly positive. Again, this implies that
the zero fraction of the sampled bursty system is strictly higher than that of the corresponding
Poisson system. These results provides a route to computing the false positive rate, if model
selection is undertaken using the zero fraction [46].

S1.4 Sampling parameters

At this point, the specific functional forms of λu and λs are left to discretion; each could be gene-
specific or universal across the transcriptome. Due to the behavior of the summary statistics of
experimental data, we hypothesize that the spliced mRNA capture rate λs is constant for all genes,
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whereas the unspliced mRNA capture rate λu has a linear dependence on the gene length, such
that λu = CuL.
The identification of intronic sequences is presumably [8] enabled by the off-target capture of
intronic poly(A) sequences. This effect has been known as a source of significant systematic bias
since at least 2002 [22]. A study by Nam et al. found that a poly(A) stretch of length eight – with
up to two internal mismatches – was sufficient to initiate priming; increasing the stretch length
substantially increased priming efficiency. We do not take the specific poly(A) content of each gene
into account, but note that our computational implementation allows using the number of poly(A)
stretches up to a specified length instead of L.

S2 Simpler models produce implausible parameter trends

To motivate the need for the length-biased Poisson sampling model, we consider a series of sim-
pler models: the aforementioned noise-free model, the Bernoulli sampling model, and the length-
independent Poisson sampling model, and find that all lead to the counterintuitive length-dependent
trends characterized in Section 2.1.

S2.1 No sampling

As described in Section 2, the current study is motivated by the incongruity between the genome-
wide parameter trends known from previous literature and inferred from typical scRNA-seq datasets.
To compute the parameter estimates, we simply perform maximum likelihood estimation on the
same data, initializing at the method of moments estimates reported in Section S1.2.3.
As shown in Fig. S5, the results are mutually concordant, and physiologically implausible, across
a variety of high-quality scRNA-seq datasets.

S2.2 Bernoulli sampling

Given these results, we may reasonably suppose that a model with no technical noise is too simple,
and posit that the library construction and sequencing processes can lose molecules. This pure-
depletion Bernoulli sampling model has the following per-molecule generating function:

Gz(gz) = pzgz + (1− pz)
Gz(gz)− 1 = pzgz + (1− pz)− 1 = pz(gz − 1) = pzvz,

which implies that the overall PGF has the following functional form:

H(gu, gs) := G(Gu(gu), Gs(gs))

bU(vu, vs) = bpsvsfe
−γs + b[puvu − psvsf ]e−βs

bU(vu, 0) = bpuvue
−βs

bU(0, vs) = bpsvsf
[
e−γs − e−βs

]
Clearly, binomial sampling of the marginal distributions returns the same functional form, with
effective burst size bpz. However, the joint distribution only takes an identical form if pu = ps.
For simplicity, we only consider the unspliced marginal. From Fig. S5, it is clear that the resulting
qualitative parameter trends under the length-independent Bernoulli model must be identical, up
to rescaling of the burst size by pu.
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S2.3 Length-independent Poisson sampling

Even if we use the chemical considerations to suppose that Poisson sampling is necessary, it is
not immediately clear that a length-dependent model is required. Considering only the unspliced
marginal again, and supposing that λu � 1, we yield:

Gu(gu) = eλu(gu−1) ≈ 1 + λu(gu − 1) = λugu + (1− λu),

which is identical to the Bernoulli case, with pu ← λu.
It is not a priori obvious that λu � 1 should be true. We fit a 1000-gene subset of the pbmc_10k

dataset on a 22 × 23 grid, with log10 λu, log10 λs ∈ [−3.5, 1], and all other parameter bounds
as in Table S3. The procedure discovered the sampling parameter optima (log10 λu, log10 λs) =
(−0.93,−0.84) and the parameter trends shown in Fig. S14. These trends are essentially identical
to the noise-free model (Fig. S5), up to translation due to scaling. Further, the low values of
the sampling parameters indicate that the sampling distribution is in a Bernoulli-like regime, and
support the qualitative results in Section S2.2.

S3 Optimization and analysis

S3.1 Method of moments initialization

We initialize the maximum likelihood estimation algorithm at the method of moments (MoM) es-
timate. However, it is not immediately clear that a single search is sufficient for three-dimensional
optimization over {b, β, γ}. There may be a risk of finding suboptimal local minima. To validate
this choice, we tested whether the MoM initialization produces an improvement over random ini-
tialization, and whether twenty independent searches produce an improvement over one search.
In the case of twenty searches with MoM, we initialized a single search at MoM and sampled all
other starting points from a uniform distribution over the search space. We used these conditions
to fit a 1000-gene subset of the pbmc_10k dataset on a 22 × 23 grid, with log10Cu ∈ [−8.5,−3],
log10 λs ∈ [−3.5, 1], and all other parameter bounds as in Table S3. To benchmark the standard
setting (MoM, one search) against the three others, we plotted the optimal divergence of each gene
at each {Cu, λs}.
As shown in Fig. S3, the random, 1-iteration condition often underperformed the standard, whereas
the MoM, 20-iteration condition always outperformed it. As expected, the random, 20-iteration
condition performed slightly worse than the MoM, 20-iteration condition.
From the comparisons, it is apparent that the MoM, 1-iteration search is outperformed by the 20-
iteration searches when the divergence is relatively high. Therefore, we follow up and investigate
whether the underperformance of the standard settings can actually impact the inferred sampling
parameter optimum. We color the values near the best estimate of this optimum (the set of {Cu, λs}
in the first quartile of total divergence in the MoM, 20-iteration search). In this region, the 1-
iteration search performs as well as the 20-iteration search (orange points in Fig. S3). Therefore,
underperformance is largely restricted to the sections of the parameter landscape far from the
optimum, and does not substantially affect the optimization results.
The moment-based starting point provides a high-quality estimate, comparable to numerous, costly
random initializations. Adding more starting points has very little marginal benefit. Therefore,
we strictly use a single moment-based estimate to initialize likelihood optimization throughout this
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study. The number of starting points and their location (random or MoM) can be set by the user
of the implementation.

S3.2 Statistical testing

The optimization procedure yields a set of best-fit parameters {b̂i, β̂i, γ̂i} for each gene i and each
{Cu, λs}, along with an accompanying gene-specific KL divergence or loss function Li(Cu, λs).
Since each gene has an identical number of observations, we can ostensibly find a net L(Cu, λs) :=∑

i Li(Cu, λs) and estimate the optimal sampling parameters {Ĉu, λ̂s} ← arg minL(Cu, λs). This
approach is enhanced by testing and excluding genes that are poorly described by the model.
Data may not fit well due to the simplifications discussed in Section 5.2, as well as convergence to
suboptimal parameter vectors.
We use the chi-squared test with p = 0.05 and the Bonferroni correction to reject genes that do not
appear to be accurately described by the model. Further, we reject fits that are too close to the
biophysical parameter constraints (within 0.01 of the bounds), as they may represent degenerate
cases or local optima.
However, rejecting a sufficiently large subset of genes may shift the global sampling parameter
optimum. We do not account for this possibility in the analyses presented here, as multiple potential
corrections are available. However, we do implement and make available several procedures to test
the stability of the optimum.
The first accepts an integer number, repeatedly chooses a subset of genes of that size, and reports
the landscapes and optima in the subsampled search results. The second seeks a self-consistent
optimum: beginning at the näıve estimate of the sampling parameter optimum, it uses the chi-
squared test to reject a subset of the genes, then computes a new optimum based only on the
retained genes. The process repeats and reports the average of the optima observed throughout
the process. We did not find the self-consistent correction to significantly shift the location of the
optimum in the considered datasets.

S4 Biological count estimation

Throughout the study, we omit the explicit discussion of Nz. This approach is non-standard: a
breadth of literature uses statistical models precisely to “regress out” technical noise effects, in
practice taking xz and transforming it to some n̂z := f(xz), ostensibly corresponding to a (not
necessarily integer) in vivo abundance. However, it is unclear how this abundance should be
interpreted: n̂z is an ad hoc point estimate, and assigning a single value to the physiological mRNA
abundance obscures the loss of information in the sequencing process. In other words, every xz
corresponds to an entire distribution of possible nz, and this distribution should be treated explicitly.
Using a full mechanistic model obviates the need for describing it, because the relevant sums over
the probability mass functions are taken during the generating function derivation (as in Section
S1.1).
However, for the sake of completeness, we outline a procedure for estimating the physiological
mRNA counts. Here, we consider the simplest case: we know the exact values of all parameters,
and observe xz UMIs. Bayes’ theorem yields the distribution of biological counts:

P (nz|xz) =
P (xz|nz)P (nz)

P (xz)
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=
P (nz)

P (xz)

(λznz)
xze−λznz

xz!

This expression is exact, and extending it to multiple species is trivial. However, no analytical
solution is available. Furthermore, this form is not even computationally tractable, since no closed-
form solutions for P (xz) and P (nz) are available: for sufficiently small λz, the domain over which
the PMFs must be evaluated grows considerably, making the first factor numerically unstable.
Nevertheless, there are some simple extensions which are analytically tractable. We can investigate
the expectation of the distribution (replacing species z-specific notation with generic notation for
convenience, but keeping in mind that the discussion concerns a single marginal species):

E[N |x] =
∞∑
n=0

nP (n|x) =
λx

x!P (x)

∞∑
n=0

nx+1P (n)e−λn

The rightmost term is recognizable as a derivative of the moment-generating function of N . Specif-
ically, defining M(z) := E[ezN ], we yield:

dxM(z)

dzx
=

dx

dzx

∞∑
n=0

P (n)ezn =
∞∑
n=0

nxP (n)ezn,

which immediately implies the identity:

E[N |x] =
λx

x!P (x)

dx+1M(z)

dzx+1

∣∣∣∣
−λ

Analogously, it is possible to evaluate the PGF of N |x. Specifically,

E[gN |x] =

∞∑
n=0

gnP (n|x) =
λx

x!P (x)

∞∑
n=0

gnnxP (n)e−λn

=
λx

x!P (x)

∞∑
n=0

e(ln g−λ)nnxP (n)

=
λx

x!P (x)

dxM(z)

dzx

∣∣∣∣
ln g−λ

This form is relatively challenging to evaluate for large x, and requires the explicit computation of
P (x). Nevertheless, we can treat some limiting cases explicitly, by defining a tractable functional
form for N . First, we suppose N is distributed per Poisson(θ), i.e., the production is constitutive
[53] or the molecule under study is a spliced mRNA species with very low β [6]. This yields a
Neyman type A (Poisson-Poisson mixture) UMI distribution X [56]:

P (n) =
θne−θ

n!

P (x) =

∞∑
n=0

P (x|n)P (n) =

∞∑
n=0

(λn)xe−λn

x!

θne−θ

n!
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Applying Bayes’ theorem:

P (n|x) =
θne−θ

n!∑∞
j=0

(λj)xe−λj

x!
θje−θ

j!

(λn)xe−λn

x!

=
θne−θ

n!e−θλx
∑∞

j=0 j
xe−λj θ

j

j!

(λn)xe−λn

This expression can be computed explicitly. However, for the sake of qualitative investigation, we
can consider the case X = 0, and compute the distribution of molecules implied by an observation
of zero UMIs:

P (X = 0) =
∞∑
n=0

P (X = 0|n)P (n) =
∞∑
n=0

e−λn
θne−θ

n!
= exp(θ[e−λ − 1])

P (n|X = 0) =
P (X = 0|n)P (n)

P (X = 0)
=
e−λnθn

n!

1

exp(θe−λ)

P (N = 0|X = 0) = exp(−θe−λ)

E[N |X = 0] =
θ exp(e−λθ − λ)

exp(θe−λ)

= θ exp
(
e−λθ − λ− e−λθ

)
= θe−λ

Therefore, if the sampling rate is high, we expect an observed zero to correspond to a true zero.
On the other hand, if the sampling rate is low, the best estimate of the true abundance is simply
an exponentially discounted average abundance. By Taylor expansion, this converges to a linearly
discounted abundance as λ→ 0.
As a second, more physiologically relevant illustration, we can consider the case where N ∼
NegBin(p, r), i.e., the molecule under study is either unspliced, or spliced after a very brief delay
(β � 1). Supposing once again that zero molecules are observed:

P (n) =
Γ(r + n)

n!Γ(r)
pn(1− p)r

M(z) =

(
1− p

1− pez

)r
P (n|X = 0) =

P (n)

P (X = 0)
e−λn

P (X = 0) =
∞∑
n=0

P (X = 0|n)P (n) =
∞∑
n=0

e−λn
Γ(r + n)

n!Γ(r)
pn(1− p)r

= M(−λ) =

(
1− p

1− pe−λ

)r
P (n|X = 0) = P (n)e−λn

(
1− p

1− pe−λ

)−r
E[N |X = 0] =

1

P (X = 0)

dM(z)

dz

∣∣∣∣
−λ
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=
pre−λ

1− pe−λ

In terms of biological parameters p = b
1+b and r = ki/β [10], and recalling that the average biological

expression E[N ] := µ = br:

E[N |X = 0] =
µe−λ

1 + b(1− e−λ)
.

For high sampling rates, the expected physiological molecule number is vanishes: an observed zero
is likely to be a real zero. As the burst size increases, the function reduces to r(eλ − 1)−1. In
the limit of low λ, this gives r/λ by Taylor expansion. Finally, for any b and low λ, we yield
µ− µ(1 + b)λ, a scale-dependent correction to the mean.
In summary, it is possible to use the analytical models of transcription and sequencing, combined
with Bayes’ theorem, to estimate underlying molecule counts. Some simple summaries are amenable
to exact analysis; it is relatively straightforward to estimate the biological molecule counts implied
by observing zero UMIs. Wherever analytical results are not available, it is possible (albeit com-
putationally intensive) to approximate the solutions numerically.
However, this procedure is not model-agnostic “imputation” of missing values or zero observations:
model and noise parameter estimates are required. Finally, we note that the theoretical analysis is
performed under assumption of perfect information about the parameter values. However, exten-
sions to standard Bayesian machinery are straightforward; in that case, the following formulation
is appropriate:

P (n|x) =

∫
P (n|x; θ)dfθ,

where fθ is the posterior distribution of inferred parameters, such as the approximate log-normal
posterior discussed elsewhere in the report.
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S5 Supplementary tables

Table S1: Summary of datasets used in the analysis. The PBMC datasets originate from H. sapiens,
all others originate from M. musculus.

Genes Genes Genes Genes
Dataset Abbreviation Cells Detected Kept Overlap Selected

10X 1k PBMC pbmc_1k 1200 36601 3087 2997 2500
10X 10k PBMC pbmc_10k 11756 36601 5813

10X 1k heart heart_1k 982 32285 6746 3607 2500
10X 10k heart heart_10k 7462 32285 8281
10X 1k neuron neuron_1k 1330 32285 4943
10X 10k neuron neuron_10k 11954 32285 5348

10X 5k brain brain_5k 5399 32285 5370 4775 3500
10X 5k brain nuclei brain_5k_nuc 5772 32285 5854

Allen B01 allen_B01 11504 32285 5894 5399 5000
Allen C01 allen_C01 12363 32285 6477
Allen A08 allen_A08 9974 32285 7367
Allen B08 allen_B08 10975 32285 7482
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Table S2: Analysis of the rejected low-expression gene cluster. The “Low Expression” cluster was
assigned using K-means clustering. The “Poorly Annotated” genes were identified by parsing gene
names to identify all genes known only as open reading frames with no functional characterization,
or tentatively named using AC/AL/BC/Gm/LINC prefixes and Rik/AS/IT/ps pseudogene suffixes.

Genes Matched to Low Poorly
Dataset Detected Annotation Expression % LE Annotated % of LE

10X 1k PBMC 36601 35727 25024 70.04 14234 56.88
10X 10k PBMC 36601 35727 25016 70.02 14229 56.88

10X 1k heart 32285 31649 18930 59.81 10087 53.29
10X 10k heart 32285 31649 19133 60.45 10179 53.20
10X 1k neuron 32285 31649 19910 62.91 10177 51.12
10X 10k neuron 32285 31649 20167 63.72 10235 50.75

10X 5k brain 32285 31649 20211 63.86 10233 50.63
10X 5k brain nuclei 32285 31649 20448 64.61 10264 50.20

Allen B01 32285 31649 19705 62.26 9974 50.62
Allen C01 32285 31649 19567 61.83 9932 50.76
Allen A08 32285 31649 19217 60.72 9839 51.20
Allen B08 32285 31649 19201 60.67 9829 51.19

Table S3: Search parameter bounds. ∗Fit to brain nuc 5k used [−0.5, 3.5] as the domain for
log10 γ.

Parameter Lower bound (log10) Upper bound (log10)

Cu -8 -5
λs -2.5 0
b -1 4.2
β -1.8 2.5
γ∗ -1.8 2.5
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Table S4: Statistical summaries of biophysical and technical parameter values computed by the
inference procedure.

Dataset % Rejected b Sb β Sβ γ Sγ Ĉu λ̂s
10X 1k PBMC 7.9 0.67 0.46 0.21 0.41 0.43 0.50 -5.54 -0.75
10X 10k PBMC 11.6 0.81 0.42 0.22 0.36 0.50 0.47 -5.62 -0.81

10X 1k heart 7.6 1.07 0.39 0.52 0.39 1.06 0.43 -5.54 -0.38
10X 10k heart 14.6 1.00 0.38 0.45 0.42 0.97 0.43 -5.62 -0.50
10X 1k neuron 17.1 0.84 0.41 0.21 0.46 0.59 0.52 -5.69 -0.62
10X 10k neuron 7.0 0.84 0.40 0.12 0.48 0.58 0.54 -6.00 -0.81

10X 5k brain 12.8 0.81 0.39 0.13 0.47 0.54 0.55 -5.85 -0.81
10X 5k brain nuclei 50.6 1.23 0.34 0.47 0.46 1.74 0.51 -6.15 -0.56

Allen B01 4.6 1.48 0.35 0.00 0.30 0.89 0.50 -6.38 -0.81
Allen C01 5.5 1.41 0.34 -0.05 0.30 0.80 0.50 -6.31 -0.75
Allen A08 5.6 1.51 0.35 0.09 0.26 0.90 0.45 -6.15 -0.62
Allen B08 6.1 1.45 0.36 0.10 0.26 0.90 0.45 -6.08 -0.56
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S6 Supplementary figures

S6.1 Procedure and assumptions

Figure S1: Outline of the initialization, probabilistic inference, and analysis procedure.
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Figure S2: Correlation between the total gene length and the number of internal poly(A) stretches
up to a set length. At the relatively low poly(A) stretch lengths necessary to initiate priming, the
correlations are above 0.9.

Figure S3: Performance of the standard search procedure (method of moments initialization, 1
iteration of gradient descent) benchmarked against three alternatives with random initialization and
20-iteration searches. Value indicates the magnitude of the KL divergence at search termination
(orange: genes at grid points in lowest quartile of total divergence, computed from MoM 20it; gray:
genes at grid points outside).
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S6.2 Results

Figure S4: Length dependence of average spliced and unspliced mRNA observations in twelve
datasets (orange: high-expression gene cluster; gray: discarded low-expression cluster). All datasets
show overrepresentation of long unspliced mRNA, as well as separation into distinct high- and low-
expression clusters.
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Figure S5: Transcriptional parameter estimates without a stochastic model of sequencing demon-
strate pervasive length-dependent trends throughout all datasets (gold: lower bounds on 99%
confidence intervals; gray: fits rejected by statistical testing).
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Figure S6: Inferred transcriptional parameters for the stochastic model of sequencing do not appear
to have strong length dependence in any dataset (gold: lower bounds on 99% confidence intervals;
gray: fits rejected by statistical testing).
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Figure S7: The sampling parameter likelihood landscapes show a single optimum in each dataset
(dark: lower, light: higher total Kullback-Leibler divergence between fit and data; orange cross:
optimal sampling parameter fit).
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Figure S8: Inferred transcriptional parameter distributions are well-described by an normal-inverse
Gaussian fit (gray: histogram of genes retained after statistical testing; teal line: best fit to normal-
inverse Gaussian distribution).
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Figure S9: All five technical replicates show largely concordant inferred parameter values (orange
dashed line: identity; gold: lower bounds on 99% confidence intervals; gray: fits rejected by statis-
tical testing).
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Figure S10: All four biological replicates show largely concordant inferred parameter values, albeit
with lower correlations than technical replicates (orange dashed line: identity; gold: lower bounds
on 99% confidence intervals; gray: fits rejected by statistical testing).
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Figure S11: Nuclear/whole-cell scRNA-seq replicates appear to be qualitatively concordant. How-
ever, the nuclear RNA dataset shows a high rate of rejection and “degradation” parameters approxi-
mately one order of magnitude higher than those in the matched whole-cell dataset (orange dashed
line: identity; gold: lower bounds on 99% confidence intervals; gray: fits rejected by statistical
testing).

Figure S12: A comparison of all normal-inverse Gaussian fits to inferred parameter distributions,
as reported in Fig. S8. As suggested by the offset in the matched dataset comparison (Fig. S11),
the nuclear RNA have an average “degradation” or efflux rate 1-2 orders of magnitude higher than
the other, whole-cell datasets.
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Figure S13: A comparison of parameter fits to 10X mouse heart and brain datasets. The parameters
are correlated, but show significant tissue-specific deviations unobserved in biological and technical
replicates. An offset from the identity line is evident, possibly due to suboptimal sampling param-
eter fits (orange dashed line: identity; gold: lower bounds on 99% confidence intervals; gray: fits
rejected by statistical testing).

Figure S14: Parameter fits resulting from the Poisson, length-independent model of sequencing.
The trends are qualitatively identical to those in Fig. S5, up to translation (gold: lower bounds on
99% confidence intervals; gray: fits rejected by statistical testing).
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