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Tensor network theory and quantum simulation are, respectively, the key classical and quantum
computing methods in understanding quantum many-body physics. Here, we introduce the framework of
hybrid tensor networks with building blocks consisting of measurable quantum states and classically
contractable tensors, inheriting both their distinct features in efficient representation of many-body wave
functions. With the example of hybrid tree tensor networks, we demonstrate efficient quantum simulation
using a quantum computer whose size is significantly smaller than the one of the target system. We
numerically benchmark our method for finding the ground state of 1D and 2D spin systems of up to 8 × 8

and 9 × 8 qubits with operations only acting on 8þ 1 and 9þ 1 qubits, respectively. Our approach
sheds light on simulation of large practical problems with intermediate-scale quantum computers, with
potential applications in chemistry, quantum many-body physics, quantum field theory, and quantum
gravity thought experiments.
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A major challenge in studying quantum many-body
physics stems from the hardness of efficient representation
of quantum wave functions. The tensor network (TN)
theory, originated from the density matrix renormalization
group for 1D Hamiltonians [1,2], provides a potential
solution by describing the state with a network consisting
of low-rank tensors [3]. Despite its notable success in
various problems, the TN theory is inadequate to represent
arbitrary systems, such as those behaving volume-law of
entanglement. This motivates an alternative approach of
quantum simulation, which uses a controlled quantum
hardware to represent the target quantum system naturally
[4]. Quantum simulation can be used for studying complex
many-body systems, such as quantum chemistry and the
Hubbard model [5,6]. While conventional quantum simu-
lation algorithms require universal quantum computing,
which is challenging to current technology [7], whether
near-term quantum devices [8] are capable of solving
realistic problems remains open [9–15]. Major technologi-
cal challenges include whether we can control a sufficient
number of qubits and whether the gate fidelity is suffi-
ciently low to guarantee the calculation accuracy.
Here, we propose a hybrid TN approach to address these

challenges. Leveraging the ability of TNs and quantum
computers in efficient classical and quantum representation
of quantum states, we introduce a framework of hybrid TN,
which enables simulation of large systems using a small

quantum processor with a shallow circuit. Previous studies
along this line include chemistry computation beyond the
active-space approximation [16], concatenation of quantum
states to a matrix product state (MPS) [17], etc. Our result
unifies these existing task-tailored schemes; yet, more
importantly, it provides the basis for general hybrid
classical-quantum representation of many-body wave func-
tions that is applicable to broad problems. We show this by
considering an example of hybrid tree TNs (TTNs) and
demonstrating its application in studying static and
dynamic problems of quantum systems [18,19]. We
numerically test our method in finding ground states of
1D spin clusters and 2D spin lattices with up to 8 × 8 and
9 × 8 qubits.
Framework.—We first introduce the framework

of hybrid tensor networks. We focus on qubits, and the
results can be straightforwardly generalized to higher
dimensions. A rank-n tensor, when regarded as a multi-
dimension array, can be represented as Tj1;j2;…;jn with n
indices. The amplitude of an n-partite quantum state
in the computational basis corresponds to a rank-n tensor
jψi ¼ P

j1;j2;…;jn ψ j1;j2;…;jn jj1ijj2i…jjni. A classical TN
consists of low-rank tensors, see Fig. 1(a), which can
efficiently describe physical states that lie in a small subset
of the whole Hilbert space. For example, a MPS [20] jψi ¼
P

j1���jn Tr½Aj1…Ajn �jj1…jni consists of rank-3 tensors
with a small bond dimension κ of each matrix Ajk , and
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compresses the state dimension from Oð2nÞ to Oðnκ2Þ. A
quantum computer prepares states jψi by applying a
unitary circuit to some initial states. We can further add
a classical index to the n-qubit state to form a rank-(nþ 1)
tensor fjψ iig; see Fig. 1(b).
Regarding low-rank tensors as classical tensors (super-

script index) and quantum states as quantum tensors (sub-
script index), we define hybrid TNs as networks constructed
by connecting both classical and quantum tensors. For
example, the tensor Ai1;i2 represents a classical tensor with
two classical indices and ψ i

j1;j2;…;jn
represents a set of

n-partite quantum states. Two tensors, being either classical
or quantum, are connected by following the conventional

contraction rule, such as Ci1;i3 ¼ P
i2 A

i1;i2Bi2;i3 . For exam-
ple, we show the connections of a quantum and a classical
tensor in Figs. 1(c) and 1(d) and refer to Ref. [21] for
general cases.
While the mathematical rules are the same, classical and

quantum tensors are contracted in two different ways via
tensor contraction and quantum state measurement, respec-
tively. For a rank-(nþ 1) quantum tensor, we show how
to calculate expectation values of local observables in
Fig. 1(e). Calculating expectation values of general hybrid
TNs works similarly, although the complexity highly
depends on the network and the contraction order (see
Ref. [21] for details).
Hybrid tree TN.—Contracting a general-structured TN

may have exponential complexity, explaining why conven-
tional TN theories consider networks with specific top-
ology, including 1D MPS [22–24], 2D projected entangled
pair states (PEPS, approximate contraction) [25], tree TNs
[26], multiscale entanglement renormalization ansatz [27],
etc. Here we consider hybrid TNs with a tree structure such
as in Fig. 2(a), which admits an efficient tensor contraction.
Each node is either a quantum tensor or any efficiently
contractable classical TN.
We consider several tree structures with depth 2. By

connecting a classical tensor to a quantum tensor, we
extend the state subspace as in Fig. 2(b) or represent virtual
qubits as in Fig. 2(c). Specifically, denoting the classical
tensor as αi, the network in Fig. 2(b) describes a subspace
fjψi ¼ P

i α
ijψ iig, which, when applied in quantum

simulation, is a generalization of the subspace expansion
method that has been widely used for finding excited
energy spectra [28], error mitigation [29], and error
correction [30]. For the network in Fig. 2(c), it describes
the scenario where we use a quantum state and a classical
tensor to, respectively, represent the active and virtual space
or multidegrees of freedom, as in quantum chemistry and
condensed matter [16,31–33]. We can further connect two
quantum tensors via a classical tensor as in Fig. 2(d),
representing weakly interacted two subsystems as consid-
ered in Ref. [17].
Its generalization to multiple subsystems is given in

Fig. 2(e), where entanglement of local subsystems is
described by quantum states while the correlation between
local subsystems is described classically. Such a hybrid TN
can be useful for describing weakly coupled subsystems,
such as clustered systems. We can also use classical tensors
to represent local correlations while we can use a quantum
tensor to represent the nonlocal correlation, as shown in
Fig. 2(f), which may be useful for studying topological
order with long-range entanglement [34,35]. The construc-
tion of tree networks can be understood as an effective
renormalization procedure, and other classical TNs such as
the multiscale entanglement renormalization ansatz can be
similarly used [21]. In addition to representing either local
correlations or nonlocal correlations with classical tensors,

FIG. 1. Hybrid tensors and tensor contraction. (a) A low-rank
classical tensor. (b) An nþ 1 rank tensor with n indices
representing an n-partite quantum system and 1 classical index.
Each state could be prepared with (b1) different unitary as jψ ii ¼
Uij0̄i or (b2) different initial states as jψ ii ¼ Uj0̄ii. (c),(d) Tensor
contraction between a quantum and a classical tensor.
The contracted index could be (c) classical or (d) quantum,
which shares the same mathematical definition, but is
contracted in different ways. (e) Expectation values of local
observables for a rank-(nþ 1) tensor as a Hermitian observable
Mi0;i ¼ hψ i0 jO1 ⊗ O2 ⊗ � � � ⊗ Onjψ ii. (e1) Suppose the index i
is classical and jψ ii ¼ Uij0̄i, we get each Mi0;i by measuring the
ancillary qubit in the three Pauli bases and the other n qubits in
the Z basis, with U1 ¼ Ui, U2 ¼ Ui0 ðUiÞ†, and UM being the
unitary that rotates to the observable basis. (e2) Suppose the index
i is classical and jψ ii ¼ Uj0̄ii, we use U1 to prepare four input
states j0̄ii; j0̄i0 i; ðj0̄ii þ j0̄i0 iÞ= ffiffiffi

2
p

; ðj0̄ii þ ij0̄i0 iÞ= ffiffiffi
2

p
, and each

Mi0;i corresponds to a linear combination of the measurement
results. (e3) Suppose the index i is quantum, after applying the
unitary U for preparing the state jψi ¼ Uj0̄i; we measure n
qubits in the Z basis and the other qubit in the Pauli X, Y, and
Z bases.
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we can represent both of them with quantum states, as
shown in Fig. 2(g), and expectation values of local
observables can be efficiently obtained in Fig. 2(h).
Our results can be naturally generalized to an arbitrary

tree structure. For a tree with maximal depth D, maximal
degree g, and bond dimension κ, hybrid TTNs represent a
system of N ¼ OðgD−1Þ qubits. The number of circuits and
the classical cost (using MPS) for measuring local observ-
ables scale as OðNκ2Þ and OðNgκ4Þ, respectively. We also
show the contraction cost for trees with loops and its
capability in representing entanglement beyond the area
law in Ref. [21]. Since the hybrid TTN represents a large set
of quantum states and admits efficient calculation of local
observables, it can be used for variational quantum sim-
ulation for solving static and dynamic problems of large
quantum systems.
Numerical simulation.—We test the effectiveness of

hybrid TNs in finding ground states of 1D and 2D spin
lattice systems with nearest-neighbor interactions and
external fields in Fig. 3. For 1D spin clusters, we regard
each adjacent n ¼ 8 qubit as a subsystem and consider k ¼
2; 3;…; 8 subsystems with n × k qubits. A general form of
the Hamiltonian is H ¼ P

k
j¼1Hj þ λHint, where Hj ¼P

7
i¼1 fẐ8jþiẐ8jþiþ1 þ

P
8
i¼1ðgX̂8jþi þ hẐ8jþiÞ and Hint ¼P

k−1
j¼1 fjẐ8jẐ8jþ1 represent the Hamiltonian of the jth

subsystem and their interactions, respectively, with inter-
action strength λ. Here X̂i and Ẑi are Pauli operators
acting on the ith qubit. For the 2D n × k spin lattice, we
group each n ¼ 3 × 3 qubit on a small square lattice as a
subsystem and consider k ¼ Nx × Ny subsystems with Nx

(Ny) subsystems along x (y) direction. The 2D Hamiltonian

is H ¼ P
hi;ji fijẐiẐj þ

P
iðgX̂i þ hẐiÞ, where hi; ji

represents all the nearest-neighbor pairs on a square lattice.
We consider that the interactions in each subsystem are
identical f ¼ 1, while interactions on the boundary of
nearest-neighbor subsystem ffjg or ffi;jg are generated
randomly from [0, 1], as shown in Fig. 3(a). The parameters
of the external fields are set as h ¼ 1=π ¼ 0.32
and g ¼ 0.5.
Considering the hybrid TTN of Fig. 2(g), the first

layer state and the jth subsystem of the second layer
are generated as jψi ¼ Vðθ⃗0Þj0̄0i ¼

P
αi1;…;ik ji1;…; iki

and jψ ij
j ðθ⃗jÞi ¼ Uðθ⃗jÞj0̄iji, respectively, with V and U

shown in Fig. 3(b) and initial states j0̄iji ¼ jiji⊗n,
ij ∈ f0; 1g. The hybrid TTN represents a quantum state

jψ̃ðθ⃗Þi¼P
i1…ikαi1;…;ikðθ⃗0Þjψ i1

1 ðθ⃗1Þi⊗���⊗ jψ ik
k ðθ⃗kÞi, with

θ⃗ ¼ ðθ⃗0; θ⃗1;…; θ⃗kÞ representing all the parameters. The

state is automatically normalized since hψ i0j
j jψ ij

j i ¼ δi0j;i0j .

For parameters θ⃗, we obtain the energy expectation value
Eðθ⃗Þ ¼ hψ̃ðθ⃗ÞjHjψ̃ðθ⃗Þi by following the contraction rule of
Fig. 2(h). We use variational imaginary time evolution to
minimize the energy Eðθ⃗Þ, which requires an ancillary qubit
(see Refs. [21,36]). Thus the quantum systems needed for
simulating the 8 × k-qubit 1D and 9 × k-qubit 2D systems
need 8þ 1 and 9þ 1 qubits, respectively.
We benchmark the calculation by comparing with open-

boundary MPS for 1D systems and imaginary time evo-
lution PEPS for 2D systems. We consider the relative error
1 − E=E0 with the ground state energy E from hybrid TTN
calculation, and E0 fromMPS or PEPS. In Figs. 3(c1) and 3
(d1), we study the convergence of ground state energy of
1D [Fig. 3(c1)] and 2D [Fig. 3(d1)] systems with coupling
strength λ ¼ 1 on 8 × 8 and 9 × 4 qubits, respectively, and

FIG. 2. Hybrid tree tensor networks. (a) An example tree structure. (b) Connection of a quantum tensor and a classical tensor.
(c) Connection of a quantum tensor and a classical TN. (d) Connection of two quantum tensors via a classical tensor. (e) Generalization
of (d) with multiple subsystems. (f) Using classical tensors to represent local correlation and a quantum tensor to represent correlations
between subsystems. (g) A quantum-quantum network. (h1)–(h4) An example for calculating expectation values of (g). To calculate (h1)
the expectation value of local observables⊗k

i¼1⊗n
j¼1 O

i
j, we first calculate (h2) the observableM

i0s;is
s for each tensor on the second layer

with quantum circuits shown in Figs. 1(e1) and 1(e2), which converts to the contraction in (h3) and the measurement using the quantum
circuit (h4).
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show a relative error below 10−3. Next, we study how the
coupling strength or the number of subsystems affect the
efficacy of hybrid TTN. We present the calculation error
with respect to different λ for the 8 × 8-qubit 1D and 9 × 4-
qubit 2D systems in Figs. 3(c2) and 3(d2), respectively. We
find that although the error fluctuates with different
coupling strength, which might owe to instability from
the optimization, the error remains consistent around 10−3.
In Figs. 3(c3) and 3(d3), we show the calculation error for
the 1D with k subsystems [Fig. 3(c3)] and 2D withNx × Ny

subsystems [Fig. 3(d3)] for λ ¼ 1, and we can achieve a
desired simulation accuracy. These results with different
coupling strength and number of subsystems verify the
effectiveness and robustness of the hybrid TTN method.
We refer to Ref. [21] for simulation details.
Applications.—While we are not expecting that the

hybrid TN applies universally to arbitrary quantum systems
in a similar way to universal quantum computers, we do
anticipate hybrid TNs find their applications in a wide class
of problems such as chemistry, many-body physics,

quantum field theory, and quantum gravity [21].
Assisted by classical computers, hybrid TN could more
efficiently represent multipartite quantum states and bolster
the power of near-term quantum computers to significantly
alleviate the limitations on the number of controllable
qubits and circuit depth.
Ideas corresponding to simple hybrid TTNs of Figs. 2(b)

and 2(c) have been studied for representing excited energy
eigenstates [28] and active plus virtual orbitals [16] in
electronic structure calculation. While the scheme in
Ref. [16] assumed the configuration interaction ansatz
for the virtual orbitals, a general classical TN may be used
instead to improve the approximation (see Ref. [37]).
Another application of the hybrid TN is to go beyond
the Born-Oppenheimer approximation, which may have
applications in understanding radiationless decay between
electronic states [38], relativistic effects [39], or conical
intersections [40–42]. Hybrid TNs could also be used
for investigating the cluster systems [43,44], toy
models for high energy physics [45–51], correlated

(a) (b) (c1)

(c3)

(c2)

(d1)

(d3)

(d2)

(b1) (b2)

FIG. 3. Numerical simulation for 1D and 2D quantum systems with hybrid TTN. (a) 1D spin cluster and 2D spin lattice with
interactions (thin lines) on the boundary. The interactions of subsystems are represented by thick lines. We group 8 adjacent qubits and
3 × 3 qubits on a square sublattice as subsystems for the 1D and 2D systems, respectively. (b) The ansatz circuit for the quantum tensors
in Fig. 2(g). The circuits of both layers share similar structures with d repetitions of circuits in the dashed box. Here, Rα (α ∈ fX̂; Ŷ; Ẑg)
represents single-qubit rotation around α axis and the two-qubit gate is RZZðθiÞ ¼ e−iθiẐ⊗Ẑ. The rotation angle (parameter) for each gate
is initialized from a small random value and updated in each variational cycle. The circuit depths for V (first layer tensor) and U (second
layer tensor) are dðVÞ ¼ 6 and dðUÞ ¼ 8. The additional unitaryM is inserted at the first and ½d=2þ 1�th block of the first layer (b1) and
the second layer (b2). (c),(d) Simulation results of the ground state energy. For the 1D and 2D cases, we compare E to the reference
results E0 ¼ EMPS and E0 ¼ EPEPS obtained from a standard density matrix renormalization group with bond dimension κ ¼ 32 and
from PEPS imaginary time evolution with bond dimension κ ¼ 5 and maximum allowed boundary bond dimension of κ̃ ¼ 64 during the
contraction. We use the relative error 1 − E=E0 to characterize the accuracy. The red dashed line (1D) and blue dash-dotted line (2D)
correspond to the energy using tensor products of the ground state of local subsystems. The cyan dot (1D) and blue triangle (2D) are
results obtained with hybrid TNs. (c1),(d1) Convergence toward the ground state for the 1D 8 × 8 and 2D 9 × 4 systems with λ ¼ 1,
respectively. (c2),(d2) Error versus different subsystem coupling strength λ for the 1D 8 × 8 and 2D 9 × 4 systems, respectively. (c3),
(d3) Errors with different numbers of local subsystems with λ ¼ 1, respectively.
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materials [31–33,52], as well as for exploring emergent
quantum phenomena [53–56], including searching for
Majorana zero modes and topological phase transitions
[57–61]. We refer to Ref. [21] for detailed discussions.
Discussion.—We proposed a framework of hybrid tensor

networks and studied its application in variational quantum
simulation. Targeting practical problems that have both
classical and genuine quantum effects, hybrid TNs integrate
the power of classical TN theories and quantum computing,
and hence enable quantum simulation of large-scale prob-
lems with small quantum processors and shallower circuits.
Our work is different from proposals of using a quantum
computer to contract a classical TN [62–65], whose gener-
alization to hybrid TN could be a further work. Besides TNs,
there also exist other powerful classical methods, such as
quantum Monte Carlo [66,67] and machine learning with
neural networks [68,69]. A future direction is to investigate
the combination of these methods with quantum computing.
Another independent approach of simulating large quantum
systems with small quantum computers is to decompose
multiqubit gates into a mixture of single-qubit gates
[70–74], whose combination with our method may lead
to an interesting future direction. After showing advantages
over classical supercomputers in certain tasks [75,76], the
next milestone is to solve practically meaningful and
classically intractable tasks. Our work sheds light on the
avenue for achieving this goal with near-term hardware.
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Note added.—Recently, a relevant work was posted by Fujii
et al. [77]. They suggest a divide-and-conquer method for
solving a larger problem with smaller size quantum com-
puters in a similar vein to Fig. 2(g) (see Ref. [21] for
details). While their work used a different language and
focused on different examples, our results are consistent
and can be compared.
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