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Supplemental Figure S1. Chemical potential at different fillings: The chemical potential at different fillings is shown on
top of the band structure of twisted bilayer graphene with twist angle θ = 0.8◦ for non-interacting (left) and interacting case
(right).

Appendix A: Procedure for fitting TBG continuum model to scanning tunneling microscopy (STM)
experiments

In this Appendix, we explain the fitting procedure used in Sec.III of the main text. The procedure follows closely the
one adopted in Ref.[1] which is meant as an accompanying reference to this Appendix. The purpose of this modelling
approach is to provide an experimentally inspired model which captures the qualitative behavior of electronic energies
as a function of twist angle and filling, rather then to provide a complete and full treatment of interactions in TBG.
Moreover, we focus here only on a Hartree correction, as motivated in the main text, since they dominate over a
wider twist angle range as well as we expect them to be the leading interaction correction at the typical temperature
associated with NLOR experiments (i.e. exchange effects are suppressed). We note however the large body of existing
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Supplemental Figure S2. Effect of increasing sublattice offset energy ∆ on energy spectrum and shift-current
response : (a) Energy spectrum around flat bands, (b) FF contribution to second-order conductivity, and (c) FD contribution
to second-order conductivity of twisted bilayer graphene with twist angle, θ = 0.8◦, for three different sublattice offset energies.
As ∆ increases, the gap between flat bands increases but they come closer to the dispersive bands and it results in an opposite
frequency shift for the peak value in FF and FD case.

work in the literature that analyzes Hartree-Fock contributions (e.g., Refs. [2–7]). Lastly, we also point out that the
modelling of Ref.[1] focuses solely on TBG without substrate induced gap ∆, which here we treat as a free parameter.
Given that the inhomogeneous charge distribution present in the moiré unit cell is weakly affected by ∆, we expect
the behaviour of Hartree interaction to remain similar to the one studied in Ref.[1].

The non-interacting continuum model introduced in the Sec.III has two free parameters, the interlayer couplings
u, u′, for a given twist angle θ. While the dependence on twist angle of these parameters has been studied through
ab-initio methods [8], in our modelling we choose a simpler approach intended to highlight the interaction-driven
qualitative changes to the band structure. Specifically, we assume the same-sublattice (u) and opposite-sublattice (u′)
interlayer tunneling parameters have fixed values for all twist angles. We caution that this approximation misses the
subtle role relaxation physics plays on increasing the ratio of these parameters η = u/u′ as the twist angle is brought
closer to the magic angle [8]. Crucially, however the resulting charge density profiles that give rise to the Hartree
corrections are weakly affected by changes in these parameters making our conclusions robust. Moreover, we expect
that the twist dependent ratio of η = u/u′ will not qualitatively alter our results when studied as a function of filling
ν. Specifically, the location of van Hove singularities in each band does not change with η for values of η . 0.8 (See
also discussion in Ref. [9]). To fix u and u′, we focus on the measurements at the largest available angle of θ = 1.32◦

in Ref.[1], where the role of interactions is least important. By matching the measured Landau-level (LL) spectrum to
that obtained numerically from this continuum model, we fix u′ = 90 meV and u = 0.4u′. As noted in the main text,
as a result of this approximation scheme the magic-angle of the non-interacting model occurs at θ ≈ 0.99◦ differing
from the typical values θ ≈ 1.1◦ quoted in the literature.

We now explain the procedure used to determine value of the dielectric screening ε in the Coulomb potential
Vc(q) = 2πe2/εq. Microscopically its value is set by the substrate— for a typical hBN encapsulated graphene its value
would be ε ≈ 5. This ε however massively overestimates the role of Hartree and Fock processes, leading to band
structures with large γ point inversions that are not observed experimentally. To overcome this unwarranted behavior,
earlier works [2, 7, 10] use a wider range of values for ε. Following this procedure, we choose ε = 15 to quantitatively
capture the following three experimental characteristics seen in the LL spectra of Ref.[1]: (i) the energy spacing
between LLs arising from the γ point band structure at θ = 1.32◦ (Fig. 1 in Ref.[1]), (ii) the energy spacing between
the highest energy LL from the flat band and the lowest energy LL from the dispersive bands at θ = 1.32◦ (Fig. 1
in Ref.[1]), and (iii) the critical angle at which largest energy LL from the flat-band joins the vHs (Fig. 2 in Ref.[1]).
These criteria are met with a choice of ε = 15, which is then kept constant for all values of θ. As argued in Ref.[1] such
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parameterized Coulomb interaction, i.e. one that includes Hartree-only correction, adequately captures experimental
observations for twist angles away from the magic angle, suggesting that the Fock term plays a subdominant role for
such θ. In the vicinity of the magic angle, one expects the exchange effects to become significant and, amongst a wide
number of correlated effects, to also introduce band broadening and counteract the Hartree driven band inversion at
the γ point (See discussion in Ref. [1]).

For the bandstructures and calculations presented in this paper, we evaluate the solutions for all fillings self-
consistently until convergence is reached. We set the convergence threshold for all self-consistent parameters as 0.1%
total relative error (difference between successive self-consistent steps). A grid of 441 k-points was used for the analysis
of the self-consistent potentials, where the convergence reached after a few (typically in less than 5) iterations.

Appendix B: Shift-current expressions

In this section, we derive expressions for shift-current expressions using velocity gauge. There are mainly two
different approaches to calculate the shift-current response. The first approach is based on evaluating the shift-vector
directly from the Berry connection. However, a direct numerical evaluation of Berry connection can be severely
affected by the gauge fixing issues. On the other hand, one can also evaluate this response directly from the matrix
elements of different k space derivatives of the Hamiltonian. The expressions obtained from this second approach are
insensitive to the gauge used. We noticed that different references use different forms of these expressions which can
lead to confusion. Here, we elucidate the connection between different expressions and also highlight the importance
of physical processes associated with different terms appearing in this derivation.

Within the independent particle approximation and using minimal coupling approach, the second-order conductivity
for a perturbation arising from a linearly polarized EM field can be obtained using formula Eq. 43 of Ref.[11]

σµαβ(ωZ , ω1, ω2) =− e3
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where ωZ = ω1 + ω2, hαab = 〈a|∇kαH|b〉, h
αβ
ab =

〈
a|∇kα∇kβH|b

〉
are derivatives of hamiltonian, εab = εa − εb is

the energy difference, and fab = fa − fb is the difference in occupancy of energy level a and b. This formula many
different contributions like injection current, shift current etc. It can be recast in a slightly different form by shifting
all frequencies by ω → ω + iη and the above equation reduces to

σµαβ(ωZ , ω1, ω2) = − e3

~2ω1ω2

∑
a,b,c

∫
dk

1

2
fah

µαβ
aa +

1

2
fah

µβα
aa + fab

hαabh
µβ
ba

ω1 + iη − εab
+ fab

hβabh
µα
ba

ω2 + iη − εab
+

1

2
fab

hαβab h
µ
ba

ωZ + iη − εab

+
1

2
fab

hβαab h
µ
ba

ωZ + iη − εab
+

hαabh
β
bch

µ
ca

ωZ + iη − εca

[
fab

ω1 + iη − εba
+

fcb
ω2 + iη − εcb

]
+

hβabh
α
bch

µ
ca

ωZ + iη − εca

[
fab

ω2 + iη − εba
+

fcb
ω1 + iη − εcb

]
(B2)

The DC response to an AC field of frequency ω is given by σµαβ(0, ω,−ω). which can be obtained from Eq. B2 by

substituting ω1 = −ω2 = ω and for our prime case of interest (α = β), we get

σµαα(0, ω,−ω) =
e3

~2ω2
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1. Connections with shift current expression

In order to understand the connections between the shift-current expression we encountered in the main text and
the form the second-order conductivity considered above, we can first split this equation into two different kind of
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contributions

σµαα(0, ω,−ω) =
e2
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Let’s first focus on 2nd and 3rd term of Eq. B4, σ23, where the integrand can be expressed as
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For our purpose, the most interesting term is the one involving δ(ω − εab). We can write

hαabh
µα
ba − h

α
bah

µα
ab = hαabh

µα
ba − [a↔ b]. (B6)

Now, first we derive an expression for hαβmn. According to the notation used in Ref. [11],

hαβmn =
[
DαDβ [H0]

]
mn
≡ 〈m|∇α∇β(H0)|n〉 (B7)

where H0 is the unperturbed hamiltonian and for a given operator O

D[O]ab = [D,O]ab = ∇k(Oab)− i[A, O]ab (B8)

where A is the Berry-connection matrix with Aµ
mn = i 〈um|∂kµ |un〉. We can thus write

hαβmn =
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]
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We have
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(B10)

where we have used the fact that 〈m|H0|n〉 = δmnεn and vβnn = ∂βεn. We can express[
Aα, Dβ [H0]

]
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For the first term in Eq. B9, we can use Eq. B10 to write

∂α
([
Dβ [H0]

]
mn

)
= δmn∂αεn − i(vαnn − vαmm)Aβ

mn − iεnm∂αAβ
mn (B12)

and the second part can be fully extended using Eq. B10 and Eq. B11
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(B13)

Now, combining these two equations we get:
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(B14)
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Our goal was to evaluate hαabh
µα
ba in Eq. B6. For now, we are going to focus on case a 6= b For a 6= b, hαab = −iεbaAα

ab
from Eq. B10 and similarly
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where ∆µ
ab = vµaa − v
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bb. This gives
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It can be written as
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ab (Aα
abA

µ
ba −Aα

baA
µ
ab)

−iεba (−εabAα
abA

µ
bbA

α
ba − εbaAα
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(B18)

where ϕµba = Arg[Aµ
ba], and simplifying it further we get

hαabh
µα
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ab = 2iε2ab
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ab|2∂µϕαba
)
− 2iε2ba |Aα
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ab (Aα

abA
µ
ba −Aα

baA
µ
ab)∑

d6=a,b

−iεba (−εadAα
abA

µ
bdA

α
da − εbdAα
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Now, we can further simplify it by using hγmn = iεnmAγ
mn for m 6= n,
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µα
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bb −Aµ
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(B20)

It can be simplified further
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µ
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∑
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(
− 1
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µ
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α
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1
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µ
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α
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)
+

(
1
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µ
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α
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1
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µ
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α
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)
.

(B21)

Now substituting it back in δ(ω − εab) part of Eq. B5, we get the contribution of 2nd and 3rd term of Eq. B4

σ23
δ(ω−εab) =

2πe3

~2

∫
[dk]fab|Aα

ab|2S
µ
baδ(ω − εab) +

2πe3

~2ω2

∫
[dk]fab∆

α
ab

(
1

εab
hαabh

µ
ba +

1

εba
hαbah

µ
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)
iδ(ω − εab)

+
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∑
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∫
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[(
− 1
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µ
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α
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1
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µ
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α
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+
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1
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α
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(B22)

It is worth mentioning that the quantity ∆α
ab

(
1
εab
hαabh

µ
ba + 1

εba
hαbah

µ
ab

)
and[(

− 1
εbd
hαabh

µ
bdh

α
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µ
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α
db

)
+
(

1
εda

hαabh
µ
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α
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εdb
hαbah

µ
dbh

α
ad

)]
are imaginary by default. This shows that the

second and third term of Eq. B4 contains not only the shift vector term but also a few extra terms which include
three velocity elements. Next, we would like to check if these extra terms shown in the box above cancel out σ56 (5th
and 6th terms) of Eq. B4. We have

σ56 =
2πe3

~2ω2

∫
[dk]

hαabh
α
bch

µ
ca

εac

[
fab

ω + iη − εba
+

fcb
−ω + iη − εcb

]
+
hαabh

α
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µ
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εac

[
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−ω + iη − εba
+

fcb
ω + iη − εcb

]
(B23)
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and after switching a↔ c in 3rd and 4th term,it can be written as

σ56 =
2πe3

~2ω2

∫
[dk]

fab
εac

hαabh
α
bch

µ
ca

ω + iη − εba
+
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εca
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α
bah
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+
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µ
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+
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µ
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(B24)

=⇒ σ56 =
2πe3

~2ω2

∫
[dk]fba

[
hαbah

α
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µ
cb

εbc
−
hαcah

α
abh

µ
bc

εcb
+
hαabh

α
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µ
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εac
− hαcbh

α
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µ
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εca

]
P

(
1

ω − εab

)
+

2πe3
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∫
[dk]fba

[
hαbah

α
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µ
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εbc
+
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α
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µ
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εcb
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α
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µ
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α
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µ
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εca

]
iπδ(ω − εab).

(B25)

Now, the term involving δ(ω − εab) can be written as

σ56
δ(ω−εab) =

2πe3

~2ω2

∫
[dk]fba

[
hαbah

α
adh

µ
db

εbd
+
hαdah

α
abh

µ
bd

εdb
−
hαabh

α
bdh

µ
da

εad
−
hαdbh

α
bah

µ
ad

εda

]
iπδ(ω − εab) (B26)

After rearranging these terms and using ∆α
ab = hαaa − hαbb, we get

σ56
δ(ω−εab) = (−1)

2πe3

~2ω2

∫
[dk]fab∆

α
ab

[
hαabh

µ
ba

εab
+
hαbah

µ
ab

εba

]
iπδ(ω − εab)

+ (−1)
2πe3

~2ω2

∫
[dk]fab

∑
d6=a,b

[
−
hαdah

α
abh

µ
bd

εbd
+
hαdbh

α
bah

µ
ad

εad
+
hαabh

α
bdh

µ
da

εda
−
hαbah

α
adh

µ
db

εdb

]
iπδ(ω − εab) .

(B27)

Now, we can see that the above expression σ56
δ(ω−εab) is equal and opposite to the boxed part (three velocity terms) of

Eq. B22. In other words:

σ23
δ(ω−εab) + σ56

δ(ω−εab) =
2πe3

~2

∫
[dk]fab|Aα

ab|2S
µα
ba δ(ω − εab) (B28)

which is the shift-current expression used in the main text.

Appendix C: Group Theoretical Analysis for second-order conductivity

In this section, we perform a group theoretical analysis to predict the non-zero components of second-order con-
ductivity tensor for twisted bilayer graphene. If we consider a TBG encapsulated with hBN from both sides such that
the sublattice symmetry breaking effect is same on both layers, we have ∆1 = ∆2. In this case, the symmetry group
of TBG is D3 generated by C3z and C2y. In our simulations, we found that there is only one independent component
of σµαβ tensor when ∆1 = ∆2. It can be directly deduced from the number of cubic functions associated with the

trivial irrep A1 in the character table of D3 shown in Tab. I [12].

Irreps E 2C3z 3C2y Linear functions Quadratic functions Cubic functions
A1 1 1 1 - x2 + y2, z2 y(y2 − 3x2)
A2 1 1 -1 z,Rz - z3, x(3y2 − x2), z(x2 + y2)
E 2 -1 0 (x, y), (Rx, Ry) (y2 − x2, xy)(xz, yz) (xz2, yz2)

[
xyz, z(y2 − x2)

] [
y(x2 + y2), x(x2 + y2)

]
TABLE I. Character table for point group D3 generated by C3z and C2y.

Irreps e c c2 Linear functions Quadratic functions Cubic functions
A1 1 1 1 z x2 + y2, z2 z3,y(y2 − 3x2),y(y2 − 3x2),z(x2 + y2)

E
1
1

ei
2π
3

e−i 2π
3

e−i 2π
3

ei
2π
3

x+ iy, Rx + iRy

x− iy, Rx − iRy

(
x2 − y2, xy

)
(yz, xz) (xz2, yz2)

[
xyz, z(x2 − y2)

] [
x(x2 + y2), y(x2 + y2)

]
TABLE II. Character table for point group C3z.
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It indicates that the second order tensor σµαβ has only one independent element with

σyxx = −σyyy = σyxy = σxyx 6= 0

σxyy = −σxxx = σyyx = σyxy = 0.
(C1)

On the other hand, as shown in table II, the trivial irrep for C3z has two cubic functions (ignoring the ones involving
z as our system is two dimensional only) indicating that a rank three tensor can have two independent components
under C3. As a result of this, for ∆1 6= ∆2, we have

σyxx = −σyyy = σyxy = σxyx 6= 0

σxyy = −σxxx = σyyx = σyxy 6= 0
(C2)

which is consistent with our observation in Fig. S3.

Helicity dependent current in TBG

The second-order CPGE is captured by a rank two tensor (not a rank three tensor like shift-current response)

jα = iηαβ(E×E∗)β . (C3)

If we consider a two-dimensional material in x − y plane, then the normal incidence results in β = z and the in-
plane current requires α = x, y. Now, the quantity (E × E∗)z is the z component of an axial vector which shares
representation A1 in C3z character table II (denoted by Rz in the character table). On the other hand, the electric
current j = jxx̂ + jyŷ is a polar vector which has irrep E, and thus the CPGE conductivity tensor, nαβ transforms
according to irrep A1 ⊗ E = E which contains no trivial irrep A1, and thus nαz = 0. However, if we consider an
oblique incidence (i.e β = x, y), then we might get a non-zero component but this needs an electric field with z
component. Now, in the minimal coupling picture, we do not have a momentum component in this direction and Ez
cannot couple to our system and thus CPGE can not occur. However, it can couple to the layer degree of freedom
which would be an interesting direction to pursue but we need to go beyond the minimal coupling approach which is
beyond the scope of this current work. However, if the symmetry is lowered to a reflection symmetry with a mirror
plane perpendicular to the plane of the bilayer graphene, it can result in a non-zero injection current from circularly
polarized light.

Appendix D: Charge density profile

We propose that the large shift-current response observed for the twisted bilayer graphene in this work is related
to changes in the spatial distribution associated with the Bloch wavefunction when excited from one band to another.
The Bloch states originating from different regions of the mini-BZ and bands give rise to a different charge density
profile. We compute the local charge density profile,

n(r, E) =
∑
n,k

Ψ†nk(r)Ψnk(r)δ(E − εn,k) , (D1)

where n,k label the band and momentum point respectively. Here Ψnk(r) corresponds to the Bloch eigenstate of the
mean-field Hamiltonian of Sec. III with an eigenvalue εn,k and r tracks the position in real space (r = 0 corresponds
to the AA site).

Animation showing distribution of charge originating from states in a narrow energy window for θ = 0.8◦ is shown in
the Supplemental Material Video “charge density profile.mp4”. We highlight the varying structure of charge densities
centered near AA sites and in rings surrounding AA sites and the corresponding energies. Whenever a transition
from a state centered near AA site to a ring-like state occurs, corresponding energy difference between these states
matches sharp resonances in Fig.1f of the main text. A precise relation between this observation and the enhanced
resonance peaks remains to be explored in a future work.
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