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Abstract

The geometric structure of S-matrix encapsulated by the “Amplituhedron program” has

begun to reveal itself even in non-supersymmetric quantum field theories. Starting with the

seminal work of Arkani-Hamed, Bai, He and Yan [1] it is now understood that for a wide class

of scalar quantum field theories, tree-level amplitudes are canonical forms associated to poly-

topes known as accordiohedra. Similarly the higher loop scalar integrands are canonical forms

associated to so called type-D cluster polytopes for cubic interactions or recently discovered

class of polytopes termed pseudo-accordiohedron for higher order scalar interactions.

In this paper, we continue to probe the universality of these structures for a wider class

of scalar quantum field theories. More in detail, we discover new realisations of the associa-

hedron in planar kinematic space whose canonical forms generate (colour-ordered) tree-level

S matrix of external massless particles with n−4 massless poles and one massive pole at m2.

The resulting amplitudes are associated to λ1 φ
3
1 + λ2 φ

2
1φ2 potential where φ1 and φ2 are

massless and massive scalar fields with bi-adjoint colour indices respectively. We also show

how in the “decoupling limit” (where m → ∞, λ2 → ∞ such that g := λ2
m

= finite) these

associahedra project onto a specific class of accordiohedron which are known to be positive

geometries of amplitudes generated by λφ3
1 + g φ4

1.

Dedicated to the memory of Nila;

Teacher, Mentor and Friend.
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1 Introduction

The analysis of the structure of the S-matrix has witnessed several striking developments in

past two decades. But the scattering amplitudes associated to scalar field theories display a

“dual persona” in many of these developments. On one hand, S-matrix of bi-adjoint scalar φ3

theory is a prototype for many of the more sophisticated theories such as Yang-Mills theory

or Gravity1, and on the other hand the scattering amplitudes associated to higher order

scalar interactions are more intricate and do not appear to share the remarkable simplicity

and elegance of the amplitudes associated to cubic interactions.

BCFW recursion relations provided first hints of such intricacies as it is only the cubic

scalar interactions which are BCFW constructible using a single BCFW shift [2,3]. However

the “brutality” of generic scalar field amplitudes manifested itself most clearly in the CHY

(Cachazo He, and Yuan) formulation of the S-matrix. As was shown by CHY in [4] and later

in a series of works by Bourjaily et al [5, 6] the integrand for the bi-adjoint φ3 theory is the

canonical top form in the moduli space but the integrands for other scalar theories do not

appear to have any obvious geometric or cohomological characterisation. (The amplituhedron

program in fact motivates us to look for lower forms on CHY moduli space or top forms on

binary geometries [7], [8] as integrands for φp theories. For some initial attempts in the first

direction we refer the reader to [9]).

The extension of the Amplituhedron program to non super-symmetric quantum field

theories and the discovery of positive geometries (more specifically convex polytopes) in

kinematic space [1] has shed new light on some of these issues. We now understand how

the tree-level (and colour ordered) amplitudes of a generic massless scalar field theories are

directly tied to the existence of certain very specific Positive geometries (in fact Polytopes)

in the kinematic space.2 The “Amplituhedron” for a φp interaction for a generic p is a

combinatorial polytope known as the accordiohedron which admits convex realisations in

kinematic space . [9,11–15]. Each accordiohedron defines a unique canonical form in kinematic

space and a (weighted) sum over all the canonical forms of a given dimension is the n-point

amplitude of φp theory.3

However, even for tree-level amplitudes, a number of puzzles remain unresolved. For an

n particle colour-ordered amplitude in bi-adjoint scalar φ3 theory, there is a unique n − 3

1In fact the bi-adjoint φ3 scattering amplitude also plays the role of a building block in the so-called KLT
relations

2Even perturbative string amplitudes have intimate relationship with positive geometries and the associ-
ated canonical forms as discovered in the seminal paper by Mizera [10].

3Equivalently, each accordiohedron is dual to a simple polytope and the canonical form associated to the
accordiohedron induces a volume measure on the kinematic space such that the sum over volumes of all the
dual polytopes of a given dimension equals the tree-level amplitude.
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dimensional associahedron and hence the amplitude is nothing but the canonical top form

on the associahedron [1]. For a generic scalar interaction, even for a fixed number of external

particles, there is a whole set of acccordiohedra and they all need to be accounted for (the

forms associated to each of these have to be added with specific coefficients) when evaluating

the tree-level amplitude. Thus the scattering form for φp> 3 theory is not a d-log form but a

weighted sum over k > 1 d-log forms.

The weights are uniquely fixed via combinatorial properties of the accordiohedron ( [17,

18]) but it is not apriori clear why a specific linear combination of the d log-forms is “special”

in the sense that it generates unitary and local scattering amplitudes. In fact, as was observed

in [14], if we consider the accordiohedra polytopes for polynomial scalar interactions, then a

class of such accordiohedra contribute with vanishing weights and it has till date remained

unclear why certain accordiohedra are redundant as far as the tree-level S-matrix is concerned.

It has been advocated by Nima Arkani-Hamed, that reason for emergence of accordiohe-

dron polytopes (as the amplituhedron for higher order scalar interaction) should be probed

via effective field theory ideas. We can think of generating polynomial scalar interactions from

cubic interactions by integrating out massive fields. In this sense Accordiohedra polytopes

should “naturally” emerge from the kinematic space Associahedra in Xij << m2 limit.4

In this paper, we attempt to resolve few pieces of this puzzle. We take first steps towards

showing that there is an “amplituhedron” for tree-level S matrix in which the interaction

Hamiltonian includes coupling of two scalars (one of which is massive and the other mass-

less). More in detail, we show that there exists a class of polytopes which are topologically

equivalent to an associahedron but whose boundaries come in two possible colours. We refer

to such a polytope as an associahedron block. We show that an associahedron block admits

realisations in kinematic space whose canonical form generates a set of tree level amplitudes

of λ1 φ
3
1 +λ2 φ

2
1φ2 theories, where φ1, φ2 are two species of scalar fields. The set consists of n-

point amplitudes in which all the external states are massless and the amplitude is expanded

upto λ2. We distinguish the two fields by taking φ1 to be massless and φ2 to be massive. We

then show that there is a way to “geometrize” the effect of integrating out massive modes to

leading order in 1
m

(m being mass of φ2) on positive geometries and show that this leads to

the accordiohedron polytope

Our primary result in the paper is the following : Up to order λ2
2 perturbative expansion

of the n point (colour-ordered) tree-level amplitude in which all the external particles are

massless is a sum over canonical forms of a set of polytopes which are realisations of associ-

ahedra in the positive region of kinematic space. We derive a formula which computes the

(color-ordered) amplitude for the multi-scalar theory in terms of canonical forms associated

4We also thank Nemani Suryanarayana for highlighting this possibility to us in 2018.
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to ABHY-type realisations of associahedron blocks.

In particular, let An−3 be an ABHY associahedron in the positive region of planar

kinematic space, K+
n . As we show below, for each (i, j) such that { |i − j| modulo n ∈

1, . . . , n
2
} there exists a polytope that we call associahedron block and denote as A

(i,j)
n−3.

Each associahedron-block has a subset of co-dimension one facets which are associated with

(m,n) ∈ { (i, j), . . . , i+ (j− i)−1, j+ (j− i)−1) } that are coloured red while all the other

facets being coloured black.

We then show that the causal structure on Kn introduced in [19] has enough richness

which we use to generalise the ABHY construction. We thus obtain convex realisation of an

associahedron block A
(i,j)
n−3 in K+

n and we denot this (ABHY) realisation as A
Fij

n−3. Here Fij is

the set of all the triangulations of an n-gon such that (i) Each triangulation has at most one

red diagonal from the set { (i, j), . . . , (i + |j − i| − 1, j + |j − i| − 1 }. We then prove the

following theorem.

Let Ω
Fij
n be the planar scattering form defined by the associahedron block A

(i,j)
n−3 with

Ω
Fij
n (Aijn−3) being its pull-back on the unique convex realisation of the same associahedron

block in K+
n . Similarly, let Ωφ3

n be the planar scattering form defined in [1] with Ωφ3

n (An−3)

being its pull-back on a ABHY realisation.

The scattering form defined below defines the n-point amplitude of our theory upto sub-

leading order in λ2.

ΩY
n :=

 n
2∑

|i−j|=2

1

|i− j|
∑
Fij

ΩFij
n (Aijn−3)− γ Ωφ3

n (An−3)

 (1)

where

γ =
∑

Sum over all diagonals, (i,j)

1

|i− j|
− (n− 3) (2)

Hence, the following (sum over) d− log forms,

ωn = λn−2
1 Ωφ3

n (An−3) + λn−4
1 λ2

2 ΩY
n (3)

generates the tree-level planar amplitude up to order λ2
2.

We then show that the effect of integrating out the massive φ2 field is geometrized in the

world of positive geometries. It amounts to moving the associahedra to “infinity” in different

directions where they degenerate into a family of lower dimensional accordiohedra.

The paper is organised as follows. In section 2, we review the analysis of tree-level ampli-

tudes for color ordered massless scalar theories with polynomial interactions . Although the
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main ingredients in this section are a review, we give an explicit evaluation of generic tree-level

amplitudes generated by polynomial (massless) scalar interaction in terms of canonical forms

in section 2.2. In sections 3 and 3.1, we introduce a two-scalar field theory with Lagrangian

defined in equation (21) and analyse the triangulations dual to Feynman diagrams. We argue

how the naive attempt at using these dual triangulations to generate positive geometries such

as associahedron fail if the number of particles n ≥ 6.

In section 4, we use the remarkable causal structure in the planar kinematic space in-

troduced in [19] to locate convex polytopes whose canonical forms generate tree-level per-

turbative amplitude of the two-scalar theory. As we prove in 4.1, combinatorially all the

polytopes are in fact associahedra such that a unique linear combination over d log forms

associated to their convex realisation is the scattering amplitude of interest. We show how

these associahedra have boundaries some of which correspond to massless poles and some to

the massive ones. In section 5, we consider a low energy limit of these associahedra and show

that they in fact project onto accordiohedra which are known to be positive geometries for

the effective field theory that arises once we integrate out the massive field. We end with a

discussion of some of the immediate open questions.

2 Positive Geometries for polynomial scalar interac-

tions.

In this section, we review the “Amplituhedron program” in the context of tree-level (and

colour-ordered) scattering amplitudes of massless scalar theories with generic polynomial

interaction.

We first begin by quickly reviewing the positive geometries, more specifically a class of sim-

ple polytopes known as accordiohedra (a polytope is a bounded, convex, higher dimensional

generalisation of a polygon) which generate amplitudes for monomial (φp.) interactions. A

polytope P is called simple if each of the vertex is adjacent to exactly dim(P) co-dimension

one boundaries called facets. Accordiohedron is a simple polytope whose co-dimension k faces

are in bijection with a set of dissections of polygon. Depending on the nature of dissections,

that is, if the polygon is dissected into triangles or p > 3-gons, we get distinct accordiohedra.

If the co-dimension k faces of the simple polytope are in bijection with k-partial triangulation

of an n-gon then the simple polytope is the n− 3 dimensional associahedron An−3.5

5The precise definition of positive geometry is not required in this work but can be found in [20]. For
our purpose, we may define positive geometry X≥ 0 as (i) a closed oriented subset in a projective space X
which has boundaries of all co-dimensions (ii) there is a unique canonical form on X which has simple poles
on (and only on) all the faces of X≥ 0 and (iii) the residue of the canonical form is itself the canonical form
defined intrinsically on the boundary as a positive geometry. For the purpose of this paper, we will need
only a specific class of positive geometries, namely convex polytopes embedded in positive region of planar
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We then prove that a weighted sum over canonical forms associated to a family of simple

polytopes which are closed under factorisation and gluing generate scattering amplitudes

for a scalar field theories with polynomial interactions. Although the proof is simply a

consequence of results proved in the literature, we take this opportunity to write down in

complete generality the relationship between tree-level S-matrix for scalar theories and a set

of positive geometries. Reader not interested in this level of generality of already known

results is encouraged to skip the proof in the first reading.6

We also caution the reader that the review is not self-contained as we assume familiarity

with the basic notions of positive geometry, especially associahedron, accordiohedron, their

convex realisations and corresponding canonical forms. Interested reader is encouraged to

read the original references, especially [1, 9, 12,14,15] or recent review [16].

As was shown in [11,13,14], the tree-level planar (colour-ordered) amplitudes for massless

φp interactions are sums over canonical forms of kinematic space accordiohedra. For quar-

tic interaction, an n-particle amplitude is simply a (weighted) sum over canonical top forms

associated to the accordiohedra of dimension n−4
2

7. Although explicit formulae have been de-

rived for computing tree-level planar amplitudes associated to monomial-scalar interactions,

an explicit classification of positive geometries whose canonical forms generate the scattering

amplitude for generic polynomial interaction has never been analysed. In this section, we

fill this gap. Although the essential ingredients are simply review of known results, the final

result has never been written down explicitly to the best of our knowledge.

This result essentially classifies the families of accordiohedra whose canonical forms gen-

erate amplitudes of a local unitary quantum field theory. We refer to such a set as a “closed

family”. A closed family is defined as family of polytopes whose canonical forms generate

amplitude of local unitary quantum field theories. We will see how different families of ac-

cordiohedra give us the amplitudes for massless scalar field theories. In the first section

we will define accordiohedron and the families of accordiohedra; and in the second section

we will discuss how to obtain a tree level scalar field theory amplitude from the families of

accordiohedra.

2.1 A Closed Family of Accordiohedra

Accordiohedra are generalization of a family of polytopes called associahedra. The n − 3

dimensional associahedron An−3 is a simple polytope (i.e., each vertex is adjacent to n − 3

kinematic space Kn.
6We thank Ashoke Sen for discussions on this issue and pressing on us the need to clarify the relationship

between positive geometries and polynomial scalar interactions.
7These accordiohedra were discovered by Baryshnikov and are known as Stokes polytopes [21].
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co-dimension one faces) whose vertices are in one-to-one correspondence with triangulations

of an n-gon and whose facets (co-dimension one boundaries) are in one-to-one correspondence

with diagonals of n-gon. The facets of associahedra satisfy the following property which we

call “factorization”. Any d-dimensional facet of An−3 is a product of two lower dimensional

associahedra Ar ×Ad−r for some r (0 ≤ r ≤ d).

Accordiohedron is a generalization of associahedra where the vertices of the polytope

are associated with various dissections of n-gon instead of just triangulations. For example,

we could consider a polytope where the vertices are associated with quagrangulations of an

n-gon. Such a polytope is known as Stokes polytope. It can be easily verified with simple

example of a hexagon that we can not have a simple polytope with vertices in one-to-one

correspondence with quadrangulations of n-gon and facets (co-dimension one boundaries) in

one-to-one correspondence with diagonals. There are more than necessary quandrangulations

and not all diagonals can be part of a quadrangulation.

To deal with this we introduce a notion of “compatiblity” with a reference quadrangu-

lation. We say a diagonal δ of an n-gon is compatible with reference quadrangulation Q if

the set of diagonals and sides of Q that intersect the segment δ′ obtained by small clock-wise

rotation of δ is connected. The Stokes polytope associated with reference quadrangulation Q

is a simple polytope whose vertices are in one-to-one correspondence with quadrangulations

formed by diagonals compatible with Q and whose co-dimension one facets are in one-to-one

correspondence with diagonals compatible with Q. We should note here that, unlike the

family of associahedra there are more than one Stokes polytopes of a given dimension. We

have one Stokes polytope for every quadrangulation. However, just like associahedra the

facets of Stokes polytopes are products of lower dimensional Stokes polytope.

Now we define AC(D) the accordiohedron associated with a reference dissection D. To do

that we first have to define the notion of compatibility of a diagonal with a reference dissection

just as defined it for quadrangulations. We say a diagonal δ of an n-gon is compatible with

reference dissection D if the set of diagonals and sides of D that intersect the segment δ′

obtained by small clock-wise rotation of δ is connected.(See figure 1).

The accordiohedron associated with dissection D is a simple polytope whose vertices

are in one-to-one correspondence with maximal dissections formed by diagonals compatible

with D and whose co-dimension one facets are in one-to-one correspondence with diagonals

compatible with D.

We have one accordiohedra for every dissection of a polygon. Thus the space of ac-

cordiohedra is labeled by dissections of polygons. Associahedra and Stokes polytopes are

some examples of accordiohedra where the reference dissections are triangulations and quad-

rangulations respectively. Now we will look at different ways of classifying the space of

8



Figure 1: The diagonal (38) of the (dual) octagon is compatible with the reference {13,36,16}

accordiohedra.

To begin with, we can classify the space of accordiohedra into different families using the

following criteria

• Number of sides (external sides) of the reference dissection

• Dimension of accordiohedra, or equivalently number of diagonals in the reference dis-

sections.

• Constituents or building blocks of dissection (triangles, quadrilaterals, pentagons, etc.)

Note, these are the criteria for reference dissection, which is expected as dissections label the

space of accordiohedra. All these criteria are encoded in the following infinite dimensional

vector associated with the dissection, v = (v3, v4, v5, . . .). Where vr is the number of r-gons

in the reference dissection. Hence, all but finitely many components of v are zero. Number

of sides of reference dissection is given by

n = 2 +
∞∑
i=3

(i− 2)vi. (4)

The dimension of accordiohedra is given by

Dim [AC(D)] = −1 +
∞∑
i=3

vi. (5)

The family of associahedra consists of accordiohedra with v = (n−2, 0, 0, . . .) and the family

of Stokes polytopes consists of accordiohedra with v = (0, n−2
2
, 0, 0, . . .).

There are two further classification of the space of accordiohedra which will play a role

in identifying the family of polytopes whose forms generate tree-level amplitudes of massless

9



scalars. One of these classifications is coarser than the three discussed above and the other

one is finer.

Coarser classification :

The family of associahedra and Stokes polytopes satisfy the interesting property that facets

of associahedra are products of lower dimensional associahedra and facets of Stokes poly-

topes is product of lower dimensional Stokes polytopes. We would like to classify the set of

accordiohedra which are closed under such factorisation.

We first define pure accordiohedron. Any accordiohedron is called pure if the reference

dissection breaks the polygon into a p-cells with p ≥ 3. Pure accordiohedra are interesting

as each tower of Pure accordiohedra AC(D) (where D is a p-gulation of an n-gon and tower

is defined with respect to the number of external vertices n) is closed under factorization.

Now we introduce the notion of “closed under gluing”. We say a set of accordiohedra S

is closed under gluing if taking the reference dissections of any two elements of S and gluing

them along some side gives you the reference of some element of S then we say S is closed

under gluing. The sets of associahedra and stokes polytopes are examples of sets closed under

gluing.

If we take two dissections, D1 of n1-gon and D2 of n2-gon, and glue these dissections along

some side, we get a dissection D of n1 +n2− 2-gon. The side along which the dissections D1

and D2 were glued becomes a diagonal of D. Let’s denote that diagonal by δ. The vectors v1,

v2, and v associated with D1, D2, and D, respectively, are related by v1 + v2 = v. Thus, the

dimensions of AC(D1), AC(D2) and AC(D) are related by Dim[AC(D1)] + Dim[AC(D2)] =

Dim[AC(D)]− 1. Further, the co-dimension one facet associated with the diagonal δ is given

by AC(D1) × AC(D2). That is, the facet δ of AC(D) factorizes into AC(D1) × AC(D2).

Therefore, the notion of closed under gluing is closely related to the notion of closed under

factorization. However they are not the same. An example of set closed under factorization

but not closed under gluing is the set of associahedra with dimension less than 10. An example

of a set closed under gluing but not closed under factorization is the set of associahedra with

dimensions greater than 9.

The coarser families of accordiohedra we are interested in are the sets of accordiohedra

which are closed under factorization and closed under gluing. An example of set closed under

factorization and closed under gluing is the set of accordiohedra whose vector v is of the type

(v1, v2, 0, 0, . . .). This set contains all associahedra and all Stokes polytopes along with all

accordiohedra where the reference dissection has both triangles and quadrilaterals.

We claim that all sets which are closed under factorization and closed under gluing are

10



of the type

Si1,i2,...,ir = {AC(D)|vD =
r∑
j=1

aij êij}. (6)

Where êij is a unit vector with one in ij − 2 th position and zero in other positions. So

the set of all associahedra is denoted by S3, and the set of all associahedra and all Stokes

polytope along with all accordiohedra where the reference dissection has both triangles and

quadrilaterals is denoted by S3,4.

Finer classification:

Now we move on to the second, finer classification. The Dihedral group Dn acts on the set

of all dissections of n-gon. The the action of Dn dissection does not change the building

blocks of the dissection. That is vD = vg·D. Where, g ·D denotes the action of g ∈ Dn on D

and vD and vg·D are the infinite dimensional vectors associated with disections D and g ·D
respectively. Thus, there is an action of Dn on all dissections with a given v. We can classify

the set of all dissections with a given v by the orbits of this action. We denote the set of

orbits by Pv and call the representative dissection of a orbit as the “primitive” of that orbit.

2.2 Amplitude as a Sum Over d-log Forms

A set of accordiohedra which is closed under factorization and closed under gluing gives us

tree level planar scalar field theory amplitudes. In this section, we will describe how we get

tree level planar scalar field theory amplitudes from Si1,i2,...,ir .

The n-point amplitude is obtained from the subset S
(n)
i1,i2,...,ir

of Si1,i2,...,ir where
∑r

j=1(ij −
2)aij = n− 2 that is number of sides of reference dissections is n. Suppose

V(n)
i1,i2,...,ir

= {v|v =
r∑
j=1

aij êij , with
r∑
j=1

(ij − 2)aij = n− 2}, (7)

for ease of notation we will drop i1, i2, . . . , ir in the subscript and just write Vn.

We will soon see that a function ω(AC(D)) : Kn → R is associated with accordiohedra

AC(D). Where Kn is the n-particle kinematics space. The scattering amplitude is a weighted

sum of these functions over the space S
(n)
i1,i2,...,ir

.

Mn(p1, p2, . . . , pn) =
∑
v∈Vn

λ
ai1
i1
· · ·λairir

∑
D∈Pv

∑
σ∈Dn/GD

ασ·D ω(σ ·D). (8)

Where GD = {g ∈ Dn|g ·D = D} is the stabiliser of D under the action of dihedral group. It

can be shown that we can choose the weights αD to be equal forDs belonging to the same orbit

under the action of dihedral group. For a given v the term
∑

D∈Pv

∑
σ∈Dn/GD

ασ·D ω(σ ·D)

is independent of the family of accordiohedra S
(n)
i1,i2,...,ir

.
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The combinatorial polytope AC(D) gives us the canonical form associated with it on the

kinematic space. This form is given by,

Ω [AC(D)] =
∑

Da∈AC(D)

Sgn(Da)
∧

(ij)∈Da

d log(Xij). (9)

Where Xij = (pi + pi+1 + · · ·+ pj−1)2 are variables on the kinematic space. Now, to get the

function ω(AC(D)), we have to realise the combinatorial polytope AC(D) in the kinematic

space and restrict the canonical form on the kinematic space accordiohedra.

Ω [AC(D)] |AC(D)k = ω(AC(D))
∧

(ij)∈D

dXij. (10)

It can be shown that ω(D) =
∑

Di∈AC(D) ψ(Di) where ψ(Di) =
∏

(ab)∈Di

1
Xab

.

Now let’s see how we determine the weights α. We can write the amplitude as

Mn(p1, p2, . . . , pn) =
∑
v∈Vn

λv33 · · ·λvnn
∑
D∈Pv

αD
∑

σ∈Dn/GD

∑
Di∈AC(σ·D)

ψ(Di). (11)

We fix the weights demanding that all poles of M(1, 2, . . . , n) come with residue one.

To analyse the requirement on the weights it would be useful to define δ(Di, Dj), N([Di], [Dj]),

M([Di], [Dj]), and Ψ([D]) as follows

• δ(Di, Dj) tells you wether the dissection Dj occurs in AC(Di) or not. That is,

δ(Di, Dj) =

{
1 if Dj ∈ AC(Di)

0 if Dj /∈ AC(Di)
(12)

For any σ ∈ Dn,

δ(Di, Dj) = δ(σ ·Di, σ ·Dj) (13)

• N([Di], [Dj]) is the number of times any dissection Dk in the orbit of Dj occurs in the

set of all accordiohedra of dissections in the orbit of Di. That is,

N([Di], [Dj]) =
∑

D`∈[Di]

δ(D`, Dk) for any Dk ∈ [Dj]. (14)

• M([Di], [Dj]) is the number of elements from the orbit ofDi occur in any accordiohedron

of a dissection in the orbit of Dj. That is,

M([Di], [Dj]) =
∑

Dk∈[Di]

δ(Dj, Dk). (15)

They are related as follows,

N([Di], [Dj]) =
|GDj
|

|GDi
|
M([Dj], [Di]). (16)

Suppose [Di] ∈ Pvi
and [Dj] ∈ Pvj

, and if vi 6= vj then δ(Di, Dj) = 0 and hence

N([Di], [Dj]) = M([Di], [Dj]) = 0.
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• Lastly,

Ψ([D]) =
∑

σ∈Dn/GD

ψ(σ ·D). (17)

Now the scattering amplitude can be expressed as

Mn(p1, p2, . . . , pn) =
∑
v∈Vn

λv33 · · ·λvnn
∑

[Di]∈Pv

∑
[Dj ]∈Pv

α[Dj ]N([Dj], [Di])Ψ([Di]). (18)

The requirement on the weights is equivalent to the following system of linear equations∑
[Dj ]∈Pv

α[Dj ]N([Dj], [Di]) = 1 ∀[Di] ∈ Pv. (19)

All the vertices (triangulations) of combinatorial associahedra are on equal footing, whereas

in other accordiohedra the reference dissection is special compared to the rest. This disparity

is captured in the weight of the accordiohera.

We end this section by briefly reviewing the positive geometry for massive bi-adjoint scalar

amplitude. Although our work is concerned with scattering amplitude of massless particles

(but with massive as well as massless propagators), we review the known extension of the

associahedron program to massive scalar amplitudes.

The positive geometry for tree-level colour ordered amplitude of a massive bi-adjoint

scalar is simply the ABHY associahedron whose facets are located Xij = m2 [24]. The planar

kinematic space of massive particles is defined as follows. Consider the massive kinematic

space K(m)
n co-ordinatized by the planar variables,

X̃ij = (pi + . . . , + pj−1)2 − m2 (20)

Then X̃i,i+1 = X̃1n = 0.

Just as the massless kinematic space, K(m)
n is n(n−3)

2
dimensional and we can locate ABHY

associahedra in the positive region Km+
n of the kinematic space. The corresponding canonical

form equals the tree-level planar amplitude for the massive bi-adjoint φ3 theory.

3 Two-Scalar Field Theory with Cubic Interaction

As stated in the introduction, our aim is to analyse tree-level scattering amplitudes in a

theory with two scalar fields φaA1 , φbB2 that transform in the bi-adjoint representation of

U(N) × U(Ñ). The Lagrangian is

L(φ1, φ2) =
1
2

∑2
i=1 ∂µ φiaA ∂

µ φaAi − 1
2
m2φaA2 φ2 aA − λ1

3!
fabc f̃ABC φ

aA
1 φbB1 φcC1

− λ2
2!
fabc f̃ABC φ

aA
1 φbB1 φcC2

(21)
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Tree-level amplitudes in a multi-scalar field theory with Yukawa-type interaction between

the bi-adjoint scalar field and a “massless” matter field which transforms in (bi)fundamental

representation of U(N) × U(Ñ) have been analysed in a beautiful series of works [15, 22].

The bi-adjoint scalar field self-interaction as well as the Yukawa interactions were taken to

have the same coupling constant λ in these works. It was proved that the positive geometries

underlying amplitudes in such a theory are what are called open associahedra.

While certainly motivated by the analysis in [15,22], we have a different set up involving

one massive and one massless scalar field with two independent coupling constants which

govern the φ3
1 and φ2

1φ2 interactions respectively.

Schematically, we are interested in amplitude generated by interaction potential,

V (φ1, φ2) = (λ1φ
3
1 + λ2φ

2
1 φ2 ) (22)

where φ1, φ2 are massless and massive scalar fields respectively.

We will be specifically interested in tree-level and colour-ordered (CO) amplitudes involv-

ing only massless external particles. Much of the analysis in our paper can be generalised for

generic configurations of the external particles, but as we are eventually interested in integrat-

ing out the massive modes, our primary focus is on amplitudes involving massless external

states. We will denote such amplitudes as MCO
n (p1, . . . , pn) with p2

i = 0 ∀ i. Perturbative

evaluation of the amplitude to sub-leading order in λ2 can be written as,

MCO
n (p1, . . . , pn) = λn−3

1 MCO (1)
n (p1, . . . , pn) + λ2

2 λ
n−4
1 MCO(2)

n (p1, . . . , pn) (23)

MCO (1)
n is generated by φ3

1 vertices in which all the propagators are massless and MCO (2)
n

is generated by all but two φ2
1 φ2 vertices with one massive and n− 4 massless propagators.

Thus the set of all the Feynman graphs that contribute to the total amplitude MCO
n has at

most one φ2 propagator.

The effective field theory involving only the massless scalar field is obtained by taking

m → ∞, λ2 → ∞ such that λ2
m

= g = fixed. This ensures that in the lower energy limit

we obtain amplitudes associated to

Veff(φ1) = λ1 φ
3
1 + g φ4

1 (24)

Our goal is to find positive geometries in planar kinematic space Kn whose set of co-dimension

one facets either correspond to a pole of the massive propagator or the massless propagator.

For the amplitudes of interest (namely up to order λ2
2) each vertex of such a positive geometry

can be adjacent to at most one “massive facet”.
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3.1 From Feynman Graphs to Dual Triangulations

In the case of the bi-adjoint cubic scalar coupling with a single massless field, the positive

geometries are convex realisations of the combinatorial associahedron, each of whose ver-

tices are in bijection with complete “mono-chromatic triangulations” of an n-gon where each

diagonal is dual to a propagator in the Feynman graph.

Hence we first need to classify triangulations which are dual to the Feynman graphs that

produce amplitude defined in equation (23). The set of Feynman graphs that produce the

amplitude proportional to λn−3
1 is dual to triangulations of an n-gon where the diagonals have

no additional labels. As ABHY has taught us, it is the immensely deep structure hidden in

the combinatorics of these traingulations which generate positive geometry for a single scalar

field amplitude.

However, for the amplitude contribution proportional to λ2
2, such mono-chromatic tri-

angulations are not appropriate as the contributing Feynman graphs have precisely one φ2

propagator. Hence the dual triangulations are such that precisely one of the diagonals in a

complete triangulation is distinguished from the other diagonals. We colour such diagonals

red to differentiate them from the black diagonals. We refer to triangulations in which all

but one diagonals are black as “mostly black triangulations” ( See figure 2).

Figure 2: Mostly Black triangulations with (13) red and (14),(15) black on the left, (35) red
and (13),(15) black in the center and (14) red and (24), (15) black on the right.

It is immediately obvious that mostly black triangulations are in one to one correspon-

dence with cubic Feynman graphs where all but one propagators are massless and one of the

propagator is massive.

The simplest mutation rule one can define on the mostly black triangulations is the one

where mutation does not change colour of the diagonal. We can then immediately see that

mostly black triangulations produce combinatorial polytopes in one and two dimensions .

We denote a black diagonal between vertices i and j as (i, j) and the red diagonal as (k, l).8

8When we write a set of diagonals, we will indicate each diagonal as (ij) instead of explicitly writing it
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• Triangulation of a 4-gon with precisely one red diagonal and with the mutation rule

which does not change colour produces one dimensional associahedron with the vertices

being labelled by two red-diagonals (1, 3) and (2, 4).

• Mostly black triangulation of a 5-gon produces a two dimensional polygon with ten

edges, whose vertex set is in bijection with ((i, j), (k, l))

Let us first start with n = 4 case. In this case the requirement of mostly black triangulations

which has at least one red diagonal has precisely one red (and no black diagonal) and the

resulting polytope is simply the one dimensional assocaihedron A1.

In the case of n = 5 the resulting polytope is a 10-gon and is known in the literature as

the two dimensional colorful associahedron Ac2. [25]. An n-dimensional colorful associahedron

Acn−3 is combinatorial polytope associated with colored triangulations of n+ 3-gons in which

the diagonals are assigned a color from a set of n colors. Ac2 is shown in the figure 3 below.

However these simple mutation rules do not work for two reasons.

Figure 3: Ac2

• If we consider complete mostly black triangulations of an n-gon where n ≥ 6 then there

are no closed combinatorial polytopes. This can be seen by looking at the example of

n = 6. Let us assume on the contrary that there exists an polytope Ar3 whose vertices

are in bijection with complete triangulation of the hexagon in which precisely one

out as (i, j).
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diagonal is red. If Ar3 exists, then each of it’s co-dimension one facets are in bijection

with one partial triangulation of the hexagon. Hence we can have facets corresponding

to partial triangulation where a black diagonal (i, j) or a red diagonal (i, j) is deleted.

Clearly, each such facet is either a square (red diagonal with j − i = 3 (modulo 6)

), pentagon (red diagonal with j − i = 2 (modulo 6)) or a decagon (black diagonal

with j − i = 2 (modulo 6)). However there is no unique facet associated to black

diagonal (i, j) with j − i = 2 (modulo 6). This can be seen as follows. Consider e.g.

partial triangulation obtained by deleting the diagonal (1, 4). The corresponding facet

is adjacent to Four Facets obtained by deleting the diagonals

{ (1, 3), (2, 4), (4, 6), (1, 5) }

respectively. However there is no unique facet associated to (1, 4) (and in general any

(i, j)), as adjacent to such a facet, there are two possible sets of vertices,

S1 = { (13, 14, 15) (24, 14, 15), (24, 14, 46) (13, 14, 46) } (25)

and

S2 = { (15, 14, 13) (15, 14, 24), (46, 14, 24) (46, 14, 13) } (26)

Clearly if we choose one of the S1 or S2 as being the set of vertices belonging to the

(1, 3)-facet then we immediately see that (1, 3) and (1, 5) which are adjacent in the

neighbourhood of (1, 4) are not adjacent in the neighbourhood of the facet associated

to (1, 4). A moment of meditation will convince the reader that this example clearly

indicates why the set of all mostly-black triangulations can not form a closed poly-

tope.9 This is the first obstruction towards realising positive geometry for scattering

amplitudes in a theory with V (φ1, φ2) = φ2
1φ2 where all the external particles are

massless.

• The second obstruction to simple minded mutation rules comes from the impossibility

of convex realisation of colorful associahedron in K+
n .

Lemma 3.1. The two dimensional colorful associahedron Ac2 which is the combinatorial

polytope for n,= 5 particles can not be realised in K+
n .

Proof : We denote the massive facet Xij = m2 as X̃ij = 0. Ac2 is a 10-gon obtained

by unfolding A2 by painting alternating faces red. (See figure 3). There is no planar

polytopal realisation of Ac2 such that X13 = 0 is parallel to X̃13 = 0, X̃25 = 0 and

X25 = 0.10 It can be immediately checked that canonical form associated to any other

realisation will not produce the tree-level amplitude for the bi-scalar theory.

9We thank Vincent Pilaud for discussion on this issue.
10Any other realisation will not have the canonical form all whose residues vertices are ±1 and hence will

not define any tree-level amplitude.
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However these obstructions in fact guides us in our pursuit of positive geometries whose

boundaries correspond to all the singularities of the desired amplitude. In the next section,

we show that although Ac2 can not be realised as a convex polytope in the (positive region

of) kinematic space, union of all the facets of Ac2 and A2 arrange themselves into a family

combinatorial polytopes.

4 Coloured Causal Diamonds and Convex polytopes

4.1 A Brief Review of Causal Diamonds

The convex realisation of associahedron discovered by ABHY in [1] was formalised in terms

of polytopal fans generated by type-A clusters in [23]. The “naturalness” of these specific

realisations arises from the fact that associahedra are naturally associated to type-A cluster

algebra and the cluster algebra has enough structure to in turn produce convex realisations

of An−3 in K+
n .

However, the connection and dependence on cluster algebra, though striking can be un-

nerving for a physicist and it would certainly be pleasing to know if the naturalness underlying

ABHY realisations could be understood in terms of some simple “physics” principles. A re-

markable progress in answering this question was made by Arkani-Hamed et. al. in [19] who

discovered a “causal” structure on the planar kinematic space Kn. The causal structure is

realised via interpreting Xij variables as discretization of a two dimensional massless scalar

field X(u, v) with u and v being (abstract) retarded and advanced co-ordinates on the two

dimensional flat space-time.

More in detail, in [19], the authors introduced a causal diamond in Kn which is a null

lattice with vertices labelled by the planar kinematic variables. Xijs with fixed i are placed

along the u = const “null lines and cyclic symmetry of the X variables, Xi,j+n = Xij can

be broken by choosing a strip in the causal kinematic space such that Xi,i±1 = 0. Kinematic

space causal diamonds are best understood by simply staring at the figure 4 below.
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Figure 4: Causal diamond for n = 5

Causality in kinematic space beautifully captures compatibility of the diagonals11. [19] :

Given any diagonal (i, j) of an n-gon which labels a planar variable Xij, all the “compatible”

diagonals are outside or on the light cone of the Xij and all of the incompatible diagonals are

in the union of (strictly) future and (strictly) past light cone of Xij. We show this beautiful

map from a combinatorial structure to a causal structure in the figure 5 below.

There are several features of the causal diamond which will be central to our analysis

below.

• A temporal evolution in causal diamond corresponds to mutation such that Xi,j and

Xi± 1,j± 1 are incompatible diagonals.

• All the variables on a constant u or v slice triangulate the n-gon.

• Even after the redundancy encoded in cyclic symmetry is broken by working in a given

strip bounded by Xi,i±1 = 0, there is a further redundancy in the causal diamond

description. This is due to the fact that temporal evolution of Xij eventually leads us

to Xij. Thus the smallest domain in the causal diamond in which all the Xij variables

occur precisely once is called non-redundant domain. Non-redundant domains are not

unique as the initial slice (or equivalently, an initial choice of triangulation) is not

unique. It is precisely the multiplicity of non-redundant domains which lead to distinct

ABHY realisations discovered and analysed in [11,23].

11Here by compatible diagonals we mean non-intersecting, or equivalently diagonals which together can be
a part some triangulation.
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Figure 5: Compatible diagonals

• The discretized massless scalar field equation with a source precisely generate all the

linear equations which leads to convex realisation of An−3 in K+
n .

4.2 From Uncoloured to Coloured Causal Diamonds

The causal diamonds (reviewed in section 4.1) give a novel perspective on ABHY realisations

of the associahedron. There are many non-redundant domains inside the causal diamond.

The non-redundant domains are the collection of vertices inside the causal diamond which

is isomorphic to the set of all the diagonals. “Initial slice” in the non-redundant domain

corresponds to a complete triangulation T that generates the ABHY realisations via the

constraints sij = − cij ∀ (i, j) /∈ T c.

For the case of mostly black triangulations the simple minded mutation rules face ob-

structions. Hence we can ask if there are a different set of mutation rules which generate

closed combinatorial poytopes. Rather remarkably, if we let the abstract structure of a causal

diamond guide us, then it leads us to a set of mutation rules and a rather natural definition

of a (set of) positive geometries with multi-coloured facet structure. In order to adapt the

causal diamond to mostly black triangulations, we let the vertices of causal diamond have

one of two possible colours, namely black and red. As any mostly black triangulation has all

but one diagonals black, we start with any slice in the causal diamond which corresponds to

a complete triangulation and colour one of the vertices in it as red (see figure 6). We then

keep the mutation rules as they are for uncoloured causal diamonds so that a vertex evolves
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Figure 6: Colored Causal Diamond with initial slice (13), (14), (15) where (14) is red

into another vertex with the same colour. We refer to the resulting diamonds as coloured

causal diamonds. Certain properties of coloured causal diamonds can immediately be noted.

• If any slice on the causal diamond which corresponds to a triangulation of the n-gon

has a red vertex Xij then any vertex in the causal diamond will be red if |k − l| =

|i− j|modulon and if it is in the same vertical line as Xij.

• There are dn−3
2
e disconnected copies of coloured causal diamonds that contain all pos-

sible mostly black triangulations.

We now consider specific non-redundant domains inside the coloured causal diamond (de-

scribed in section 4.3). We refer to these domains as fundamental domains. The initial “null

slice” of the fundamental domain has one red and all other black vertices. The final slice ob-

tained within the fundamental domain ensures that combinatorially we have an associahedron

polytope but whose facets have additional (red or black) labelling.

Remarkably enough, distinct fundamental domains (differentiated by the choice of colour-

ing of vertices on the initial slice) produce n(n−3)
2

number of combinatorial associahedra.

Union of vertices belonging to all such associahedra contain (1) (multiple copies) of all the

mono-chromatic and mostly black triangulations and (2) do not contain any other species

21



of triangulations (such as a triangulation with two diagonals being red). We refer to this

(coloured) associahedron as associahedron block.

As each associahedron block is identified with a fundamental domain in the coloured

causal diamond, we have a realisation of each block in the (positive region) of kinematic

space. One of our primary results in this paper is to show that the associahedron blocks are

the positive geometries for MY
n .

4.3 Coloured Causal diamonds and Convex Blocks in kinematic
space

We will now give a detailed analysis of the ideas outlined in section 4.2 and colour the causal

diamonds in the kinematic space. We will then show that the coloured causal structure can

be used to locate a class of polytopes in K+
n which constitute the “amplituhedron” for the

amplitudes of two-scalar field theory.

We start with an “intial configuration” where precisely one of the vertex is red. We

then “evolve the vertices” following our mutation rule which does not change the colour.

After finite number of walks (or evolution in discrete time in the causal diamond) we reach

the initial configuration again. If the initial configuration has a red vertex Xij, then all

the vertices Xkl where | l − k | = | j − i | modulo n and where Xkl is in the same vertical

line as Xij will eventually be coloured red in this causal diamond. However, all Xkl where

| l − k | 6= |j − i|modulon will remain black. Hence there exists disconnected copies of

coloured causal diamonds, on each of which the reference triangulation (or a lattice points

on a null slice) has precisely one red vertex Xij. Clearly, the number of disconnected copies

of coloured causal diamonds is dn−3
2
e.

We then consider specific “non-redundant domains” ( [19]) inside the coloured causal

diamond each of which contain all the vertices precisely once and the smallest possible number

of red vertices and each vertex (k, l) (irrespective of it’s colour) occur exactly once. Hence

each of these domains is classified by the set of red vertices X̃ij, X̃i+1,j+1, . . . , X̃i+k,j+k (where

k = |j − i| modulo n and where we identify n + 1 with 1.) We refer to this class of non-

redundant domains as fundamental domains and denote them by Fij. Before giving some

examples of the fundamental domains, we make a couple of observations :

(1) Strictly speaking, the fundamental domain even with same set of red vertices are not

unique and depend on initial choice of triangulation. However we will suppress the explicit

dependence on the reference (initial) triangulation as fundamental domains with same set of

red vertices but different initial triangulations are simply different ABHY realisations of the

same associahedron block.
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Figure 7: Fundamental domain F13 in n = 5

(2) We will always choose the initial triangulation containing red diagonal (i, j) to be such

that all the diagonals emanate in the same vertex j. Following examples of Fij illustrate

these ideas explicitly.

One choice of fundamental domain in the case of n = 5 and n = 6 are given below and

shown in figures 7 and 8.

n = 5 fundamental domains = {F13,F24,F35,F14,F25 }
n=6 fundamental domains = {F13,F24,F35,F46,F15,F26 } ∪ {F14F25, F36 }

(27)

Several comments are in order.

• We note that Fij is a domain which contains all the diagonals of the n-gon such that

the minimal number of them (in the case of n = 5, 2 vertices) are coloured red.

• In the n = 6 case there are two disconnected copies of the coloured causal diamonds

as evolution of a red vertex (k, l) can never produce (i, j) if |j − i| 6= |k − l|mod 6.

• The fundamental domains F25, F36 are redundant, as the configuration of red and black

diagonals in these domains is same as that in F14. We do not have to include them,

but as we will see this redundant inclusion of Fij for |j − i| =
⌊
n
2

⌋
is useful for writing

the final formula for (weighted) sum over canonical forms that produce the scattering

amplitude.
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Figure 8: Fundamental domains F26 and F36 in n = 6

• As can be seen from the figure 7 and figure 8, the examples of fundamental domains

above are such that the initial and final triangulations emanate from a given vertex.

But we can start with different initial triangulation. In the n = 6 case for example,

we can consider the fundamental domain F36 in which the intial quiver(or the reference

triangulation) is T = { 13, 36, 35 }. The corresponding Fundamental domain has pre-

cisely three red vertices {36, 14, 25 } again and simply gives us a different realisation

of the associahedron block A
(14)
2 .

Let us look at the fundamental domains in n = 7 case. We start with { (i, j), . . . , (j−1, i−1) }
where |j − i| ≥ 2. Hence in n = 7 case we have the following set of disjoint fundamental

domains each of which defines a coloured causal diamond.

A complete set of fundamental domains with (|j − i| = 2 modulo 7) =
{F13, F24,F35, F46,F57, F16,F27 }
A complete set of fundamental domains with (|j − i| = 3 modulo 7) =
{F14,F36,F15,F37,F25,F47,F26 }

We thus get, seven associahedron blocks A(i,j)
4 |i− j| = 2 modulo 7 with two non-adjacent red

facets and seven more associahedron blocks A(m,n)
4 |m − n| = 3 modulo 7 each of which has

three non-adjacent red facets.
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4.4 Mutation rules from Coloured Causal Diamonds

As we have defined the associahedron block A
(i,j)
n−3 directly through coloured causal diamonds,

their convex realisation in K+
n is precisely given by the ABHY equations (with certain Xij

replaced by X̃ij such that X̃ij ≥ 0).However, the mutation rules and the corresponding

abstract definition of the combinatorial polytopes remained implicit in our construction. In

this section we give the combinatorial definition of the associahedron blocks and then describe

their realisations in kinematic space.

An associahedron block is an associahedron defined by a reference triangulation Ti,j which

has precisely one red diagonal (i, j). We now consider all possible triangulations obtained

from Ti,j via mutation such that “walks along the causal diamond” (as reviewed in section 4)

always produce triangulations which are mostly black . That is, they correspond to mutations

which do not change the colour of the dianonal being mutated. However any mutation which

maps a diagonal (k, l) → (i, j) is colour changing from

(i) Red to black if (k, l) labels the red vertex and (i, j) does not and
(ii) Black to red if (k, l) labels the black vertex and (i, j) is red.

We thus note that the (combinatorial) associahedron block depends on the choice of reference

(i, j).

With these observations we define the associahedron block as follows :

An associahedron block associated to a reference diagonal (ij) is combinatorially an associ-

ahedron in which the diagonals from the set { (i, j), . . . , (i + |j − i| − 1, j + |j − i| − 1) }
are red while others are black. One example of the associahedron block in two dimensions is

shown in the figure 9. By inspection, any associahedron-block is a simple polytope that has

Figure 9: Associahedron block A14
2
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the following properties.

• Combinatorially, A
Fij

n−3 is an associahedron.

• Vertices of A
Fij

n−3 are in bijection with either mostly black or uncoloured triangulation

of an n-gon.

• Co-dimension k faces of A
Fij

n−3 are in one to one correspondence with k-partial triangu-

lation which is either mostly black or uncoloured.

• Each of its face is a product of a lower associahedron block and an associahedra.

We also note that the dynamical equations (ABHY constraints) governing the evolution

inside the fundamental domain generates convex realisations of each of the blocks. In par-

ticular for n = 5, the evolution equations inside the fundamental domain F13 generates the

following realisation of an associahedron in kinematic space.

X13 + X24 − X̃14 = c13

X̃14 + X35 = c14 + c24

X13 + X̃25 = c13 + c14

(28)

These equations admit solutions in the positive region K+
n as long as cij > 0.

In general, given a fundamental domain Fij in which only { (i, j), . . . , (i+ |j − i| − 1, j +

|j− i| − 1) } are red, the reference triangulation generated by initial configuration consists of

T = { (j−2, j), . . . , (i, j), . . . , (j+2, j) } (where without loss of generality we have assumed

that if j − i = k mod n then k < n − k.) Hence the ABHY equations which produce the

convex realisation of the corresponding associahedron block can be written as follows. We

first define abstract variables sij as,

sij = Xij + Xi+1,j+1 − Xi,j+1 − Xi+1,j (29)

where Xmn = X̃mn, if(m,n) ∈ S(i,j) and Xmn = Xmn otherwise. The convex realisation of

the associahedron block is generated by

sij = − cij ∀ (i, j) /∈ T c (30)

where cij are positive constants such that Xmn ≥ m2 for (m,n) ∈ Si,j and Xmn ≥ 0

otherwise.

4.5 From the Associahedron Blocks to Scattering Amplitudes

In this section, we prove one of our primary results. We show that the n-point tree-level (and

colour-ordered) scattering amplitudes in our theory when expanded to sub-leading order in
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λ2 are a unique weighted sum over canonical forms of all the associahedron blocks in a given

dimension As each block is an (ABHY) associahedron, there is a canonical form associated to

it and a weighted sum of all the canonical forms when added to the form associated to ABHY

associahedron for φ3
1 theory produce the desired amplitude. We start with the example of

two dimensional associahedron-blocks (i.e. n = 5 case) before proving the master formula

in equations (1, 3).

In the n = 5 example, we have five associahedron blocks

{A(i,j)
2 | (i, j) ∈ {(1, 3), (2, 4), (3, 5), (1, 4), (2.5) }

each of which has two non-adjacent red facets that correspond to X̃ij = X̃i+1,j+1 = 0. There

is a unique canonical form on K2 defined by each of these associahedron blocks, which are

simple polytopes. [20]. As an example, we consider the planar scattering form defined by

A
(1,3)
2 . We recall that this is an ABHY associahedron two of whose facets correspond to the

massive poles X13 = X24 = m2.

Ω
A
F13
2

n=5 =

d log X̃13 ∧ d logX14 − d log X̃13 ∧ d logX35 + d logX25 ∧ d logX35−
d logX25 ∧ d log X̃24 + d logX14 ∧ d log X̃24

(31)

The forms associated to other blocks can be written down similarly. It is now easy to verify

that the following sum of canonical forms restricted to the five associahedron blocks,

ΩY
n=5 :=

1

2

5∑
(i,j)

Ω
(i,j)
n=5|A(i,j)

2
− 1

2
Ωn=5|A2 (32)

generate the contribution to the scattering amplitude at λ1λ
2
2 order. That is, it produces

all the terms which has one massless and one massive pole. And hence the following form

generates the complete amplitude upto O(λ2
2).

ωn=5 := λ1λ
2
2 ΩY

n=5 + λ3
1 Ωn=5|A2 (33)

It is a happy surprise to see that there exists a linear combination of the canonical forms

on the associahedron blocks ΩY
n=5 that produces the amplitude contribution at λ1λ

2
2 order.

That is, it contains only those channels which have one massive and one massless pole.

The existence of ΩY
n=5 is thus necessary and sufficient to obtain the tree-level amplitude for

independent couplings λ1, λ2. However, as the number of particles increase, so do the number

of assocaihedron blocks and then it is not at all obvious if there exists any formula for ΩY
n> 5.

We now derive a general formula for any n and verify it using a few non-trivial examples.

Lemma 4.1. The following weighted sum of canonical forms restricted to their respective

associahedron blocks generate the contribution to the amplitude at λn−4
1 λ2

2.

ΩY
n :=

 bn2 c∑
|i−j|=2

1

j − i
∑
Fij

Ω(i,j)
n (A

Fij

n−3)− γ Ωφ3

n (An−3)

 (34)
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where

γ =
∑

sum over all diagonals, (i,j)

1

|j − i|
− (n− 3) (35)

Proof. When we sum over fundamental domains Fij and span over all the associahedron-

blocks, each vertex (complete triangulation) is covered at least once. These includes monochro-

matic triangulations where none of the diagonals are red. Hence finding an ΩY
n amounts to

showing that there is a unique choice of co-efficients which removes the contribution of all

the mono chromatic triangulations while simultaneously ensuring that each mostly black tri-

angulation contributes precisely once. We determine these co-efficients as follows.

In the fundamental domain, Fij, all the vertices co-ordinatized by I = { (i, j), (i + 1, j +

1) . . . , (j − 1, 2j − i − 1) } are red and the remaining vertices are black. Hence given Fij,
any triangulation which has one of the diagonals in I is a mostly black triangulation and

all the other triangulations (which contain no elements from I) are monochromatic trian-

gulations. Now as we scan over all of the fundamental domains, the vertex (i, j) is labelled

red in | j − i | number of fundamental domains. Hence any mostly black triangulation ( i.e.

vertex of the associahedron block) containing X̃ij occurs | j − i | times. We thus see that the

unique weighted sum over the canonical forms Ω
Fij
n |Aij

n−3
which generates all the terms in the

amplitude that have one massive and n− 4 massless poles is given by,

bn2 c∑
|i−j|= 2

1

| i− j |
∑

Fij ||i−j|modulon

ΩFij
n (36)

The uniqueness of the weights simply follows by inspection. As all the (i, j) for which |j − i|
modulo n is the same occur with frequency |j − i|, there is no other choice of weights for

which we get unit residue over all channels.

However the above sum will contain contribution over mono-chromatic triangulations

which are in bijection with purely massless channels with varying weights. We now argue

that all the mono-chromatic triangulations in fact occur with equal frequency γ and hence

can be removed by simply subtracting γ Ωn(An) from the above form. This then defines ΩY
n

and completes our proof.

Let us for a moment assume that there exists such a ΩY
n . Then

n
2∑

|,i−j |=2

1

|, i− j |
∑

Fij |(j−i) modulon

ΩFij
n (Aijn−3) − ΩY

n (37)

contains is the form of ABHY associahedron (in which all the vertices correspond to massless

poles with residue one). Let us now remove all the red-colouring from the mostly black
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triangulations turning each such mostly black triangulation into a vertex of the (uncoloured)

associahedron. This would imply that

ΩFij
n → Ωn ∀ (i, j) (38)

ΩY
n → (n− 3) Ωn (39)

where the second equation follows from the fact that there are n− 3 mostly black triangula-

tions that map to monochromatic triangulation when we strip off the colour. As the map of

mostly black to monochromatic triangulation does not effect the massless channels, we have

the following result.

bn2 c∑
|i−j|=1

1

|i− j |
∑
Fij

Ωn(An) − (n− 3) Ωn(An) = γ Ωn (40)

and hence γ is fixed to

γ =

bn2 c∑
| i−j |=1

1

|i− j |
∑
Fij

1− (n− 3) (41)

We consider the equation (37) to be a striking result. It is apriori not obvious that

the scattering amplitude MCO(2)
n (defined in equation (23)) should be a sum over canonical

forms of associahedron blocks. Hence we view the result of the above lemma as a non-trivial

evidence in support of the universality of the Amplituhedron program.

One can verify the validity of the master formula in certain lower dimensional cases. Here

we give two explicit examples of n = 6 and n = 7.

ΩY
n=6 =

1

2

∑
Fij |j−i|even mod 6

Ω
Fij

6 +
1

3

∑
Fij |j−i|odd mod 6

Ω
Fij

6 − Ωφ3 (42)

ΩY
n=7 =

1

2

∑
Fij |j−i|2 mod 7

Ω
Fij

6 +
1

3

∑
Fij |j−i|3 mod 7

Ω
Fij

6 − 11

6
Ωφ3 (43)

It can be in fact verified that these formulae indeed produce the correct scattering amplitudes.

We thus see that the remarkable richness of such an “doubled” causal diamond structure

(where each vertex can be either black or red) lies in the generalisation of the above con-

struction to higher dimensional polytopes.

4.6 Factorisation on Massive Channels

It was shown in [1] that combinatorial factorisation of an associahedron implies the geometric

factorisation of it’s convex realisation in K+
n . The geometric factorisation can be quantified
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as,

An−3 |Xij = 0 = AL(i, i+ 1, . . . I) × AR(1, . . . , i− 1 I, . . . , n) (44)

AL, AR are ABHY associahedra of dimensions |j − i − 2| and n − (j − i) − 1 respectively.

ABHY proved that the geometric factorisation of the associahedron leads to the factorisation

of amplitudes through the residue formula for the canonical forms.

ResXij = 0 Ωn−3(An−3) = Ω(AL) ∧ Ω(AR) (45)

where Ω(AL), Ω(AR) are canonical forms associated to the lower dimensional associahedra

AL, AR respectively. These results generalise rather trivially to the associahedron blocks

reaffirming one of the striking results of the amplituhedron program : Locality and Unitarity

are consequences of the underlying positive geometry.

As we saw in an earlier section, a co-dimension one boundary of an associahedron block

is either a product of two lower dimensional associahedron blocks, or an associahedron block

and an associahedron or product of two associahedra.12 It can be verified that exactly as

in the case of associahedron [1] this combinatorial factorisation of the associahedron-block

implies it’s geometric factorisation as well. The geometric factorisation can be explicitly

written as

A
Fij

n−3 |Xmn = 0 = A
FL

ij

L (m,m+ 1, . . . , I) × A
FR

ij

R (1, . . . , m− 1, I . . . , n) or

= A
Fij

L (m,m+ 1, . . . , I) × A
Fij

R (1, . . . , m− 1, I . . . , n)
(46)

In the first case, we are on a boundary associated to massless pole, Xij = 0 and A
FL/R

ij

L/R

corresponds to the lower dimensional associahedron blocks. FL/Rij indicates the set of red

diagonals which are to the left (right) of the diagonal (m,n). If FL/Rij is empty then the

corresponding associahedron block is simply a convex ABHY associahedron. In the second

case, we consider the boundary facet associated to a massive pole. In this case, both the

factorized positive geometries are associahedra whose canonical forms are the scattering am-

plitudes involving one massive and remaining massless particles. The fact that we are on

Xmn = m2 hyper-plane automatically implies that the intermediate particle I is massive.

From the geometric factorisation of the associahedron block, we get the factorisation

property of the amplitudes.

ResXmn = 0 Ωn−3(A
Fij

n−3) = ΩL(A
FL

ij

L ∧ ΩR(A
FR

ij

R )

ResXmn =m2 Ωn−3(A
Fij

n−3) = ΩL(AL) ∧ ΩR(AR)

The residue of the n− 3 canonical form on black or red facets equals product of lower forms

associated to associahedron blocks or associahedra respectively.

12A vertex is zero dimensional associahedron and hence we identify an associahedron with cartesian product
of the associahedron with a zero dimensional associahedron.
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We thus see that just as in the case of massless scattering amplitudes the locality and uni-

tarity of the S-matrix (even in the presence of intermediate massive states), follows from the

combinatorial factorisation property of the associahedron!

5 The Scattering form for an Effective Field Theory :

Accordiohedra in low energy limit

In this section we study the m → ∞ limit of the associahedron blocks. We claim that every

block projects onto a set of simple polytopes in this limit as the block “moves towards infinity

in various possible directions”. This gives us a natural perspective on emergence of positive

geometries from associahedra in the effective field theory when massive field is integrated out!

The ABHY realisations basically guarantees that a specific direction dependent m → ∞
limit is a bijection from the associahedron block onto an the polytope that we will refer to

as “projected accordiohedron”.

Let us first consider the fundamental domain F13 whose initial quiver corresponds to the

mostly black triangulation { 13, 35 }. The ABHY realisation of the corresponding associahe-

dron block is given by,

X̃13 + X̃24 − X14 = c13 (47)

X14 + X25 − X̃24 = c14 (48)

X35 + X14 − X̃13 = c35 (49)

where all cij > 0.

For the purpose of this section, we will

(i) Write the ABHY constraints in terms Xij instead of X̃ij = Xij −,m2 and

(ii) Assume that all the cij > m2. This non-trivial bound on cij ensures that we can scan

the hyper-planes satisfying ABHY constraints where one of the m2 > Xij > 0.

Equation (47) can be written as,

X13 + X24 − X14 = c13 + 2m2 (50)

X14 + X25 − X24 = c14 −m2 (51)

X35 + X14 − X13 = c35 −m2 (52)

We now consider the domain in positive region of kinematic space (but outsideAF13
2 ) parametrized
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by X13 << m2. In this case, we immediately see that the above equations reduce to,

X14 + X35 = c35 − m2 (53)

X25 = c13 + c14 +m2 (54)

X24 = X14 + c13 + 2m2 (55)

We thus see that for c35 = c35 − m2 we have a one dimensional accordiohedra given by

X14 + X35 = c35 (56)

X25 is a positive constant and the pole X24 = 0 is ruled out as X14 ≥ 0. We thus see that

viewed from “infinite distance” in kinematic space when ) ≤ X13 << m2, the associahedron

block AF13
2 “projects onto” a one dimensional accordiohedron with boundaries as X14, X35 =

0 respectively.

We now give another example : Consider AF35
2 associated to the fundamental domain F35.

When this block is realised in X13, X14 positive quadrant, with X̃14 = 0, X̃35 = 0 moving

towards infinity in X14 direction such that for X14 << m2 we get X13, X24 accordiohedron.

This can be seen as follows. The ABHY equations are,

X14 +X35 = c14 + c24

X13 + X25 = c13 + c14

X13 + X24 − X14 = c13.

Where c14 + c24 > 2m2, as we want the two dimensional space cut out by these equations to

intersect X14 = m2 with other Xij > 0 and X35 = m2 with other Xij > 0. If X14 << m2

we see from the first equation that X35 ≈ c14 + c24 > 2m2, while the second and the third

equations imply,

X13 +X24 = c13, (57)

and X25 = X24 + c14. Therefore, region with X14 << m2 where X35 > m2 and all other

Xij > 0 is the one dimensional accordiohedron (24, 13) given by,

X13 +X24 = c. (58)

32



Figure 10: Acoordiohedra from Associahedra. The Orange strip is the region withX14 << m2

where we get the accordiohedron (24, 13), and the green strip is the region with X35 << m2

where we get the accordiohedron (13, 25)

On the other hand, if X35 << m2 then using similar logic we see that,

X13 + X25 = const (59)

is the accordiohedron that one projects onto. This is because in this kinematic regime, we

obtain

X13 + X25 = c13 + c14 (60)

and X24 = X25 + c24. Therefore, region with X35 << m2 where X14 > m2 and all other

Xij > 0 is the one dimensional accordiohedron (13, 25) given by,

X13 +X25 = c. (61)

As there are Five blocks in two dimensions, in the m2 → ∞ limit, we get ten one dimensional

accordiohedra. Each of the following accordiohedra occurs twice :

{(13), (24) }, (13, 25), (14, 25), (14, 35), (24, 35) }

Now let’s look at an example at n = 6. Consider the three dimensional block associated

to F14. We consider the geometric realisation of the three dimensional block in the kinematic

space given by,

X13 +X26 = c13 + c14 + c15 X35 +X14 −X15 = c14 + c24

X14 +X36 = c14 + c15 + c24 + c25 X25 +X13 −X15 = c13 + c14

X15 +X46 = c15 + c25 + c35 X24 +X13 −X14 = c13. (62)
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X13 > 0 X24 > 0 X35 > 0

X46 > 0 X15 > 0 X26 > 0

X14 > m2 X25 > m2 X36 > m2, (63)

such that c14 + c15 + c24 + c25 > 2m2, c13 + c14 > m2. If we take X14 << m2 we get the

following equations,

X26 ≈ X24 + c14 + c15 X35 ≈ X15 + c14 + c24

X36 ≈ c14 + c15 + c24 + c25 > 2m2 X25 ≈ X15 +X24 + c14 > 0

X15 +X46 = c15 + c25 + c35 X24 +X13 ≈ c13. (64)

Therefore the region where X14 << m2 and all other Xij > 0 is the two dimensional accor-

diohedra (24, 13)× (15, 46), given by

X15 +X46 = c15 + c25 + c35 X24 +X13 = c13. (65)

In general, if in a given n−3 dimensional associahedron block X̃ij, X̃i+1,j+1, X̃i+(j−i),j+(j−i)

are the red vertices then taking Xij << m2, we get a n − 4 dimensional accordiohedra

parametrized by facets which are generated by (colorless) diagonals that don’t intersect the

diagonal (ij).

6 EFT Amplitude from Projected Accordiohedra

Tree-level amplitudes with mixed interactions of massless scalars have been analysed previ-

ously in the literature [14]. At each order in perturbative expansion, the positive geometry

associated to the scattering amplitude generated by λφ3
1 + g φ4

1 interaction is an accordio-

hedron [26]. In particular at order g in the quartic coupling, each accordiahedron ACn−4(D)

is a simple polytope which is defined using a reference dissection D of an n-gon into n − 4

triangles and one quadrilateral. It is thus a natural question to ask if there is a bijection

between “projected accordiohedra” PACn−4[(i, j)] that emerge in the “low energy” regions

of kinematic space and the accordiohedra ACn−4(D).

Naive expectation for such a bijection is the following : Consider the reference triangu-

lation Tij defined by the reference triangulation in Fij. Consider e.g. one of the projected

accordiohedra, say PACn−4[(i, j)] that emerges in Xij << m2 region. We can interpret the

low energy limit as projecting Tij on to a reference dissection which consists of n−4 triangles

and one quadrilateral obtained by removing the (i, j) diagonal. The dissection Tij/(i, j) can

be used to define the ACn−4(Tij/(i, j)) as in [26]. We may expect the resulting polytope to

be isomorphic to the projected accordiohedron. However this expectation turns out to be

wrong. This can immediately by checked by specific examples.
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• Consider the n = 5 case where we obtained 5 associahedron blocks and 10 accordio-

hedra in the low energy limit. Consider one of the blocks say AF13
2 in which X̃13 and

X̃24 are red . The initial quiver in F13 is {(1, 3)R, (3, 5) }. Taking X13 << m2 amounts

to deleting the (1, 3) diagonal and there by obtaining the reference dissection (3, 5).

However, as can be readily verified using the definition of AC1, the compatible set of

diagonals is {(3, 5), (2, 4) } instead of { (1, 4), (3, 5) }. That is, the AC1 defined using

(3, 5) as a reference is a one dimensional polytope with vertices at X35 = X24 = 0 as

opposed to the PAC1 we obtained with vertices at X35 = 0 and X14 = 0.

• In the n = 6 case, the difference between ACn−4(Tij/(i, j)) and PACn−4 which are lo-

cated in Xij << m2 is even more pronounced. If we consider the associahedron block

AF14
3 and anticipate that the projection onto the X14 << m2 region is equivalent to

considering the reference dissection {(1, 3), (1, 5) } then we see an immediate contradic-

tion. Starting with D = { (1, 3), (1, 5) } We obtain a two dimensional AC2(D) which

is a pentagon with five facets labelled by

{(1, 3), (2, 6), (1, 5), (2, 6), (4, 5) }

However as there is no diagonal which does not intersect all of these five facets, this

particular accordiohedron is not a (co-dimension one) face of the three dimensional

associahedron. On the other hand, PAC2[(1, 4)] sitting in the X14 << m2 region, is

by construction (parallel) to the X14 = m2 facet of the associahedron block AF14
3 .

In summary, we see that,

(i) For all the accordiohedra which are in fact projections on to co-dimension one facets

of an associahedra, we need to identify the reference dissection so that they are projected

accordiohedra emerging in the low energy limit.

(ii) And in fact, there is a class of accordiohedra that are defined using specific reference

dissections consisting of (n− 4) triangles and one quadrilateral which can not be realised as

projected accordiohedra.

The second example cited above pertains to a larger structure of an accordiohedron.

Namely, not all accordiohedra are facets of higher dimensional associahedra. It is hence

puzzling to see that both the descriptions, one via accordiohedron as positive geometry and

one via projected facets PACn−4 of the associahedron blocks in the low energy limit can

produce the same tree-level amplitude.

Resolution to this contradiction was already hinted at in [14] where it was noticed in

certain examples that any combinatorial accordiohedron ACn−4(D) which can not be realised

as a co-dimension one facet of a higher dimensional associahedron does not contribute to the

scattering amplitude! We prove this statement in appendix A.
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We will now show that, given an Fij with red vertices co-ordinatized by Sij = { (i, j), . . .

. . . (i + |j − i|, j + |j − i|) }, any one of the projected accordiohedron PACn−4[(p.q)] that

emerge in {Xp,q << m2 | (p.q) ∈ Sij } region can indeed be realised as ACn−4(Dp,q). Where

Dp,q is defined as follows.

Dp.q = {Xp,p−2, . . . , Xp,q+1, Xp+1,q, Xp+2,q, . . . , Xp+2,q+3, . . . , Xp,p−2 } (66)

Before proving this claim we first verify it in a couple of examples.

• In the case of n = 5 and the fundamental domain F13 if we consider a reference dissec-

tion as { (1, 3)R, (1, 4) } then the resulting one dimensional projected accordiohedron in

X13 << m2 domain is precisely a polytope with vertices labelled by { (1, 4), (3, 5) }.

• In the same way in the case of n = 6 and fundamental domain F14 choosing the

reference as { (2, 4), (1, 4), (1, 5) } and deleting the red diagonal (1, 4) in X14 << m2

limit results in a two dimensional accordiohedron with four vertices.

Lemma 6.1. Given a fundamental domain Fij with (p, q) co-ordinatizing one of the red

vertices, consider the projected accordiohedron PACn−4[(p, q)] obtained by analysing the as-

sociahdron block A
Fij

n−3 from Xpq << m2 region. We claim that

PACn−4[(p, q)] = ACn−4(Dp,q) (67)

where Dp,q is defined in equation (66).

Proof : The proof is simply by inspection. We first analyze (p, q) = (i, j) case. Consider the

initial quiver in Fij which is the reference triangulation Tij (generating the ABHY equations).

Tij = {Xi,i−1, . . . , Xi,i+1 } (68)

Where we span the vertex label i− 1 to i+ 1 counter-clockwise from i and traverse through

Xij. Dij is simply obtained from Tij by,

Dij = ∪i+1
m=j Tij\(i,m) ∪ (i+ 1,m) (69)

A moment of meditation reveals that the all the diagonals which are not transversely intersect

(i, j) diagonal are necessarily not compatible with the dissection Dij, (see figure 11). This

completes the proof.

Similarly PACn−4(p, q) (where (p, q) = (i+k, j+k)) obtained by projecting onto the face

parallel to X̃i+k,j+k = 0 is isomorphic to the accoriohedron ACn−4(Di+k,j+k) where Di+k,j+k

is obtained by rigidly translating the quiver associated to Dij or equivalently rotating the

36



Figure 11: A diagonal intersecting (ij) is not compatible with the dissection Dij

dissection Dij. Finally, the complete colour-ordered tree-level amplitude can be computed by

using weighted sum over accordiohedra as in [14]. This result is simply based on the claim

proved in the previous section. Thanks to the identification established through equation (66),

the planar scattering form Ωn−4 determined by PACn−4[(p, q)] equals the planar scattering

form defined by ACn−4(Dp,q). Hence we have the following.

Ωg2

EFT =
∑
Dp,q

α[Dp,q ] Ω
Dp,q

n−4 |ACn−4(Dp,q) (70)

where [D] was introduced in section 2.1. It is the equivalence class of (reference) dissection

defined as the orbit of D under the dihedral group Dn.

α[Dp,q ] are determined in Appendix A.

7 Discussion and Open Issues

Perturbative expansion at higher orders

A rather natural question that arises out of our analysis is the folliwng : Can similar ideas

be used to compute amplitude for λ1 φ
3
1 + λ2 φ

2
1φ2 theory to arbitrary orders in λ2, that is

including amplitude contributions that have (at least) two massive and remaining massless

poles. We can see that there is an immediate limitation to generalising the structure of

coloured causal diamonds to define polytopes which includes such contributions. Given any

two diagonals (ij), (ik) in an n-gon, there is always a complete triangulation that

(a) includes (ij), (ik) and,

(b) the triangulation is such that these two diagonals are adjacent to each other.

Thus, irrespective of what mutation rules we define, (so as to define a fundamental domain

which has an “initial dissection” that is associated to a diagram with two massive propagators

in our theory) this domain will always include a triangulation which is dual to the a Feyn-

man diagram in scalar theory with φ1 φ
2
2 vertex. Hence positive geometries for higher order
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perturbative expansion of scattering amplitude in λ1 φ
3
1 + λ2 φ

2
1 φ2 theory remain unknown.

Based on simple examples (such as n = 6 case) we do expect the positive geometries to be

open polytopes such as those discovered in [15]. However a detailed analysis of such “open

associahedron blocks” is outside the scope of this work.

Amplitude for most general cubic interactions

Yet another related question which we do not answer in this paper is the following: Can

the perturbative expansion of (planar and tree-level) scattering amplitude generated by the

most general cubic interaction involving a massless and a massive scalar field be obtained

from positive geometries located in positive regime of Kn. We suspect that the answer is yes:

By expanding the definition of fundamental domain to include “un-coloured” triangulations

more than once, we do end up including vertices of the associahedra that are dual to poles

with the generic interactions.

Relationship with CHY Formulation :

One of the most striking consequences of the discovery of the kinematic space associahedron

in [1] was a derivation of the CHY formula for bi-adjoint φ3 theory. In [1] it was shown that

the compactification of the (real section) of the CHY moduli space, namely M0,n(R) was

diffeomorphic to the kinematic space associahedron where the diffeomorphisms were defined

by the scattering equations. It is thus a natural question to ask if the convex realisation

of associahedron blocks are diffeomorphic to the CHY moduli space with diffeomorphism

defined by the scattering equations corresponding to mixed scalar interactions. A proposal

for this class of scattering equations is given in [27].

In [27] a proposal was given for generalisation of CHY scattering equations to theories

with several species of scalar fields. The numerator in the CHY scattering equations which

depend on Mandelstam invariants are deformed based on whether the corresponding channel

has a massive pole or a massless pole. Lam has given the CHY formula for φ2
1 φ2 interaction A

detailed analysis of the relationship between CHY integrand for bi-scalar theory and weighted

sum over d log forms is outside the scope of the paper and will be attempted elsewhere but

we are tempted to offer some speculation.

If the (generalised) scattering equations proposed in [27] do turn out to be the diffeomor-

phisms which map the (compactified) CHY moduli space to the associahedron block then

(1) this will imply that the weighted sum of canonical forms on the associahedron blocks is a

pushforward of a CHY integrand and (2) the inverse of diffeomorphism between CHY moduli

space and ABHY associahedron can be composed with the diffeomorphism from CHY moduli

space to associahedron block to have a diffeomorphism between massless φ3 amplitude and

perturbative amplitude (up to λ 2
2 ) in two-scalar field theory. At this stage this is a pure

speculation but if true it may give rise to interesting inter-relationships between tree-level

38



amplitudes of physically inequivalent theories.

Perturbative Amplitude at All Orders:

In this paper, we focused solely on tree level colour-ordered amplitude at order λ 2
2 . But

our eventual goal is to find the positive geometry in kinematic space whose canonical form

generate amplitude at any order in the coupling. However there is a clear structural difference

between amplitude at order λ 2
2 from higher order contributions. As we argued earlier, the

polytope with two or more adjacent red facets are bound to be open if we fix the interaction

between the two fields to be φ2
1φ2. Whether the causal structure in kinematic space encodes

combinatorics and realisations of such polytopes remains to be seen.

This question is intimately tied to seeing how accordiohedra for perturbative amplitudes

in EFT at higher order in g emerge in the decoupling limit from positive geometry of the

bi-scalar field theory.

Coloured Causal diamonds and Positive geometries for several fields:

Finally it would be interesting to see if the ideas proposed in this paper can be generalised

suitably to find positive geometry for tree-level amplitudes of several fields.13 As “friends” of

associahedra with various possible colorings of the facets remain to be found, we hope that

a colored causal structure in the kinematic space can be used to define such polytopes.

Local QFTS and Positive Geometries

Our analysis centered around a specific mixed cubic interaction between a massless and a

massive field and we computed tree-level amplitudes with only massless external particles.

It is an important question to analyse the correspondence between positive geometries in

kinematic space and local unitary scalar scattering amplitudes. That is, how do we classify

all the local multi-scalar interactions for which any scattering amplitude equals sum over

d log forms associated to positive geometries. We should note that computation of generic

bi-adjoint amplitude with a single massless scalar or the amplitudes in the Yukawa type

interaction analysed in [15] require us to consider so-called open polytopes in which some of

the facets lie at infinity in the kinematic space. Hence our organisation principle should allow

for open associahedra (or more generally open polytopes) as possible positive geometries for

scattering amplitudes.

We hope to return to at least some of these questions in the future.

13We are grateful to Nima Arkani-Hamed for posing this question.
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A Explicit formula for the weights

In this appendix, we derive an explicit formula for the weights α[Dp,q ] that appeared in equa-

tion (70). We then prove that if a combinatorial accordiohedron AC(D) of dimension n− 4

is not (combinatorially) equivalent to one of the co-dimension one facet of An−3 then the

weight α[D] is zero.

The explicit formula for the weights when the accordiohedron polytope is generated a

reference dissection consists of n − 4 triangles and one quadrilateral is derived as follows.

Lemma A.1. Consider an accordiohedron whose reference dissection consists of n − 4 tri-

angles and one quadrilateral. If the accordiohedron is a facet of associahedron associated to

one partial triangulation obtained by removing (i, j) then,

α[Di,j ] = 1
2Ck−2 Cn−k−2

if | j − i| = kmodulon (71)

where Cl is the Catalan Number defined as

Cl =
(2l) !

l ! (l + 1) !
(72)

Note that if |i− j| = 2 modulon then the above formula reduces to,

α[Di,j ] =
1

2Cn−4

(73)

Proof. Let (∂A)n−4(i, j) be one of the facets of An−3 that corresponds to one-partial tri-

angulation obtained by removing the diagonal (i, j). (∂A)n−4(i, j) corresponds to a set of

{AC(B′ij) } where B′ij is the set of all dissections which lead to the same combinatorial ac-

cordiohedron.

Now let |j − i| = 2 modulon. In this case the reader can convince themselves easily that

all the triangulations of the n − 1 gon obtained by chopping off the triangle i, i + 1 j lead

to the same accordiohedron. Hence the number of such accordiohedra is Cn−4. Similarly if

(∂A)n−4(i, j) = Ar × An−r−4 then the total number of dissections which lead to the this

facet as an accordiohedron is Cr × Cn−r−4.

We also note that each reference dissection B′ij leads to an accordiohedron which is one of

two possible facets : (∂A)n−4(i, j) and either (∂A)n−4(i+1, i +1) or (∂A)n−4(i−1, i −1) and

hence weight that we assign to each boundary accordiohedron for a given (i, j) is 1
2Cr Cn−r−4

.

This completes the proof.
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